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Macrophages can exhibit pro-inflammatory or pro-reparatory functions,
contingent upon their specific activation state. This dynamic behavior
empowers macrophages to engage in immune reactions and contribute to
tissue homeostasis. Understanding the intricate interplay between
macrophage motility and activation status provides valuable insights into the
complex mechanisms that govern their diverse functions. In a recent study, we
developed a classification method based on morphology, which demonstrated
that movement characteristics, including speed and displacement, can serve as
distinguishing factors for macrophage subtypes. In this study, we develop a deep
learning model to explore the potential of classifying macrophage subtypes
based solely on raw trajectory patterns. The classification model relies on the
time series of x-y coordinates, as well as the distance traveled and net
displacement. We begin by investigating the migratory patterns of
macrophages to gain a deeper understanding of their behavior. Although this
analysis does not directly inform the deep learning model, it serves to highlight
the intricate and distinct dynamics exhibited by different macrophage subtypes,
which cannot be easily captured by a finite set of motility metrics. Our study uses
cell trajectories to classify three macrophage subtypes: M0, M1, and M2. This
advancement holds promising implications for the future, as it suggests the
possibility of identifying macrophage subtypes without relying on shape
analysis. Consequently, it could potentially eliminate the necessity for high-
quality imaging techniques and provide more robust methods for analyzing
inherently blurry images.
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1 Introduction

Macrophages are involved in the body’s immune responses
and tissue homeostasis. They play a critical role in infectious
diseases (Atri et al., 2018), cancer progression (Chanmee et al.,
2014), autoimmunity (Funes et al., 2018), wound healing
(Krzyszczyk et al., 2018), and many other diseases (Murray
et al., 2014; Wynn and Vannella, 2016). Two main subsets of
activated macrophages with different functional phenotypes,
M1 (classically activated, pro-inflammatory) and M2
(alternatively activated, anti-inflammatory), have been
identified (Martinez and Gordon, 2014; Murray et al., 2014).
In tumor progression, M1 and M2 macrophages assume distinct
roles. Specifically, the M2 subtype, M2d, demonstrates pro-
neoplastic characteristics, while M1-like macrophages exert
anti-tumor effects (Sica et al., 2008). Recent studies have
shown that besides M1 and M2 types, a continuum of
macrophage subtypes exists (Mosser and Edwards, 2008;
Martinez and Gordon, 2014).

The study of macrophage subtypes plays a crucial role in
identifying strategies for disease control (Kotwal and Chien,
2017; Chatterjee et al., 2021; Du et al., 2021; Kuntzel and
Bagnard, 2022). Consequently, developing effective methods for
detecting macrophage subtypes in vitro is essential.

The conventional method to identify M1 and M2 subtypes
involves analyzing multiple cell surface markers, transcription
factors, and cytokine profiles, which can be time-consuming and
resource-intensive. Furthermore, uncertainty remains about how
to identify macrophage subtypes confidently. This is in part due
to the existing continuum of states. Recent studies of macrophage
cultures led researchers to hypothesize that cell morphology
could indicate macrophage activation status (Rostam
et al., 2017).

Previous research on the classification of macrophage subtypes
using machine learning has been based on fluorescent dyes and cell
shape parameters (Mcwhorter et al., 2013; Rostam et al., 2017;
Pavillon et al., 2018). More recently, it was suggested that
motility parameters like cell speed could be used to classify
macrophage subtypes (Kesapragada et al., 2024). These
publications show that, although a continuum of phenotypes
exists, there indeed are three primary shape modes associated
with three distinct phenotypes, respectively (inclusive of the so-
called “naïve” macrophages). Furthermore, it was shown that these
shape modes are closely linked with predetermined cell
motility metrics.

This research aims to gain a deeper understanding of
macrophages’ migratory patterns and explore the potential of
classifying macrophage subtypes based on raw trajectory patterns
without relying on cell shape analysis. This could provide more
robust methods to analyze blurry images.

We suggest that a holistic use of cell motility information,
i.e., a time series of cell coordinates, could enhance the
differentiation of macrophage subtypes. We develop a deep
learning model that uses cell position over time as input and
demonstrate that our model effectively distinguishes between
M1 and M2 macrophage phenotypes. This classification method
could potentially be used to understand the continuum of
states further.

2 Macrophages migratory
pattern analysis

In this study, we leverage labelled data published in our previous
work (Kesapragada et al., 2024)). In brief, bone marrow-derived
macrophages (BMDMs) were isolated and cultured, resulting in an
M0 macrophage culture. M0 macrophages were further activated
into either M1 (with LPS) or M2 (with IL-4) (see Methods) in
correspondence with existing protocols (Zhang et al., 2008; Ying
et al., 2013). Time-lapse recording of cell images, segmentation, and
tracking of cell trajectories was performed in correspondence with
Magnusson et al. (2015). This global track-linking algorithm links
cell outlines generated by a segmentation algorithm into tracks.
Tracks are incrementally added to the image sequence using
information from the complete image sequence in every
linking decision.

Overall, we obtained three videos of single cells and three videos
of cell cultures.

Single-cell video sequences were captured for one M0 cell, one
M1 cell, and one M2 cell, respectively. Each single-cell video
comprises 240 images, with a frame interval of 1 min, resulting
in a total duration of 240 min.

Cell-culture video sequences were obtained from a non-
activated M0 cell culture, an M1-activated cell culture, and an
M2-activated cell culture, respectively. Each cell culture video
comprises 37 phase contrast frames, each frame captured at a 5-
minute interval, spanning a total duration of 180 min.

2.1 Single-cell macrophages images

Each of the three videos of a single macrophage consists of time-
variant phase-contrast images. A frame from each video is shown in
Figure 1A. The M0 macrophage is seen as a circular cell, the M1 cell
contains protrusions, and the M2 is an elongated cell.
Corresponding differences in cell shape were observed in
Kesapragada et al. (2024), and cell-shape-based clustering
was created.

2.1.1 Single macrophages trajectory analysis
We notice distinct trajectory patterns among the three cell types

from the M0, M1, and M2 cell trajectories by plotting the x and y
positions of their trajectories in 2D and by representing the trajectories
as 3D objects in (x,y,t) space, see Figure 1B. It is seen that the M0 cell
shows a spinning pattern in the 3D plot and stays close to its initial
position in the 2D plot. TheM1 cell makes large jumps in each frame in
the 3D plot and wanders around its initial point in the 2D plot. The
M2 cell moves a greater distance directionally farther away from the
initial point in both 3D and 2D plots.

These variations in the cell paths are evident, suggesting the
possibility of identifying cell types not only by their shape but also by
their trajectory.

2.2 Analysis of macrophage culture images

In practical settings, cell cultures typically consist of multiple
cells present in each frame of recorded videos. The image sets
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utilized in the present study are labeled according to their culture
of predominant macrophage subtypes, i.e., how cell culture was
activated (M0, M1, and M2), as shown in Figure 2A. Given the
macrophages’ high plasticity to transform into various functional
phenotypes, it is likely that each macrophage can transform from
one phenotype to another within each image set. Therefore, the
challenge associated with this data set is that the labeled images
may contain cells of different subtypes. For instance, M0 images
may include cells of both M1 and M2 subtypes, and the same
principle applies to M1 and M2 images. Therefore, we utilize the
morphological clustering analysis technique described in our
previous work (Kesapragada et al., 2024) to categorize cells
based on their shapes. In this analysis, circular cells are
assigned to Cluster C, protruded cells (cells with uneven
edges) are grouped in Cluster P, and elongated cells are
classified in Cluster E. Most macrophages in non-activated cell
culture (M0) belong to Cluster C, M1-activated cell culture is
represented mostly by Cluster P cells, and M2-activated cell
culture is mostly of Cluster E, as shown in Figure 2A (see
(Kesapragada et al., 2024) for details of shape-based cell
clustering). In the present study, we examine the trajectory
patterns of the cells of these shape clusters.

2.2.1 Trajectory analysis of macrophages from their
shape clusters

Consider the trajectory patterns of macrophages from the three
shape clusters. The trajectories of three typical representatives of
Cluster C, Cluster P, and Cluster E are shown within a single plot in
Figure 2B in order to see spatial differences of cells’ trajectories. It is
seen that the main difference between Cluster E cell trajectory from
the trajectories of the cells of two other clusters is in the more
elongated shape of the trajectory. In contrast, trajectories of the
Cluster C and P cells are similar in shape but different in the size of
the space occupied by the trajectory. Cluster C cell stays closer to its
initial location than Cluster P cell.

However, the difference in the overall space occupied by the
trajectory is not the only unique characteristic. To gain insight into
temporal differences of the trajectories, consider Figure 2C that
shows the trajectory patterns of these representative cells with time
encoded by a color gradient from original light (t = 0) to dark color
(t = 180 min). Cluster C cell exhibits a spinning pattern that occupies
a smaller area, Cluster P cell demonstrates large jumps and wanders
around its initial point, and Cluster E cell tends to move a greater
distance in a directional manner away from the initial point. Despite
variations in experiment lengths and cell densities between single

FIGURE 1
The images depict single-cell macrophages images alongside their respective trajectories, revealing distinct patterns among the three cell types
(M0,M1, andM2). Trajectory analysis involves plotting the x and y positions in 2D and representing trajectories as 3D objects in (x, y, t) space. In the 3D plot,
the M0 cell exhibits a spinning pattern and remains close to its initial position in the 2D plot. The M1 cell demonstrates large jumps in each frame in the 3D
plot, while meandering around its initial point in the 2D plot. Conversely, the M2 cell covers a greater directional distance away from the initial point
in both the 3D and 2D plots. (A) Single cell macrophage images of M0, M1 andM2with an interval of 1 min/frame for 4 h - one frame from each single-cell
video. Scale bar is 10 μm. (B) Trajectories of M0 (red), M1 (green) and M2 (blue) cells in a single graph with the comparative representation of their
respective area spreads in two-dimensional and three-dimensional plots.
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and multiple-cell videos, we consistently observe similar trajectory
patterns among the cells of shape clusters’ C, P, and E.

In order to quantify this behavior, we further use several
mathematical measures of the trajectory pattern: convex hull
perimeter and area of the trajectory, and distance measure:
maximum pairwise distance between trajectory points.

2.2.2 Quantitative measures of the trajectories
2.2.2.1 Convex hull perimeter and area

To understand the spatial differences in Figure 2B between the
cell trajectory paths of the three cell clusters, we first find the
perimeter and area of the convex hull. The convex hull of a set
of points is the smallest convex polygon that encloses all the points
in the set (Supplementary Figure S1). The convex hull area is the

total area enclosed by the convex hull, and the convex hull perimeter
is the total length of the boundary that encloses the points.

From Figure 3, we observe that the convex perimeter of
Cluster E (elongated cells) is more significant, followed
by Cluster P (protruded cells) and Cluster C (circular cells).
The convex area plot clearly distinguishes that the elongated
cells have a larger area, followed by protruded and circular
cells. Although Cluster E cells can be easily distinguished
from the other two clusters of cells using convex hull
perimeter and area, the difference between these metrics
of Cluster P and Cluster C cells is small, and distinguishing
their trajectories is challenging. Hence, we need more
specific measures to distinguish the trajectories of the P and
C clusters.

FIGURE 2
The depicted images showcase macrophage culture alongside their corresponding trajectories, categorized based on shape-based clusters.
Notably, the observed patterns align with those seen in the Figure 1 images of individual cells representing M0, M1, and M2, which correspond to clusters
labeled as circular, protruded, and elongated, respectively. (A)Macrophage images of M0, M1 and M2 cell cultures—one frame from each video set. Scale
bar is 100 μm. (B) Trajectory patterns of the representative cells from shape Cluster C (red), Cluster P (green) and Cluster E (blue). (C) Trajectories of
the cells shown in Figure 2Bwith time frame encoded by color: t = 0 corresponds to light color, t = 180 corresponds to dark. Starting point is marked as an
orange dot and the ending point is marked as a red dot.
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2.2.2.2 Maximum pairwise distance
As shown in Figure 2C, Cluster P cells exhibit larger jumps

between frames and show wandering behavior around the initial
point. This unique characteristic of Cluster P cells can potentially be
used as a distinguishing feature. To identify this characteristic, we
use pairwise distance measures. We measure the pairwise distances
between each pair of trajectory points and extract the maximum
pairwise distance for each cell. From Figure 3, it is evident that
Cluster P cells exhibit higher maximum pairwise distances than
Cluster C cells. We can also observe here that the maximum pairwise
distance of Cluster E cells is similar to that of Cluster P cells.

2.2.3 Observations
While the quantitative features mentioned above allow us to

make observations about cell migratory patterns, they are not
sufficient for reliable detection of macrophage type. For example,
the limitations of the convex hull, such as its sensitivity to outliers
and lack of consideration for temporal ordering in trajectories,
weaken its suitability as a feature of the classification model.

Having observed that macrophage trajectory patterns are
specific to each cluster but still are not sufficient for automatic
classification, we have developed a deep-learning model in the hope
that it can have better classification performance due to capturing

some trajectory features that we were unable to detect. This model
gets simple characteristics of cell movement as input features and
does not require the preliminary calculation of complex metrics.

3 Methods

3.1 Activation of bone marrow-derived
macrophages

In each experiment, bone marrow-derived macrophages
(BMDMs) were seeded into six tissue culture-treated well plates
at varying densities and cultured in RPMI-1640 medium
(Invitrogen) supplemented with 10% Fetal Bovine Serum (FBS)
(Invitrogen) and 1× Antibiotic-Antimycotic solution (Invitrogen)
overnight. For M1 activation, 100 ng/mL lipopolysaccharide (LPS)
(Sigma, Cat number: L6143) was added to the culture medium, while
for M2 activation, 20 ng/mL recombinant mouse interleukin-4 (IL-
4) (R&D Systems, Cat number: 404-ML) was used (Ying et al., 2013).
Two days post-stimulation, activatedM1 andM2macrophages were
employed for morphological and motility characterizations as well
as functional studies. Macrophages that did not receive any
stimulation served as M0 controls.

FIGURE 3
Box plots depict measures of convex hull perimeter, convex hull area, and maximum pairwise distance for trajectories from the shape-based
clusters. The analysis reveals that Cluster E (elongated cells) exhibits a more substantial convex perimeter, followed by Cluster P (protruded cells) and
Cluster C (circular cells). In terms of convex area, elongated cells have a larger area, followed by protruded and circular cells. While convex hull perimeter
and area effectively differentiate Cluster E cells, distinguishing between Cluster P and Cluster C cells proves challenging due to the small differences
in thesemetrics. Further examination shows that Cluster P cells display highermaximumpairwise distances compared to Cluster C cells. Interestingly, the
maximum pairwise distance of Cluster E cells is similar to that of Cluster P cells.
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3.2 Deep learning model for macrophage
classification

We develop a multi-class, single-label classification deep learning
model where inputs are: the position coordinates (x, y) of the trajectories
in time frames, the distance traveled, and the displacement of the cell.
The model’s output is the classification of one of the three labels: M0,
M1, or M2, assigned to their respective clusters: Cluster C (circular),
cluster P (protruded), or Cluster E (elongated) (Figure 4).

3.2.1 Train/test/validation data
We assign the label “M0” to cells fromCluster C, “M1” to cells from

Cluster P, and “M2” to cells fromCluster E in the training data.We only
include cells with a trajectory path from the first frame to the last frame,
which is a total of 71 cells. We augment the data set to train the deep
learning network. As the input to the model is (x, y) coordinates, we
augment the data by inversion (y, x), translation (-x, y), (-x, -y), (x, -y)
and inverse translation (-y, x), (-y, -x), (y, -x). These mathematical
transformations generate a total of 560 cells. We shuffle the data and
split 80% for training (448 cells) and 20% for validation (112 cells).

3.2.2 Architecture
For the deep learning model, we utilized Keras (Chollet, 2015),

an open-source neural network library written in Python. Here, the
neural networks work to separate three different classes (M0, M1,
andM2). Since there are only a few labels to classify, a simple stack of
eight fully connected (Dense) layers with Relu activations (Nair and
Hinton, 2010) is used. The hidden units that are passed to each
Dense layer are 10, 20, 32, 64, 64, 32, 20, and 10, respectively. The
network’s final layer is a Dense layer with a size of 3. The network
produces a 3-dimensional output vector for every input, where each
dimension represents a distinct output class. The softmax activation
function is used in this last layer, which generates a probability
distribution over the three output classes. Categorical cross-entropy,
the recommended loss function for a multi-class classification

problem, is used to minimize the distance between predicted and
true probability distributions. We used the RMSprop optimizer
(Tieleman and Hinton, 2012) with its default learning rate to
minimize the loss. The evaluation metric used is accuracy,
representing the proportion of correctly classified cells. The
model is trained for 100 epochs to convergence (see Figure 5A).

4 Model results

Given the complexity of the problem of classifying different
trajectory patterns and the amount of data available, our results
(Figure 5A) show that the network is not overfitting and learning
effectively. We observe that the training loss decreases over time
while the validation loss remains low. Similarly, the training
accuracy increases while the validation accuracy remains high.
This indicates that the model can generalize well to new data and
is likely to perform well on new unseen data. The model’s ability
to accurately classify the macrophage subtypes is supported by its
successful predictions on the validation data. Figure 5B
represents a confusion matrix visualization where the
percentage cell counts of each class are plotted on a
heatmap. In this representation, the ground truth data labels
“Cluster C,” “Cluster P,” and “Cluster E” are displayed in the
rows, while the model predicted labels “M0,” “M1,” and “M2” are
displayed in the columns. We can observe that the model has an
accuracy of 91% in predicting Cluster E (elongated) cells as M2,
95% accuracy in predicting Cluster P (protruded) cells as M1, and
87% accuracy in predicting Cluster C (circular) cells as M0. We
can see that the model has identified 12% of the Cluster C cells as
M2 and 2% as M1. It is important to note that identifying M0 cells
can be challenging, as they may exist in a continuum or may
continuously transform into other subtypes. This trained model
is applied to test single-cell macrophage images (Figure 1A),
which accurately categorized the cells into M0, M1, and M2.

FIGURE 4
Illustration of the Deep Learning Model for macrophage subtype classification. The diagram depicts the process of extracting single-cell tracking
and quantification from time-lapse images. The quantified parameters, including (x, y) positions over time, distance traveled, and cell displacement, are
augmented and used as inputs for the deep learning model. The model outputs the classified macrophage subtype.
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5 Discussion

Cell-trajectory-based and cell-shape-based methods can
potentially classify macrophage subtypes more accurately at the
single-cell level. This differs from other methods, such as q-PCR,
that give information about cell population subtypes.

As we observed in the cell morphology analysis (Kesapragada
et al., 2024), each cell culture (M0, M1, or M2) is dominantly
represented by a corresponding morphology cluster: M0 cells are
circular, M1 cells are protruded, M2 cells are elongated, but the
shape-based clusters were nonetheless diluted.

Current analysis of macrophage trajectories revealed typical cell
movement patterns corresponding to cell shape clusters: circular
cells spin at their initial position, protruded cells wander, and
elongated cells move in a specific direction. However, trajectory-
based clusters do not exactly correspond to shape-based clusters.
This implies a variation in the resulting cell phenotype of
macrophage culture activated into M1, M2, or non-activated (M0).

We also note that it is challenging to arrive at a set of metrics that
holistically capture all the shape and movement features of the cell.

Several image-based models for macrophage type identification
have been published previously. In Pavillon et al. (2018), the authors

created a model for noninvasive distinguishing between cell types
employing activated and non-activated macrophages for testing.
The classification model was linear, allowing greater biological
interpretation. However, it required multiple sources of
information as input, including phase microscopy images, Raman
spectra, and autofluorescence microscopy. In Rostam et al. (2017),
the authors used image-based machine learning approach to classify
M1, M2, naive macrophages, and monocytes. Their algorithm relied
on various cell metrics, including details related to the nucleus and
cytoskeleton, and requires high-quality images.

Our deep learning model relies on the raw cell trajectory data in
the x-y plane, as well as the cell displacement and traveling distance.
It automatically captures the features of cell motion unseen by the
human eye and demonstrates good accuracy.

6 Conclusion

Our study revealed unique migratory patterns and distinct
morphology in the three subtypes of macrophages. M0, M1, and
M2. By analyzing their trajectories and computing various
quantitative measures, such as perimeter, area of the convex hull,

FIGURE 5
The Deep Learning model results display the training and validation loss and accuracy over 100 epochs. The accompanying heatmap confusion
matrix illustrates the percentage accuracy of the validation data for the M0, M1, and M2 macrophage subtypes. In this representation, the ground truth
data labels “Cluster C,” “Cluster P,” and “Cluster E” are presented in the rows, while the model-predicted labels “M0,” “M1,” and “M2” are presented in the
columns. Notably, the model demonstrates 91% accuracy in predicting Cluster E (elongated) cells as M2, 95% accuracy in predicting Cluster P
(protruded) cells as M1, and 87% accuracy in predicting Cluster C (circular) cells as M0. (A) Training and validation loss and accuracy over 100 epochs. (B) A
heatmap confusion matrix, showing the percentage accuracy of the validation data for the M0, M1 and M2 macrophage subtypes.
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and pairwise distances, we observed clear differences in the
migratory patterns of these macrophage cell types. However,
building a classification model with predetermined features is
challenging in this context.

Therefore, we take a different approach by developing a deep
learning model that incorporates the trajectory path and shape of
cells, which proves to be more effective in accurately classifying
macrophage subtypes. The correlation between cell shape and
trajectory patterns can be highly valuable in future scenarios
where obtaining precise cell morphology data is challenging.
Additionally, identifying cells based on their migration patterns
through phase-contrast microscopy has the potential to eliminate
the requirement for high-quality imaging and provide more reliable
methods for analyzing blurry images.
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