
Mitochondrial DNA leakage
triggers inflammation in
age-related
cardiovascular diseases

Wanyue Ding1, Jingyu Chen2, Lei Zhao1, Shuang Wu3,
Xiaomei Chen4 and Hong Chen1*
1Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China, 2Department of Chinese
Medicine Internal Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing,
China, 3Southern Medical University Affiliated Qiqihar Hospital, The First Hospital of Qiqihar, Qiqihaer,
Heilongjiang, China, 4Integrated Traditional Chinese and Western Medicine Syndrome Laboratory,
School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China

Mitochondrial dysfunction is one of the hallmarks of cardiovascular aging. The
leakage of mitochondrial DNA (mtDNA) is increased in senescent cells, which are
resistant to programmed cell death such as apoptosis. Due to its similarity to
prokaryotic DNA, mtDNA could be recognized by cellular DNA sensors and
trigger innate immune responses, resulting in chronic inflammatory conditions
during aging. The mechanisms include cGAS-STING signaling, TLR-9 and
inflammasomes activation. Mitochondrial quality controls such as mitophagy
could preventmitochondria from triggering harmful inflammatory responses, but
when this homeostasis is out of balance, mtDNA-induced inflammation could
become pathogenic and contribute to age-related cardiovascular diseases. Here,
we summarize recent studies on mechanisms by which mtDNA promotes
inflammation and aging-related cardiovascular diseases, and discuss the
potential value of mtDNA in early screening and as therapeutic targets.
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1 Introduction

Cardiovascular diseases have long been the leading cause of death. It is estimated that
there were 620 million patients with cardiovascular diseases worldwide in 2021, along with
more than 20 million cardiovascular deaths (Lindstrom et al., 2022). Population aging has
become an important factor worldwide contributing to the increasing burden of
cardiovascular diseases. Age has long been identified as a significant risk factor for
cardiovascular events. According to the statistics from American Heart Association, the
overall prevalence of cardiovascular diseases (including coronary heart disease, heart failure,
stroke, hypertension) in adults is approximately 48%, but it reaches around 78% in the
population aged 60 to 79, and rises to about 90% in those aged 80 and above (Benjamin
et al., 2019). Additionally, traditional risk factors such as hyperlipidemia and diabetes
become more prevalent with advancing age. The normal physiology of the cardiovascular
system is also significantly influenced by aging, including myocardial hypertrophy,
increased arterial stiffness, and impaired endothelial function (Lakatta and Levy, 2003a;
Lakatta and Levy, 2003b). Many physiological changes during the aging process contribute
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to impairment in cardiovascular system, among which age-related
systemic chronic inflammation playing a significant role (Lettino
et al., 2022).

Aging is characterized by systemic chronic inflammation, or
described as “inflamm-aging,”which is manifested by senescent cells
secreting inflammatory factors in the absence of acute infection,
which also induces the senescence of normal cells in a paracrine
manner (Li et al., 2023). The burden of senescent cells increases due
to the weakened clearance of senescent cells, thus forming a vicious
cycle of inflammation and aging, leading to cardiac and vascular
dysfunction (Liberale et al., 2020). Inappropriate activation of
chronic inflammation during aging involves complex
mechanisms. Low-level toxin exposure derived from dysregulated
microbiota and chronic infections (such as periodontitis) may
participate in this process. Cellular senescence mechanisms also
considered to play a key role, including telomere shortening,
genome instability, protein catabolism defects, autophagy and
mitophagy dysregulation, and mitochondrial dysfunction (Sanada
et al., 2018).

The cardiovascular system is composed of terminally
differentiated cells such as cardiomyocytes and vascular smooth
muscle cells (VSMCs), which are rich in mitochondria and maintain
the circulatory function under continuous metabolic and
mechanical stress. Mitochondria is essential for maintaining the
function of cardiovascular system (Abdellatif et al., 2023).
Mitochondrial dysfunction is considered one of the hallmarks of
cardiovascular aging. In addition to its functions in energy
metabolism, mitochondria also maintain intracellular calcium
homeostasis, redox balance, and act as a signaling center to
regulate cellular behaviors such as mitophagy and apoptosis
(Galluzzi et al., 2012).

There is a close connection between mitochondrial dysfunction
and inflammation. As an organelle similar to prokaryotes, some
structural components of mitochondria could directly induce
inflammatory response as damage-associated molecular patterns
(DAMPs) (Marchi et al., 2023). Mitochondrial DNA (mtDNA)
with a circular double-stranded structure, can be leaked into the
cytoplasm as a result of mitochondrial damage, and is recognized by
pattern recognition receptors and exogenous DNA receptors,
initiating inflammatory response (Wein and Sorek, 2022).
Although this helps to clear injured cells to maintain tissue
homeostasis, recent studies also suggested that it involved in
aging-related cardiovascular diseases (Galluzzi et al., 2018;
Harapas et al., 2022).

This review aims to summarize the mechanisms mtDNA
initiating inflammatory responses and its role in aging-related
cardiovascular diseases, and discusses potential therapeutic
strategies of inhibiting mtDNA-mediated inflammation for aging-
related cardiovascular diseases.

2 Mechanisms of mitochondrial DNA
leakage triggered inflammation

mtDNA is a small double-stranded circular molecule with a
full length of 16,569 base pairs. It only includes 13 genes
encoding oxidative phosphorylation-related proteins,
ribosomal RNAs and transfer RNAs. It has also been reported

in recent studies that mtDNA could be transcribed into non-
coding RNAs (Gao et al., 2018). The remaining mitochondrial
proteins rely on nuclear gene expression and then imported into
the mitochondria (Calvo and Mootha, 2010). Since
mitochondria are the site of reactive oxygen species (ROS)
generation, mtDNA in a bare nucleoid form is susceptible to
damage and accumulates with aging (Gredilla et al., 2010).
Under physiological conditions, damaged mitochondria are
cleared through mitochondrial quality control such as
mitochondrial fission, fusion, and mitophagy (Picca et al.,
2018). But when these mechanisms fail or mitochondria are
irreversibly damaged, mtDNA will leak from the mitochondrial
matrix and be recognized as DAMPs to trigger inflammatory
response (Liu et al., 2022).

Although the mechanism of how mtDNA leaks into the
cytoplasm or extracellular space has not been fully elucidated, the
following mechanisms are considered to be involved. The
mitochondrial permeability transition pore (mPTP) is a protein
pore complex located at the contact point between the inner and
outer membranes of mitochondria. The open of mPTP could result
in the leakage of mtDNA into the cytoplasm (Yu et al., 2020). During
apoptosis, BCL-2 Associated X (BAX) and BCL-2 Homologous
Antagonist/Killer (BAK) also interact with mPTP subunits to
regulate the open of mPTP (Rongvaux et al., 2014; White et al.,
2014). Activated caspase-1 also involves in mitochondrial pore
formation through activating the pore-forming protein gasdermin
D (Huang et al., 2020). In addition, mitochondria-derived vesicles
(MDVs) can also selectively regulate the transfer of damaged
mitochondrial contents to lysosomes for degrading (Todkar et al.,
2021). However, it is also reported that circulating mtDNA-
containing MDVs could cause inflammatory responses (Picca
et al., 2020).

2.1 cGAS-STING pathway

Since the DNA of eukaryotic cells mainly locates in the nucleus
or mitochondria, the DNA in the cytoplasm is usually recognized as
exogenous from pathogens to initiate innate immune response
(Civril et al., 2013). However, mtDNA leaking from
mitochondria and accumulating in the cytoplasm, could also be
recognized as powerful stimulator of inflammatory response
through similar pathways (West et al., 2011). Type I interferon
(IFN) response is an important signaling pathway against
pathogenic infection, and Stimulator of Interferon Genes
(STING) was identified as a protein mediating type I IFN
response first (Ishikawa and Barber, 2008; Zhong et al., 2008;
Sun et al., 2009). Although STING could be activated by
cytoplasmic DNA, subsequent studies revealed that the ligands of
STING are cyclic dinucleotides rather than cytoplasmic DNA,
including cyclic diadenosine monophosphate (c-dAMP) and
cyclic diguanylate monophosphate (c-dGMP) (Burdette et al.,
2011). Cyclic GMP-AMP Synthase (cGAS) is the upstream DNA
sensor of STING. In the presence of ATP and GTP, cGAS binds to
and recognizes cytoplasmic DNA to catalyze the production of cyclic
guanosine monophosphate-adenosine monophosphate (cGAMP),
which could activate STING as its ligand (Sun et al., 2013; Wu
et al., 2013).
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In short, when mtDNA leaks into the cytoplasm, cGAS binds to
mtDNA and catalyzes the synthesis of cGAMP. cGAMP acts as a
ligand for STING to cause conformational changes and activate it (De
Gaetano et al., 2021). The activated STING is transferred from the
endoplasmic reticulum to the Golgi apparatus and recruited TANK
Binding Kinase 1 (TBK1) and Inhibitor of Nuclear Transcription
Factor-κB Kinase (IKK). Activated TBK1 and IKK phosphorylate
downstream Interferon Regulatory Factor 3 (IRF3) and Inhibitor α
of Nuclear Transcription Factor-κB (IκBα) respectively, following
by activated IRF3 and Nuclear Transcription Factor-κB (NF-κB)
nuclear translocation. These two transcription factors initiate type I
IFN responses, and expression of pro-inflammatory cytokines,
respectively (Kim et al., 2023).

2.2 Toll like receptor-9

Toll-like receptors (TLRs) are evolutionarily conserved pattern
recognition receptors and play a crucial role in innate immune
responses, especially the recognition of pathogens in extracellular
matrix (Ospelt and Gay, 2010; Takeuchi and Akira, 2010). So far,
10 TLRs (TLR1-TLR10) have been identified in humans. TLRs are
classified as a class I integrated transmembrane protein (Bell et al.,
2003), The N-terminal domain constitutes the ectodomain, which
serves as the recognition site for distinct pathogens-associated
molecular patterns (PAMPs) and DAMPs to induce NF-κB
activation (Vijay, 2018). TLR-9 is the first TLR proven to
recognize DNA, which is mainly located in the endoplasmic
reticulum and transported to lysosomes upon activation (Latz
et al., 2004; Kim et al., 2008), and recognizes DNA
hypomethylated CpG motifs (Barbalat et al., 2011).
Nevertheless, TLR-9 is not highly specific for pathogen DNA
recognition, and can also be activated by self-DNA (Marshak-
Rothstein and Rifkin, 2007). But in any case, the low methylation
feature of mitochondrial DNA makes it closer to exogenous DNA
and can be recognized by TLR-9 (Bellizzi et al., 2013; Hong et al.,
2013). There is still a lack of detailed elucidation on how
mitochondrial DNA is transported into lysosomes and
recognized by TLR-9, which may be related to mitophagy and
MDVs transport (De Leo et al., 2016; Matheoud et al., 2016).
TLR9 downstream signaling is transmitted through the adapter
Myeloid Differentiation Primary Response Protein 88 (MyD88),
which activates Mitogen-activated Protein Kinases and NF-κB to
trigger inflammatory responses, or enhance type I IFN responses
through IRF7 (Schiller et al., 2012).

2.3 Inflammasomes

The activation of inflammasome is an important in innate
immune response to PAMPs or DAMPs. The inflammasome is a
multi-subunit protein complex composed of receptor proteins,
adapter proteins and caspase-1 (Guo et al., 2015). The receptor
proteins are responsible for recognizing pathogens or stress signals,
and then bind to adapter proteins and recruit procaspase-1 to
convert into the active form of caspase-1. Its downstream effects
are mainly initiating inflammatory responses by cleaving the
N-terminal domain of Gasdermin D, making it an active form

that could bind membrane phospholipids to form pores, and
cleaving IL-1β and IL-18 precursors (Zheng et al., 2020).

It is known that multiple members of the NOD-like receptor
family and PYHIN family can serve as receptor proteins for
inflammasomes, including NOD, LRR and Pyrin domain-
containing protein 1 (NLRP1), NLRP2, NLRP3, NLRP6, NLRP12,
NLR family CARD domain-containing protein 4 (NLRC4), and
Absent in Melanoma 2 (AIM2), Interferon-y Inducible Protein 16
(IFI16) (Atianand et al., 2013). Research evidence supports that
mtDNA could be recognized as endogenous agonists of
inflammasomes, and multiple receptor proteins including NLRP3,
NLRC4, and AIM-2 have been reported to recognize mtDNA and
activate the inflammasome (Nakahira et al., 2011; Jabir et al., 2015;
Zhong et al., 2016). The structure of AIM-2 binding to mtDNA is
relatively clear, which has a HIN200 domain at its C-terminus that
could recognize and bind double-stranded DNA (Hornung et al.,
2009). However, the activation of NLRP3 involves various regulatory
factors, including K+ efflux, Ca2+ signaling, ROS, lysosome rupture
(He et al., 2016). Therefore, although the complex of NLRP3 and
NLRC4 appears to bind to mtDNA or oxidized mtDNA suggested
by co-immunoprecipitation experiments, it is unclear whether they
binds directly or other factors are required (West and Shadel, 2017).

3 The role of mitochondrial DNA in
cardiovascular diseases

3.1 Hypertension

According to data from Non-Communicable Disease Risk
Factor Collaboration, the age-standardized prevalence of
hypertension has exceeded 30% (Zhou et al., 2021).
Hypertension increases the risk of cardiovascular events such as
coronary heart disease and stroke (Carey et al., 2021). Endothelial
dysfunction and vascular structural remodeling is important
pathology in hypertension, in which inflammation plays an
important role. Recent studies have found that mtDNA levels in
the circulation and urine of hypertensive patients are elevated
(Eirin et al., 2019), which is related to target organs damage
including brain and kidney (Alé et al., 2017; Eirin et al., 2017),
and it is proposed that mtDNA involves in the development of
vascular pathology and hypertension.

Endothelial cells (ECs) and VSMCs are important components
in regulating the contraction and relaxation function and structure
of artery. Inflammatory mechanisms are involved in endothelial
dysfunction, and mtDNA acts as an important stimuli of
inflammatory activation (Simão et al., 2022). Mao Y et al.
reported that in palmitic acid treated ECs, the expression levels
of pro-inflammatory factors such as MCP1, IFN-γ, IL-1, and
adhesion factors ICAM-1 were significantly increased, which
enhanced the adhesion of monocytes to ECs. This process is
caused by the leakage of mtDNA and activation of the cGAS-
STING-IRF3 pathway in ECs. Knockdown of STING attenuated
vascular inflammation and macrophage infiltration in high-fat diet
fed mice (Mao et al., 2017). They also reported in another study that
activation of the cGAS-STING-IRF3 pathway in ECs induced
increased MST1 expression, leading to YAP inactivation and
nuclear exclusion, thereby inhibiting endothelial cell proliferation,
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migration and vascular repair (Yuan et al., 2017). Consistent with
previous reports, Huang LS et al. found that lipopolysaccharide
activated Gasdermin D in ECs and resulted in mitochondrial pores

formation and mtDNA leakage. Activated TBK1 phosphorylates
LATS1, which subsequently leads to YAP1 degradation and inhibits
ECs proliferation and vascular repair (Huang et al., 2020).

FIGURE 1
mtDNA promotes endothelial inflammation and dysfunction through multiple inflammatory mechanisms in hypertension. 1) mtDNA activates the
cGAS-STING-TBK1 pathway and the downstream IRF3 in endothelial cells. The phosphorylated IRF3 homodimer binds to the ICAM-1 promoter,
upregulates the its expression, and enhances adherence of monocytes to endothelial cells. 2) The LATS is also phosphorylated following the activated
cGAS-STING-TBK1 pathway, promotes the phosphorylation of YAP and preventing its transport into the nucleus. IRF3 also participate in the
phosphorylation of YAP by promoting MST-1 expression, and therefore impaired endothelial cells proliferation. 3) mtDNA transported into lysosomes
could be recognized by TLR-9. TLR9 downstream signaling is conducted through the adapter MyD88, which activates ERK1/2 through TRAF6-MKKs to
promote the expression of inflammatory factors. MKKs also activates p38 MAPK to promote the expression of COX, which resulting in eNOS uncoupling
by generating ROS, and impaired vasodilation. 4) NLRP3 inflammasome in endothelial cells recognizes mtDNA and activates caspase-1 to cleave the
precursors of IL-1β and IL-18 into their active forms. mtDNA, Mitochondrial DNA; cGAS, Cyclic GMP-AMP synthase; STING, Stimulator of Interferon
Genes; TBK1, TANK Binding Kinase 1; IRF3, Interferon Regulatory Factor 3; ICAM-1, Intercellular Adhesion Molecule-1; LATS, Large tumor suppressor
kinase; YAP, Yes-Associated Protein; MST-1, Mammalian Sterile 20-Like Kinase 1; TLR-9, Toll-like Receptors 9; MyD88, Myeloid Differentiation Primary
Response Protein 88; ERK1/2, Extracellular signal-regulated kinases 1 and 2; TRAF6, TNF Receptor Associated Factor 6; p38MAPK, P38Mitogen Activated
Protein Kinase; COX, Cyclo-oxygen-ase; eNOS, Endothelial Nitric Oxide Synthase; ROS, Reactive Oxygen Species; NLRP3, NOD-like receptor thermal
protein domain associated protein 3.
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In addition, some studies have reported that mtDNA directly
impairs endothelial cell-mediated vasodilation. McCarthy CG et al.
found elevated circulating mtDNA levels in male spontaneously
hypertensive rats (SHR), which were associated with
downregulation of mitophagy in the aorta. The TLR-9 inhibitor
ODN2088 lowered systolic blood pressure in SHR, while the TLR-9
agonist ODN2395 aggravated hypertension in Wistar-Kyoto rats
and SHR rats. It was further found that ODN2395 treatment on
mesenteric arteries reduced acetylcholine-induced relaxation and
enhanced norepinephrine-induced contraction. This is related to the
upregulated COX2 expression rather than the inhibition of eNOS
(McCarthy et al., 2015). Consistent with previous reports, Echem C
et al. further demonstrated that mtDNA treatment enhanced
phenylephrine-induced vasoconstriction in male SHR, while
inhibition of TLR-9 by ODN2088 reversed this phenomenon.
The expression of IL-6 and TNF-α was also upregulated, whereas
the expression and phosphorylation level of eNOS were not affected.
Interestingly, Echem C et al. also found that the vasoconstrictive
effect of mtDNA on SHRmay be affected by gender. mtDNA did not
enhance the contraction to phenylephrine of female SHR aorta,
which may be related to the reduced phosphorylation level of ERK1/
2 (Echem et al., 2019). However, Goulopoulou S et al. reported that
mtDNA promotes vasoconstriction and preeclampsia in pregnant
rats through TLR-9 and ERK1/2 phosphorylation (Goulopoulou
et al., 2012). A recent study obtained umbilical cord serum and tissue
from patients with preeclampsia and found that mtDNA leakage
from trophoblast cells induced activation of NLRP3/caspase-1/IL-1β
signaling in ECs, causing eNOS-related vasodilation dysfunction.
The NLRP3 inhibitor INF39 or MCC950 can partially reverse
vasodilation dysfunction (Lv et al., 2023) (Summarized in Figure 1).

Excessive proliferation of VSMCs and extracellular matrix
synthesis are also important parts in vascular remodeling (Wang
et al., 2018; Cai et al., 2021). However, there are few studies on the
involvement of mtDNA regulating VSMCs function in
hypertension. Arcidiacono MV et al. reported that STING was
involved in the osteogenic phenotypic transformation of VSMCs
in chronic kidney disease (Arcidiacono et al., 2019). Activation of
the cGAS-STING pathway triggers the type I IFN response in
VSMCs, resulting in their premature senescence and phenotype
switching induced in a paracrine manner (Bi et al., 2021). It has also
been reported that TLR-9 could be activated by oxidized
hemoglobin-induced lipid peroxidation and leads to the
proliferation of pulmonary VSMCs (Loomis et al., 2017). Further
research is still required to clarify the role of mtDNA on the
phenotype and function of VSMCs in hypertension.

3.2 Atherosclerosis

Atherosclerosis is the pathological basis of many cardiovascular
diseases such as coronary heart diseases and stroke. Its main feature
is lipids depositing in the arterial intima and form into plaques,
which leads to reduced blood flow. Plaques rupture can also cause
thrombosis and acute complications (Gogulamudi et al., 2023). The
pathology of atherosclerosis is complex, including foam cells
forming, atherosclerotic plaque forming and rupture,
calcification, and thrombus formation. Research evidence has
shown that inflammation persist throughout the entire process of

atherosclerosis (Wolf and Ley, 2019). mtDNA has also been
reported to be involved in the inflammation of
atherosclerotic lesions.

In the atherosclerotic lesions of ApoE deficient mice, the
cGAMP levels in macrophages was increased and STING was
activated, accompanied by the upregulated expression of TNF-α,
CCL-2, IFN-β in artery. Bone marrow transplantation after
knockout of STING in bone marrow-derived macrophages
proved that mtDNA exacerbates the activation of macrophages in
atherosclerotic plaques through the cGAS-STING-TBK1 pathway
(Pham et al., 2021). Similarly, Liu Y et al. demonstrated that mtDNA
induces the inflammatory response of bone marrow-derived
macrophages through the STING/NFκB pathway in LDL receptor
deficient mice, and proposed that a natural compound Aucubin
could inhibit the expression of STING and alleviate atherosclerotic
lesions (Liu et al., 2022). Interestingly, Li JL reported that mtDNA-
induced inflammation may mediate the association between
smoking and atherosclerosis progression. Exposure to e-cigarette
smoke in ApoE deficient mice significantly increased mtDNA
oxidative damage and upregulated TLR-9 expression in
atherosclerotic plaques, as well as subsequent macrophage
infiltration and inflammatory cytokines secretion. TLR-9
antagonist could reverse this process (Li et al., 2021). It is also
reported that human antimicrobial peptide LL-37 could bind to
mtDNA to form a complex, allowing it to escape degradation by
DNase II. And the LL-37-mtDNA complex activated the
inflammatory response through TLR-9 (Zhang et al., 2015).

In addition, mtDNA could also affects the phenotype and
function of VSMCs. Bi XJ et al. reported that oxidized mtDNA
in ApoE deficient mouse model of chronic kidney disease triggered
type I IFN response in VSMCs through the cGAS-STING pathway,
inducing premature senescence and switching from a contractile
phenotype to an inflammatory secretory phenotype. This not only
aggravates inflammation in atherosclerotic lesions, but also leads to
increased plaque vulnerability (Bi et al., 2021). In addition, previous
studies reported that lipid-induced programmed cell death such as
ferroptosis in VSMCs promoted calcified plaque formation in
atherosclerotic lesions (Ma et al., 2021). On this basis, Chen ZD
et al. recently reported that mtDNA triggers ferritinophagy-
dependent ferroptosis of VSMCs by activating the cGAS-STING
pathway. Oleoylethanolamide, an endogenous Peroxisome
Proliferator-Activated Receptor α (PPARα) agonist, could
attenuate reverse the ferroptosis of VSMCs and arterial intimal
calcification (Chen et al., 2023) (Summarized in Figure 2).

3.3 Stroke

Stroke is the second leading cause of death worldwide. In 2019,
there were 12.2 million incident cases of stroke, and 6.55 million
deaths from stroke, accounting for 11.6% of the total deaths (Feigin
et al., 2021). Age is one of the most significant risk factors for stroke,
and it is reported 12.4% of men and 13.6% of women aged over
80 had stroke (Virani et al., 2021). Atherosclerosis is also an
important precursor lesion that causes ischemic stroke, but
unlike the situation in hypertension and atherosclerosis with
continuous stimulation of external stress, stroke is an acute
process of ischemic damage in brain due to cerebrovascular
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thromboembolism or hemorrhage. Inflammation is also involved in
processes such as ischemia/reperfusion injury, blood-brain barrier
disruption, and neural regeneration during recovery (Jayaraj
et al., 2019).

In the central nervous system, microglia are the main cell type
that promotes neuroinflammation. Previous studies have found that
a large number of interferon-stimulated genes are upregulated in
brain tissue with ischemia-reperfusion injury (McDonough et al.,

2017). Studies have found that hypoxia and glucose deficiency can
activate type I IFN response, inducing the activation of microglial
cells in vitro (Minter et al., 2014). Liao, YJ et al. demonstrated that
cGAS is activated by mtDNA in microglial cells, activating IRF3 and
NF-κB to promote inflammation after cerebral ischemia/reperfusion
(Liao et al., 2020). Consistent with previous reports, Jiang GL et al.
reported that the cGAS-STING-IRF3 pathway was involved in the
M1 polarization of microglia and the secretion of TNF-α in an

FIGURE 2
The mechanism of mtDNA promoting plaque vulnerability and inflammation in atherosclerosis and microglial M1 polarization in ischemic stroke. 1)
mtDNA participates in the formation of atherosclerosis by affecting the phenotype and function of VSMCs. mtDNA activates the cGAS-STING-
IRF3 pathway, triggering type I interferon responses in VSMCs which leads to premature senescence and reduced fibrogenesis ability. It also results in
ferritinophagy-dependent ferroptosis of VSMCs and both phenotypes are associatedwith thinner fibrous caps and contribute to plaque instability. 2)
The activation of the cGAS-STING-TBK1 pathway by mtDNA in immune cells leading to increased expression of inflammatory cytokines through both
IRF3 and NF-κB. Additionally, NF-κB could also be activated by TLR-9. These processes aggravated the plaque inflammation. 3)Microglia are the main
inflammatory cells in the central nervous system. In brain tissue after ischemia-reperfusion injury, mtDNA activates the cGAS-STINGpathway inmicroglia.
This activation recruits TBK1 and IKK. Activated TBK1 and IKK subsequently phosphorylate downstream IRF3 and IκBα, respectively. This is followed by the
activation of IRF3 and NF-κB, leading to their nuclear translocation and initiating type I interferon responses. These responses can promote
M1 polarization of microglia and the expression of pro-inflammatory cytokines. mtDNA, Mitochondrial DNA; VSMCs, Vascular smooth muscle cells;
cGAS, Cyclic GMP-AMP synthase; STING, Stimulator of Interferon Genes; IRF3, Interferon Regulatory Factor 3; TBK1, TANK Binding Kinase 1; NF-κB,
Nuclear Transcription Factor-κB; TLR-9, Toll-like receptors 9; IKK, Inhibitor of Nuclear Transcription Factor-κB Kinase; IκBα, Inhibitory Subunit of NF-κBα.
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ischemia-reperfusion model. Knockout of cGAS significantly
attenuated microglia-mediated neuroinflammation, inhibited
neuronal apoptosis and reduced infarct size (Jiang et al., 2021).
Kong LQ et al. also reported that mtDNA leakage after middle
cerebral artery occlusion promotes M1 polarization of microglial
cells through cGAS-STING signaling, and verified the reduction of
cerebral infarct size and recovery of neural function by knockout of
STING (Kong et al., 2022) (Summarized in Figure 2).

However, some studies found that AIM2 inflammasomes and
cGAS was activated by nuclear DNA in stroke models according to
the close colocalization of DAPI and 53BP1 (Li et al., 2020).
Gamdzyk M also reported that cytosolic DNA derived from
retrotransposon LINE-1 activated cGAS-STING signaling and
promoted apoptosis of neurons (Gamdzyk et al., 2020). However,
the role of mtDNA in apoptosis and loss of neurons has been rarely
reported and remains to be further explored.

4 Clinical perspectives and prospect

Cell-free mitochondrial DNA (cf-mtDNA) are considered to be
released after cell death or transported through MDVs into
circulation. Cosentino N et al. reported that increased cf-mtDNA
levels could be detected in more than 91% of 466 patients admitted
with confirmed ST-segment elevation myocardial infarction
(Cosentino et al., 2021). However, as a non-specific biomarker,
cf-mtDNAmay be more suitable for screening of metabolic diseases
and inflammatory states. Ueda K et al. found that cf-mtDNA levels
were higher in smokers, and could predict the risk of atherosclerosis
(Ueda et al., 2023). Padilla-Sánchez S D et al. reported that cf-
mtDNA levels increased with age and body mass index in healthy
adults (Padilla-Sánchez et al., 2020). Alvarado-Vásquez N also
reported that cf-mtDNA was associated with endothelial
dysfunction in patients with prediabetes (Alvarado-Vásquez,
2015). These suggest the role of cf-mtDNA in reflecting
inflammation and metabolic diseases risk.

As for therapeutics, reducing mtDNA leakage appears to be an
attractive strategy. Increased burden of senescent cells, which are
resistant to apoptosis, is associated with chronic inflammation, and a
class of drugs called senolytics could selectively clear senescent cells
(Kirkland and Tchkonia, 2020). Iske J et al. recently reported that the
senolytics treatment of Dasatinib and Quercetin cleared senescent
cells, reduced cf-mtDNA and inhibited inflammation in
experimental animals (Iske et al., 2020). In addition, some studies
have also raised the possibility of regulating mPTP to inhibit
mtDNA leakage. Cyclosporin A has been reported to bind to
mitochondrial cyclophilin D to inhibit the opening of mPTP and

inhibit the inflammation mediated by mtDNA leakage (Tanveer
et al., 1996; Xiao et al., 2018; Liu et al., 2019). Also, substantial efforts
have been devoted to the development of compounds that inhibit
signaling molecules including cGAS, STING, and TLR-9, and to
explore their therapeutic value in inflammatory diseases, which have
been detailed elsewhere (Krieg, 2006; Decout et al., 2021).

In summary, mitochondrial dysfunction is a hallmark of
cardiovascular aging, and mtDNA leakage is associated with a
chronic inflammation and promotes age-related cardiovascular
diseases. Reducing the leakage of mtDNA or inhibiting
inflammatory signals seems to be attractive therapeutic strategies.
The specific mechanisms remain to be further explored to solve the
gap in research and development and therapeutic applications.
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