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To locate and fertilize the egg, sperm probe the varying microenvironment
prevailing at different stages during their journey across the female genital
tract. To this end, they are equipped with a unique repertoire of mostly
sperm-specific proteins. In particular, the flagellar Ca2+ channel CatSper has
come into focus as a polymodal sensor used by human sperm to register ligands
released into the female genital tract. Here, we provide the first comprehensive
study on the pharmacology of the sperm-specific human Slo3 channel, shedding
light on itsmodulation by reproductive fluids and their constituents. We show that
seminal fluid and contained prostaglandins and Zn2+ do not affect the channel,
whereas human Slo3 is inhibited in a non-genomic fashion by diverse steroids as
well as by albumin, which are released into the oviduct along with the egg. This
indicates that not only CatSper but also Slo3 harbours promiscuous ligand-
binding sites that can accommodate structurally diverse molecules, suggesting
that Slo3 is involved in chemosensory signalling in human sperm.
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Introduction

Human sperm encounter an ever changing chemical composition of the environment
during their journey through the female reproductive tract. In particular, they are mixed
with seminal fluid upon ejaculation, encounter secretions from cells lining the genital tract
and surrounding the egg, and also get into contact with follicular fluid that enters the
oviduct upon ovulation.

In human sperm, the sperm-specific Ca2+ channel CatSper serves as a promiscuous
polymodal chemosensor that translates changes in the chemical microenvironment into
changes of the intracellular Ca2+ concentration and swimming behaviour (Publicover et al.,
2008; Brown et al., 2019; Rahban and Nef, 2020; Wang et al., 2021). Thereby, CatSper
functions as a central signalling knot that is required for human fertilization (Brown et al.,
2018; Brown et al., 2019; Luo et al., 2019; Wang et al., 2021; Young et al., 2024). In fact,
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human CatSper is activated in a synergistic fashion (Brenker et al.,
2018a) by a plethora of steroids and prostaglandins contained in
reproductive fluids (Lishko et al., 2011; Strünker et al., 2011; Brenker
et al., 2012; Brown et al., 2017; Mannowetz et al., 2017; Brenker et al.,
2018b; Rehfeld, 2020; Jeschke et al., 2021; Wehrli et al., 2023) as well
as a bewildering array of synthetic chemicals and compounds used
to manipulate enzymes, receptors, and ion channels (Lishko et al.,
2011; Strünker et al., 2011; Brenker et al., 2012; Tavares et al., 2013;
Schiffer et al., 2014; Rehfeld et al., 2016; Zou et al., 2017; Brenker
et al., 2018a; Rennhack et al., 2018; McBrinn et al., 2019; Rehfeld,
2020; Wang et al., 2020a; Zhang et al., 2020; Rahban et al., 2021;
Xiang et al., 2022; Torrezan-Nitao et al., 2023; He et al., 2024).

In the sperm flagellum, CatSper is embedded in a network of
several ion channels and transporters (Kaupp and Strünker, 2017;
Wang et al., 2021), suggesting that chemosensory signal
transduction is orchestrated by their mutual interaction (Brown
et al., 2019; Wang et al., 2021). A case in point is the sperm-specific
Slo3 channel (Schreiber et al., 1998), the principal K+ channel in
mouse (Navarro et al., 2007; Santi et al., 2010; Zeng et al., 2011; Zeng
et al., 2013) and human sperm (Brenker et al., 2014). Such as
CatSper, Slo3 is required for sperm function and male fertility
(Santi et al., 2010; López-González et al., 2014; Zeng et al., 2015;
Lv et al., 2022). Human Slo3 is strongly activated by intracellular
Ca2+ (Brenker et al., 2014; Geng et al., 2017) and modestly by
alkalization (Brenker et al., 2014). Therefore, Slo3 sets the
membrane potential of human sperm in a Ca2+-dependent
fashion (Mannowetz et al., 2013; Brenker et al., 2014), suggesting
that Slo3 is involved in chemosensory Ca2+ signalling (Kaupp and
Strünker, 2017). Supporting this notion, some physiological and
synthetic compounds that modulate CatSper were shown to also act
on human Slo3. For example, human Slo3 is inhibited by the
CatSper agonist progesterone (Brenker et al., 2014; Sánchez-
Carranza et al., 2015) and by the CatSper inhibitor RU1968 and
derivatives (Rennhack et al., 2018; Schierling et al., 2023),
MDL12330A (Brenker et al., 2014), NNC55-0396 (Mansell et al.,
2014), and mibefradil (Mansell et al., 2014). This suggests that both
human CatSper and human Slo3 harbour ligand-binding sites that
can accommodate structurally diverse molecules. However, except
for the discovery that the channel is inhibited by progesterone, the
pharmacology of human Slo3 regarding physiological ligands
encountered by sperm in the male and female reproductive tracts
has been understudied. In fact, nothing is known about the action of
the various molecules contained in reproductive fluids
on human Slo3.

Here, we studied the action of seminal and follicular fluid on
heterologously expressed human Slo3. We show that Slo3 is
insensitive to seminal fluid and its components prostaglandins
and Zn2+. By contrast, follicular fluid potently inhibits the
channel. We show that human Slo3 is inhibited not only by
progesterone, but also by various other steroids of follicular fluid,
demonstrating that the channel harbours a promiscuous steroid-
binding site. Slo3 is also inhibited by albumin, which is contained in
follicular fluid in high micromolar concentrations. In fact, the
inhibitory action of follicular fluid on the channel rests on a
combined action of albumin and steroids. Remarkably, compared
to heterologous Slo3, albumin and, thereby, also follicular fluid
inhibit native Slo3 in human spermwith much lower potency and/or
efficacy. This suggests a rather indirect albumin action on Slo3 that

depends on the particular cellular microenvironment, e.g., the lipid
composition of the membrane. In summary, we provide the first
experimental evidence that the chemosensory signalling pathways
employed by human sperm to track down and fertilize the egg might
involve complex combined ligand actions on both CatSper and Slo3.

Results

We investigated the action of seminal and follicular fluid on
human Slo3 transiently co-expressed with its auxiliary subunit
LRRC52 in CHO cells. We recorded Slo3-mediated currents
before and after perfusion with dilute solutions of either fluid
and determined the relative change in current amplitude.
Slo3 currents did not change upon perfusion with ≤30% seminal
fluid (Figures 1A,B), the highest dose tested, indicating that Slo3 is
insensitive to its components. Supporting this notion, in contrast to
various other ion channels including CatSper (Harrison and
Gibbons, 1994; Qiu et al., 2016; Jeschke et al., 2021), Slo3 is not
affected by Zn2+ (Figures 1C,D), which is contained in seminal fluid
at millimolar concentrations. Upon perfusion with 1 mM Zn2+, the
amplitude of Slo3 currents decreased by 14 ± 13% (n = 4) (Figures
1C,D), which reflects however a general rundown of Slo3 currents
over time rather than an inhibitory action of Zn2+. We observed a
similar slight decrease in Slo3 current amplitudes upon continuous
perfusion with control buffer: over 120 s, the current amplitude
decreased by 15 ± 6% (n = 6) (Supplementary Figure S1). We also
tested the action of individual prostaglandins contained in seminal
fluid. Upon perfusion with 50 µM prostagladin E1 (PGE1) or
prostaglandin E2 (PGE2), which potently activate human CatSper
(Lishko et al., 2011; Strünker et al., 2011; Brenker et al., 2012; Jeschke
et al., 2021), current amplitudes decreased only by 18 ± 7% and 7 ±
7% (n = 3) (Figures 1E,F), respectively, which is again in the range of
the current rundown. Thus, Slo3 is not affected by
prostaglandins either.

In contrast to seminal fluid, follicular fluid decreased
Slo3 currents in a dose-dependent fashion with a half-maximal
inhibitory dilution (ID50) of 5.7 ± 0.5% (Figures 2A,B). Of note, the
fluid is retrieved as a byproduct during ovum pick-up for medically
assisted reproduction, which involves its dilution with a flushing
medium. The flushing medium itself did, however, not affect Slo3
(Supplementary Figure S2A). Remarkably, follicular fluid inhibited
native Slo3 in human sperm with much lower potency and/or
efficacy. Perfusion with 20% follicular fluid decreased
Slo3 currents in human sperm only by 21 ± 19% (Figures 2C,D),
which is in line with previous reports (Brown et al., 2017). Yet, in
human sperm, but not in CHO cells, we performed the recordings at
high intracellular Ca2+ to enhance Slo3 currents (Mannowetz et al.,
2013; Brenker et al., 2014) and suppress confounding K+ outward
currents carried by CatSper at very positive voltages (Zeng et al.,
2013; Brenker et al., 2014). We wondered whether Ca2+- and/or pH-
activation of Slo3 affects the action of follicular fluid. However, in
CHO cells, follicular fluid inhibited Slo3 currents in a similar fashion
in the absence and presence of intracellular Ca2+ and elevated
pH (compare Figures 2B and F).

To elucidate the mechanism underlying the different action of
follicular fluid on heterologous and native Slo3 in CHO cells and
sperm, respectively, we set out to reveal the identity of the molecules
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acting on the channel. We and others have shown that human Slo3 is
inhibited by progesterone (Brenker et al., 2014; Sánchez-Carranza
et al., 2015), which is contained in high micromolar concentrations
in follicular fluid along with various other steroids (Munuce et al.,
2006; Kushnir et al., 2009; Marchiani et al., 2020; Jeschke et al.,
2021). This suggests that the inhibition of heterologous Slo3 by
follicular fluid is mediated by steroids. To test this hypothesis, we
studied the action of the twelve most abundant steroids in follicular
fluid on Slo3 (Jeschke et al., 2021). At the initial test concentration of
50 μM, six of the steroids did not or only slightly inhibit Slo3
(Figures 3A,B); perfusion with pregnenolone, 17α-
hydroxypregnenolone, androstenedione, androstenediol,

cortisone, or estrone decreased the current amplitude only
by ≤18% (Figure 2). We thus did not further investigate the
action of these steroids. In contrast, progesterone, 17α-
hydroxyprogesterone, estradiol, dehydroepiandrosterone (DHEA),
testosterone, and corticosterone significantly decreased
Slo3 currents (Figures 3A,B); comparison of the current-voltage
(IV) relations in the absence and presence of the steroids indicates
that the steroid-inhibition features no voltage-dependence
(Supplementary Figure S3). We studied the action of these steroids
in a dose-dependent fashion (Figures 4A,B). This revealed that the
potency of the steroids to inhibit Slo3 follows the sequence progesterone
(IC50 = 5.2 ± 2.9 μM) > estradiol (8.9 ± 4.4 μM) > testosterone (17 ±

FIGURE 1
The action of seminal fluid, prostaglandins, and Zn2+ on human Slo3 (A) Membrane K+ currents recorded from CHO cells co-expressing human
Slo3 and LRRC52 in the whole-cell configuration before and after perfusion with dilute (%) solutions of seminal fluid (SF). (B) Relative current amplitude
(mean ± SD) at +100 mV in the presence of a given dilution of seminal fluid relative to that under control conditions (set to 1) (n ≥ 3). Grey dots indicate
individual values. (C) Slo3 currents before (control, black) and after perfusion with 1mMZn2+ (red). (D)Current amplitudes (mean ± SD) at +100mV in
the presence of 1 mM Zn2+ relative to that under control conditions (set to 1) (n = 4). Red dots indicate individual recordings. (E) Slo3 currents before
(black) and after perfusion with prostaglandin E1 or E2 at a concentration of 50 μM (red). (F) Relative current amplitude (mean ± SD) at +100 mV in the
presence of 50 µM PGE1/2 (n = 3). Red dots indicate individual recordings.
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14 μM) > 17α-hydroxyprogesterone (27 ± 10 μM) > DHEA (41 ±
4 μM) > corticosterone (58 ± 11 μM) (n ≥ 4). Follicular fluid also
containsmicromolar concentrations of arachidonic acid (Li et al., 2020),
a known modulator of several ion channels (Martín et al., 2014) that
might also act on Slo3. However, perfusion with 3 µM arachidonic acid
did not affect Slo3 currents (Supplementary Figure S4), indicating that
the channel is insensitive to this molecule.

Thus, we wondered whether the inhibition of heterologous
Slo3 by follicular fluid might exclusively rest on the action of the
steroids. Considering the concentration of the steroids in follicular
fluid (Jeschke et al., 2021) as well as their IC50 values for
Slo3 inhibition, and assuming that they act additively, we
modelled a dose-response relation predicting their combined
action in follicular fluid (Figure 4C). According to this
prediction, follicular fluid should inhibit Slo3 with an ID50 of
24.2 ± 0.1%, which is about four times higher than the
experimentally determined ID50 for Slo3 currents in CHO cells
(Figures 2B, 4C). This indicates that the fluid contains molecules
other than steroids that also inhibit Slo3. To test for this, we stripped
the follicuar fluid of lipophilic molecules using dextran-coated
activated charcoal (Beard and Hunter, 1994; Brown et al., 2017),
which reduced the concentrations of the individual steroids by up to
two orders of magnitude (Table 1). Considering the steroid
concentrations in charcoal-stripped follicular fluid and assuming

that its action would exclusively rest on these steroids, the charcoal-
stripped fluid should inhibit Slo3 with an ID50 of 2744 ± 12%.
(Figure 5B), i.e., it would have to be concentrated to exert a sizeable
action. The experimentally determined ID50 values of native and
stripped fluid to inhibit Slo3 were, however, similar (5.7 ± 0.5%
versus 5.7 ± 1.3%) (Figures 5A,B). This indicates that the inhibitory
action of follicular fluid on heterologous Slo3 is predominantly
mediated by as yet unknown molecules rather than steroids.

In fact, reproductive fluids also contain albumin in high
micromolar concentrations (Casslén and Nilsson, 1984). Therefore,
we investigated the action of human serum albumin on Slo3
(Figure 6A). Albumin indeed inhibited Slo3 in a dose-dependent
fashion with an IC50 of 131 ± 20 μM (n = 4) (Figure 6B). We
wondered whether the inhibition of Slo3 by follicular fluid might
rest on the contained albumin. To this end, we determined its albumin
content. By colorimetric and immunological detection, we determined
albumin concentrations of 363 and 343 μM, respectively, matching
with previously reported values (Casslén and Nilsson, 1984; Munuce
et al., 2006). Next, we modelled the dose-response relation for the
action of follicular fluid on Slo3, assuming that its action exclusively
rests on albumin (Figure 6C). If true, follicular fluid should inhibit
Slo3 with an ID50 value of 36% (Figure 6C), which is about fourfold
higher than the experimentally determined value and, thus, in the same
range as the ID50 value predicted for an action based exclusively on

FIGURE 2
Human Slo3 is inhibited by follicular fluid (A) Slo3 currents before and after perfusion with dilute (%) solutions of follicular fluid (FF). (B) Current
amplitudes (mean ± SD) at +100mV in the presence of a given dilution of follicular fluid relative to that under control conditions (set to 1) (n ≥ 3). Grey dots
indicate individual values. The continuous red line represents a fit of the Hill equation, yielding the dose-response relationship (ID50 = 5.7 ± 0.5%, Standard
error of the fit). (C) Slo3 currents recorded from human sperm at +100mV before and after perfusion with FF. (D)Current amplitudes (mean ± SD) in
the presence of FF relative to that under control conditions (set to 1) (n = 8). (E) Slo3 currents recorded from CHO cells in the presence of 1 mM
intracellular Ca2+ and pH 8.0 before and after perfusion with FF. (F) Current amplitudes (mean ± SD) in the presence of FF relative to that under control
conditions (set to 1) (n = 4). *p < 0.05, **p < 0.01, ****p < 0.0001.
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steroids. Importantly, in contrast to steroids, charcoal stripping of
follicular fluid did not affect the albumin content, i.e., its concentration
in the stripped fluid was still 330 µM. This finding indicates that the
inhibition of heterologous Slo3 by follicular fluid rests on the action of
albumin rather than of steroids. However, modelling of the dose-
response relation for the action of follicular fluid on Slo3 based on a
combined action of steroids and albumin (Figure 6C) predicted an ID50

value of 10.8%, i.e., close to the experimentally determined value,
suggesting that in fact, inhibition of heterologously expressed
Slo3 channels by follicular fluid involves a combined action of
steroids and albumin. It is well-established that steroids,
i.e., progesterone, affect heterologous and native human Slo3 in a
similar fashion (Mannowetz et al., 2013; Brenker et al., 2014; Sánchez-
Carranza et al., 2015; Brown et al., 2017). This indicates that the greatly
reduced potency/efficacy of follicular fluid to inhibit Slo3 in sperm is
not due to a reduced steroid sensitivity of the native versus
heterologous channel. Therefore, we tested whether Slo3 in human
sperm might be less sensitive to albumin. Indeed, 300 µM albumin
decreased Slo3 currents in human sperm, if at all, only slightly by 15 ±
30% (n = 4) (Figures 6D,E); the decrease in amplitude was statistically
not significant. We wondered whether this might be due to the high
intracellular Ca2+ concentration used for recordings from sperm. But,
albumin also decreased Slo3 currents in CHO cells by 70 ± 5% (n = 6)
at both high intracellular Ca2+ and elevated pH (Figures 6F,G). Thus,
we conclude that in human sperm, Slo3 is much less sensitive to

albumin, which explains the different action of follicular fluid on
Slo3 in sperm versus CHO cells. To gain insight into the mechanism
underlying the more potent and/or efficacious inhibition of
heterologous Slo3 by albumin, we investigated its action in a time-
resolved fashion using repetetive-pulse protocols. This revealed that
the inhibition rapidly evolves and peaks within 10–20 s. Surprisingly,
the channel showed a pronounced desensitization to albumin-
inhibition, i.e., despite the continuous presence of albumin, the
currents slowly recovered with a time constant of 31.5 ± 4.5 s (n =
4) until the amplitude settled on a level only slightly below that
recorded before perfusion with albumin (Figure 7). The transient
inhibition of Slo3 in CHO cells, but not in sperm, suggests an
indirect rather than direct action of albumin on the channel, which
might be masked under the conditions that we used to record from
human sperm. Nevertheless, altogether, our results demonstrate that
human Slo3 is modulated by various molecules that are released into
the female genital tract, suggesting that the channel is involved in
chemosensory signalling pathways employed by human sperm to track
down and fertilize the egg.

Discussion

This comprehensive study on the pharmacology of the sperm-
specific human Slo3 channel sheds light on its modulation by

FIGURE 3
The action of steroids contained in reproductive fluids on human Slo3 (A) Slo3 currents before (black) and after perfusion with a given steroid (50 μM,
red). (17-OH-Prog. = 17α-Hydroxyprogesterone, 17-OH-Preg. = 17α-Hydroxypregnenolone, DHEA = Dehydroepiandrosterone, Testo. = Testosterone).
Vertical and horizontal scale bars represent pA and ms, respectively. Top right: Voltage protocol used for all recordings. (B) Current amplitude (mean ±
SD) at +100 mV in the presence of 50 µM of the respective steroid relative to that under control conditions (set to 1) (n ≥ 3). Red dots indicate
individual values; ****p < 0.0001.
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reproductive fluids and their constituents. We show that the channel
is not affected by molecules in seminal fluid including
prostaglandins and Zn2+, but potently inhibited by follicular fluid
and its constituents. We demonstrated that several steroids in
follicular fluid inhibit Slo3, yet, with different potency. Although
the number of steroids tested is not sufficient to derive a detailed
structure-activity relationship, it is unequivocal that the
pharmacology of the steroid action on Slo3 and CatSper is
distinctively different. For example, while progesterone and
17-OH-progesterone activate CatSper with similar potency and

efficacy (Strünker et al., 2011; Jeschke et al., 2021), the addition
of an OH group at the 17α-position of progesterone renders 17-OH-
progesterone 5-fold less potent for its action on Slo3. Moreover,
while estradiol is around 100-fold less potent than progesterone to
activate CatSper, the steroids inhibit Slo3 with similar potency.

The steroid inhibition of Slo3 is another example of non-
genomic steroid actions on ion channels, which control a variety
of cellular functions. For example, TRPM3 channels are activated by
steroids and, thereby, promote insulin secretion in pancreatic ß-cells
(Wagner et al., 2008), Kv4.2 act as steroid sensors in granulosa cells
(Kunz et al., 2006), and modulation of KIR7.1 channels is thought to
regulate epithelial function (Björkgren et al., 2021). In some cases,
the molecular mechanism of steroid action has already been
elucidated. Slo1 channels, for example, are modulated by cholane
steroids only in the presence of ß1-accessory subunits, which
harbour three unique amino acids that are essential for steroid
binding (Bukiya et al., 2011), whereas cortisone dissociates K+

channels from the Shaker family from their accessory β subunits,
relieving the channel from N-type inactivation (Pan et al., 2008).
Progesterone also inhibits rat (Wang et al., 2020b), but not mouse
Slo3 (Mannowetz et al., 2013). The steroid sensitivity of Slo3 in other
species, e.g., bovine (Schreiber et al., 1998), remains to be

FIGURE 4
Dose-response relationship for the steroid inhibition of human Slo3 (A) Slo3 currents before and after perfusion with different concentrations of a
given steroid. (B) Current amplitudes (mean ± SD) at +100 mV in the presence of different concentrations of the respective steroid relative to that under
control conditions (set to 1) (n ≥ 3). Continuous lines represent fits of the Hill equation to yield the dose-response relationships (n ≥ 3). (C) Experimentally
determined dose-response relationship of the Slo3 inhibition by follicular fluid shown in Figure 2B (FF, continuous line) andmodelled dose-response
relationship (dotted line) assuming that its action exclusively rests on the contained steroids (see explanation in the text).

TABLE 1 Concentration (in nM) of selected steroids in charcoal-stripped
follicular fluid (sFF).

sFF

Progesterone 262

Testosterone 0.32

Estradiol 54

17-OH-Prog. 94

Androstenedione 0.365
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determined. With almost certainty, steroids bind directly to the
Slo3-channel complex rather than to a so far unknown steroid-
binding protein associated with it, considering that we observe the
steroid action on heterologous Slo3/LRRC52 channels in CHO cells.
Whether the steroid-binding site is located on the channel itself, on
its accessory subunit, or formed at their interface remains to be

elucidated. Thus, investigating the steroid action on human Slo3 co-
expressed with mouse LRRC52 and vice versa might shed light on
the mechanism of action. To investigate this further, steroid photo-
affinity labels might serve as powerful tools to identify the residues
that bind the steroids. Alternatively, homology modelling of Slo3’s
structure based on the Slo1 structure (Tao and MacKinnon, 2019)

FIGURE 5
Human Slo3 is inhibited by charcoal-stripped follicular fluid (A) Slo3 currents before and after perfusion with dilute (%) solutions of charcoal-stripped
follicular fluid (sFF). (B)Current amplitudes (mean ± SD) at +100mV in the presence of a given dilution of sFF relative to that under control conditions (set
to 1) (n ≥ 3). Grey dots indicate individual values. The continuous green line represents a fit of the Hill equation, yielding the dose-response relationship
(ID50 = 5.7 ± 1.3%, Standard error of the fit). For comparison, the dose-response relation for FF from Figure 2B is shown in red. Additionally, the
predicted dose-response relations based on the steroid concentrations determined in FF (dotted red) and sFF (dotted green) are shown.

FIGURE 6
Human serum albumin inhibits human Slo3 (A) Slo3 currents before and after perfusion with different concentrations of albumin. (B) Current
amplitudes (mean ± SD) at +100 mV in the presence of given concentration of albumin relative to that under control conditions (set to 1) (n = 4). The
continuous line represents a fit of the Hill equation to yield the dose-response relationship. Grey dots indicate individual recordings. (C) Comparison of
measured (continous red line) and predicted dose-response relations for FF based on the contained concentrations of steroids (dotted red line), HSA
(dotted brown line), or both (dotted orange line). (D) Slo3 currents recorded from human sperm at +100 mV before and after perfusion with albumin. (E)
Current amplitudes (mean ± SD) in the presence of albumin relative to that under control conditions (set to 1) (n = 4). (F) Slo3 currents recorded fromCHO
cells in the presence of 1mM intracellular Ca2+ and pH 8.0 before and after perfusion with albumin. (G)Current amplitudes (mean ± SD) in the presence of
albumin relative to that under control conditions (set to 1) (n = 6); ****p < 0.0001.
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could be performed to identify putative binding sites on human Slo3;
ensuing molecular modelling might allow to virtually probe and
functionally scrutinize the pharmacology of putative binding sites.

We show that human Slo3 heterologously expressed in CHO cells is
not only modulated by steroids, but also by albumin at physiological
concentrations. The protein acts on ion channels either by direct
binding to the channel complex (Zhao et al., 2021) or indirectly by
depletion of particular lipids from the cell membrane
(Sankaranarayanan et al., 2013; Bukiya and Dopico, 2019; Han
et al., 2022). We propose that the albumin action on Slo3 rests on
the latter. The transience of its action suggests that albumin depletes an
as yet unknownmessenger molecule, e.g., a membrane lipid, interacting
with Slo3, which is slowly replenished over time, causing the relieve
from inhibition. In human sperm, under the conditions used here, this
particular control mechanism of Slo3 seems lacking. This may be due to
the particular lipid content in the flagellar plasma membrane. For
example, the level of PtdIns(4,5)P2 (PIP2) is much lower in the
membrane of sperm flagella compared to other cells (Kawai et al.,
2019). Slo3 is well adapted to this lipid environment: compared to
channels in somatic cells, Slo3 is much more sensitive to PIP2 (Tang
et al., 2010; Kawai and Okamura, 2022). Future studies are required to
test the hypothesis of a lipid-mediated albumin action on Slo3 and, if
true, unravel the underlying mechanism, e.g., by analyzing changes in
the lipid content of CHO cells under control conditions and upon
perfusion with albumin. This might then allow to investigate in a
targeted approach the physiological role of this lipid-modulation of
Slo3 in sperm. Moreover, such an approach would also enable to test
whether this modulation is similar in Slo3 from different species or
specific for human Slo3. Alternatively, human sperm might harbor so
far unknown Slo3-associated proteins that control the sensitivity of the
channel to albumin. Such a cell-specific tuning of channel properties is
well-known for Slo1 channels (Gonzalez-Perez and Lingle, 2019).

Our finding that components of follicular fluid inhibit Slo3 adds to
the complexity of chemosensory signalling in sperm. We and others
have shown before, that follicular fluid activates CatSper in human
sperm (Brown et al., 2017; Jeschke et al., 2021). Moreover, it was shown

that albumin activates Hv1 channels (Zhao et al., 2021) that are also
expressed in human sperm (Lishko et al., 2010; Berger et al., 2017) and,
thereby, alkalizes their intracellular pH (Zhao et al., 2021). These
findings indicate that follicular fluid engages multiple signalling
events in human sperm. Thus, to gain further insights into the
molecular makeup and orchestration of the signal transduction
pathways in human sperm, kinetic multiplexed recordings of
intracellular Ca2+, pH, and the membrane potential are required,
using, for example, frequency- and spectrally-tuned multiplexing of
fluorescent probes (FASTM) (Kierzek et al., 2021) to investigate the
chemosensory signal flow. The use of specific inhibitors for
Slo3 channels (Lyon et al., 2023; Zhang et al., 2024) might allow to
disentangle its role in chemosensory signalling.

Finally, an important question concerns the role of the action of
steroids and albumin in follicular fluid on CatSper, Slo3, and Hv1 in
human sperm during the fertilization process. In fact, the fluid gets
diluted quickly after ovulation and only small amounts enter the oviduct
(Hansen et al., 1991). It has been proposed that in the oviduct, sperm get
into contact with fluid diluted to 0.5% (Hansen et al., 1991), which
would still be sufficient to activate CatSper, but not to inhibit and
activate Slo3 andHv1, respectively. However, also uterine fluids contain
albumin and steroids in concentrations similar to those determined in
follicular fluid (Casslén andNilsson, 1984; Libersky and Boatman, 1995;
Munuce et al., 2006; Lamy et al., 2016). Unfortunately, the exact
composition of these fluids is unknown and might vary among
species. Thus, quantitative analyses of reproductive fluids especially
in humans are required to gain further insights into the ligand control of
sperm behaviour during fertilization.

Materials and methods

Chemicals

Steroids and prostaglandins were purchased from Sigma-
Aldrich and Cayman Chemical and dissolved in DMSO at a

FIGURE 7
The action of albumin on Slo3 channels is transient (A) Time course of the inhibition of Slo3 channels recorded from CHO cells after perfusion with
albumin. (B) Time constant of the relieve of inhibition in the presence of albumin.
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concentration of 20 mM. These stock solutions were then diluted in
extracellular solution (ES, see below) to the final concentration.

Reproductive fluids

Follicular Fluid (FF) and seminal fluid (SF) were collected from
females undergoing hormonal stimulation for assisted reproduction
at the Fertility Centre of the University Hospital in Münster and
from “healthy” male donors, respectively, as previously described
(Jeschke et al., 2021), with prior written informed consent according
to the protocols approved by the Ethical Committees of the Medical
Association Westfalen-Lippe and the Medical Faculty of the
University of Münster (reference numbers: 1IX Greb 1, follicular
fluid; 4INie, 2021-402-f-S, seminal fluid) and the Declaration of
Helsinki. In brief, FF was collected by transvaginal aspiration during
which it was diluted to 66% with flushing medium (Gynemed,
GM501 Flush). To remove cellular components, FF was
centrifuged at 3000 g for 10 min and the supernatant was used
and stored in aliquots at −20°C. SF was extracted from the ejaculate
by two centrifugations at 700 g for 20 min to remove cellular
components; the supernatant was collected and stored in aliquots
at −20°C. FF was stripped (sFF) from lipid mediators using dextran-
coated charcoal as described before (Bedu-Addo et al., 2007; Brown
et al., 2017). First, charcoal (0.25% w/v, Sigma-Aldrich, C9157) was
coated with dextran T70 (0.0025% w/v, Pharmacia LKB, 17-0280-
01) by mixing in a saline solution containing 1.5 mMMgCl2, 10 mM
HEPES and 0.25 M sucrose (adjusted to pH 7.4 with NaOH) and
incubated overnight at 4°C. 8 mL of the dextran-coated charcoal was
centrifuged and the pellet was resuspended in 4 mL of FF. After
incubating overnight at 4°C, the charcoal-FF mixture was
centrifuged at 1000 g for 5 min to pellet the charcoal and obtain
the supernatant, i.e., sFF. Finally, the sFF was filtered using a 0.22 μm
filter. The steroid hormones were determined by LC-MS/MS as
described (Kulle et al., 2010; Kulle et al., 2013; Reinehr et al., 2020;
Jeschke et al., 2021). Albumin was measured with a colorimetric
method (bromocresol purple dye-binding) on a cobas c701 clinic
chemistry analyzer (Roche Diagnostics GmbH, Mannheim,
Germany) and by an immune-nephelometric method on a BN II
system (Siemens Healthcare Diagnostics GmbH, Eschborn,
Germany) according to the standard procedure recommended by
the manufacturer. Both methods were validated by regular analyses
of reference sera supplied by the national German INSTAND
proficiency testing program and the international quality
assurance program of the US Centers for Disease Control and
Prevention.

Cell culture

CHO cells were cultivated at 37°C, 5% CO2, in F-12 medium
(gibco F-12 Nut Mix (1x) + GlutaMAX™ (REF: 31765-027, LOT:
2246389) with 10% FBS, 2 mM L-Glutamine and 1% Penicillin-
Streptomycin) at a concentration between 2 × 106 - 6 × 106 cells/mL.
CHO cells were co-transfected with a pcDNA3.1(+) vector
containing the full length coding sequence of human Slo3
(Accession number: NM_001031836) modified with a carboxy-
terminal hemagglutinin tag (HA-tag) and in which the sequence

coding for the neomycin resistance gene was replaced by the coding
sequence for citrine and a pcDNA3.1(+) vector containing a
sequence encoding hLRRC52-mCherry (Accession number:
NM_001005214) for 6-8 h using Lipofectamine 2000 (Invitrogen)
in Opti-MEM (Gibco). DNA was used in concentrations between
2 and 5 ng/μL. After the transfection, cells were cultivated in F-12
medium. 24 h after transfection the cells were transferred onto poly-
l-lysine-coated coverslides and stimulated with 5 mM Na-Butyrate
at least 12 h before the experiment.

Electrophysiology

Electrophysiological recordings were performed from Citrin-
and mCherry-positive cells in the whole-cell configuration using an
Axopatch 200B patch clamp amplifier (Molecular Devices,
Sunnyvale, CA, United States) controlled by the Clampex
10.7 software (Molecular Devices). Signals were low-pass filtered
at 10 kHz with a four-pole Bessel filter and digitized with a Digidata
1440A data acquisition system (Molecular Devices). A step protocol
with steps from −100 mV to +150 mV followed by a step to 50 mV
from a holding potential of −80 mV was used. Cells were perfused
with extracellular solution (ES; 140 mM NaCl, 5.4 mM KCl, 1 mM
MgCl2, 1.8 mM CaCl2, 5 mM Hepes, 10 mM Glucose, pH 7.4 with
NaOH) and the pipette resistance was 4–6 MΩ with the intracellular
solution (130 mM K-Aspartate, 10 mM NaCl, 1 mM EGTA, 5 mM
HEPES, 15 mM glucose, pH 7.3 with KOH). In some experiments
glucose was replaced by additional HEPES. Pipette solution for
recordings with elevated [Ca2+]i and pHi was (130 mM K-Aspartate,
10 mM NaCl, 20 mM HEPES, 1 mM CaCl2, pH 8.0 with KOH). All
substances were diluted in ES and applied to the cells by a gravity-
driven perfusion system. Experiments were performed at room
temperature.

Recordings from swim-up sperm (Young et al., 2024) in the
whole-cell configuration were performed as described before (e.g.,
Strünker et al., 2011; Brenker et al., 2014) according to the protocols
approved by the Ethics Committee of the Medical Association
Westfalen-Lippe and the Medical Faculty Münster (2021-402-f-S)
and the Declaration of Helsinki. Seals between pipette and sperm
were formed at the cytoplasmic droplet or neck region in
extracellular solution (HS) containing (in mM): 145 NaCl, 5 KCl,
1 MgSO4, 2 CaCl2, 5 glucose, and 20 HEPES, adjusted to pH 7.4 with
NaOH. The pipette (10–15MΩ) solution contained (in mM): 130 K-
aspartate, 5 KCl, 50 HEPES, and 1 CaCl2, adjusted to pH 7.3 with
KOH. Data were not corrected for liquid junction potentials.

Data analysis and statistical evaluation

Analysis was performed using Clampfit 10.7 (Molecular
Devices) and OriginPro 2020 (OriginLab Corporation,
Northampton, MA, United States). The inhibition was calculated
based on the currents from the +50mV pulse following the +100mV
step (voltage-step protocol Figure 1). We corrected for leak current
in each measurement by subtracting the current at the +50 mV pulse
immediately following a −100 mV step, i.e., before opening of Slo3
commenced. Fits were performed with a modified Hill equation
y � 1 − xn

kn + xn. All results are given as mean ± standard deviation
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(number of experiments). To calculate the predicted action of a
component in follicular fluid, its IC50 value was divided by its
concentration in follicular fluid to calculate the expected ID50

value for the action of follicular fluid based on the respective
component. The predicted action of multiple components was
calculated by multiplying the hill equations for each individual
component. For the calculation of the time course of the relief
from inhibition by albumin the data was fitted with a mono-
exponential decay starting from the time point of maximal
inhibition.

All data are given as mean ± standard deviation. Statistical
analysis was performed whenever meaningful, i.e., on data shown in
Figures 1–3, 6, using GraphPad Prism 10.2.3 (Prism, La Jolla,
United States). The relative changes in current amplitude upon
perfusion with the different stimuli were compared to the relative
changes in current amplitude upon 30 s perfusion with buffer to
account for current rundown (Supplementary Figure S1). We used
one-way ANOVA, assuming sphericity. When ANOVA´s F-test and
the test for matching efficacy achieved p < 0.05, means were
compared to the control´s mean by Dunnett’s multiple
comparisons post hoc test. For recordings from human sperm or
from CHO cells with high intracellular Ca2+ and pHi, the current
amplitudes before and after application of the respective stimulus
were analyzed with Student´s paired t-test.
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