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Background: Liver cancer is a common malignant tumor with an increasing
incidence in recent years. We aimed to develop a model by integrating clinical
information and multi-omics profiles of genes to predict survival of patients with
liver cancer.

Methods: The multi-omics data were integrated to identify liver cancer survival-
associated signal pathways. Then, a prognostic risk score model was established
based on key genes in a specific pathway, followed by the analysis of the
relationship between the risk score and clinical features as well as molecular
and immunologic characterization of the key genes included in the prediction
model. The function experiments were performed to further elucidate the
undergoing molecular mechanism.

Results: Totally, 4 pathways associated with liver cancer patients’ survival were
identified. In the pathway of integrin cell surface interactions, low expression of
COMP and SPP1, and low CNVs level of COL4A2 and ITGAV were significantly
related to prognosis. Based on above 4 genes, the risk score model for prognosis
was established. Risk score, ITGAV and SPP1 were themost significantly positively
related to activated dendritic cell. COL4A2 and COMPwere themost significantly
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Abbreviations: AMPK AMP-activated protein kinase; AUC area under the curve; BCL2 BCL2 apoptosis
regulator; COMP cartilage oligomeric matrix protein; CENPA centromere protein A; COL4A2 COMP,
collagen type IV alpha 2 chain; CNVs copy number variations; CTLA4 cytotoxic T-lymphocyte associated
protein 4; DCA decision curve analysis; DNAH17 dynein axonemal heavy chain 17; EMT epithelial
mesenchymal transformation; FGB fibrinogen beta chain; FC fold change; GEO Gene Expression
Omnibus; GEP granulin precursor; HOXD9 homeobox D9; ITGAV integrin subunit alpha V; Lasso
Least absolute shrinkage and selection operator; lncRNAs long non-coding RNAs; MAGEB6 MAGE
family member B6; MET MET proto-oncogene, receptor tyrosine kinase; miRNAs micro RNAs; MAPK
mitogen-activated protein kinase; PXN paxillin; PCR polymerase chain reaction; CD133 prominin 1;
mTOR rapamycin kinase; ROC Receiver Operating characteristic; SPP1 secreted phosphoprotein 1;
ssGSEA single Sample gene Set Enrichment analysis; TIGIT T cell immunoreceptor with lg and ITIM
domains; TP53 tumor protein p53.
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positively associated with Type 1 T helper cell and regulatory T cell, respectively.
The nomogram (involved T stage and risk score) may better predict short-term
survival. The cell assay showed that overexpression of ITGAV promoted
tumorigenesis.

Conclusion: The risk score model constructed with four genes (COMP, SPP1,
COL4A2, and ITGAV) may be used to predict survival in liver cancer patients.
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Introduction

Liver cancer is a common cancer and cause approximately one
million deaths each year (Borlak et al., 2015). Early stage of liver
cancer is usually asymptomatic, and the majority of patients are
diagnosed at advanced stages. Furthermore, a significant proportion
of liver cancer patients also suffer from liver fibrosis or cirrhosis
(Farazi and DePinho, 2006). Prognosis for patients with advanced
liver cancer is poor with lower overall survival rate (less than 5%).
Although radical resection is the optimal treatment option for early-
stage patients, the overall survival is still dismal (Hanazaki et al.,
2000). The poor survival rate can be attributed to tumor relapse and
inhomogeneity of primary tumors (Cha et al., 2002; Chen et al.,
2017). In view of this, seeking for the molecular markers to predict
the prognosis of liver cancer are urgently needed.

It is found that increased gene copy number variations (CNVs)
contributed to the overexpression of granulin precursor (GEP) in a
subset of liver cancer (Yung et al., 2015). Frequent mutations of
tumor protein p53 (TP53) gene are detected in liver cancer
(Zucman-Rossi, 2010). Aberrant methylation of dynein axonemal
heavy chain 17 (DNAH17) is associated with comprehensive clinic-
pathological factors and can serve as a potential biomarker for tumor
thrombosis in liver cancer patients (Fan et al., 2019). In cancers,
identification of survival-associated cellular processes will provide
more information. Recently, multi-omics data (such as gene
expression, CNVs, mutations, and DNA methylation) integration
is a promising method to improve patients’ outcome (Werner et al.,
2014; Rabbani et al., 2016; Lightbody et al., 2019). Proper processing
and in-depth analysis of these multidimensional and diverse data
makes it possible to obtain comprehensive and reliable insights. In
this study, we used Multi-Omics Survival Clip (MOSClip) for the
first time to integrate multi-omics data (gene expression, mutations,
CNVs, and DNAmethylation) of liver cancer to explore pathways or
models associated with patient survival.We assessed the relationship
between omics data with survival time, and further constructed a
prognostic model for predicting survival rate in liver cancer patients.

Materials and methods

Data retrieval and cleaning

We used the TCGABiolinks package in R to retrieve expression,
DNA methylation, CNVs and somatic cell mutation data in the
TCGA database. All data were referred to the human HG38 genome.
Only primary liver cancer tumor specimens from patients with
survival data were selected for further analysis. The data format of

“HTSeq-Counts” was selected to obtain the gene expression data
from TCGA database. Only those genes with expression
amount >100 in all samples were retained for subsequent
machine learning analysis. The data were standardized and log2
converted through the EDAseq package in R. The DNAmethylation
data were downloaded from Illumina Human Methylation 450K
platform. The R package methylMix (with default parameter) was
used to group the CpG islands. Genes with no detection values in
more than 60% of patients were excluded. The β value, i.e., the
association between different sites and relevant gene promoter, was
defined as the percentage of gene promoter methylation sites
(Gevaert, 2015). The CNVs matrix was downloaded by using the
getGistic function of type “thresholds” in the form of “genes per
patient”. ±2, ±1 and 0 represented severe amplification/deletion,
mild amplification/deletion and normal, respectively. The
mutect2 pipeline was used to download somatic mutations data.
The influence degree of mutations was defined according to the VEP
software (McLaren et al., 2016). The data were converted to a
Boolean sparse matrix of genes for each patient, indicating the
presence or absence of mutations.

Data dimension reduction

As serious redundant information exists in the omics data,
dimensionality reduction of these data is required. MOSClip is a
new tool for survival path analysis of multiple omics (Martini et al.,
2019). Biomarkers affecting the patient survival were identified through
the pathway and module analysis. In the MOSClip model, after
dimensionality reduction, multiple omics data were taken as co-
variables of Cox Proportional Hazards Regression Model, and the
survival data of patients were taken as response variables for testing.
Different dimensionality reduction methods are used for different
omics data. Dimensionality reduction was performed for gene
expression data by the principal component analysis (PCA).
Hierarchical clustering was performed for DNA methylation data.
For mutation data, binary counting method was used to reduce
dimensionality. Downloaded CNVs data were already in integer
format, no processing was done for the CNVs data.

Pathway and module analysis

The pathway data were downloaded from the Reactome database
and filtered by using gene pairs. For the pathway analysis, we
screened 10 pathways with more than 10 genes. Then, resampling
strategy (resampling success rate >80%) was adopted to select
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pathways. The Cox Proportional Hazards Regression model was
applied for survival analysis. The maxClique function in RBGL of R
package was used to identify the module. For module analysis, we
only selected pathways involving 20–100 genes. After decomposing
into many small modules, pathways were selected through the
resampling strategy (resampling success rate >80%). For a given
pathway or module, we implemented different strategies to identify
the genes most relevant to survival. The absolute value of gene load
and Kruskall-Wallis test was used in PCA and cluster analysis,
respectively. For binary data, we only screened genes with
mutation, increase, or decrease of the copy number.

Construction of prognostic risk scoring
model based on key genes in
specific pathway

RNA sequencing data of key genes in specific pathway were
downloaded from the UCSC Xena database (including 368 cases and
50 normal controls) to construct a prognostic risk scoring model.
GSE141198 dataset (including 146 cases) and GSE144269 dataset
(including 70 cases and 70 normal controls) were downloaded from
the Gene Expression Omnibus (GEO) database. With the criteria
that the dataset should contain information on patient survival,

FIGURE 1
Summary of 42 significant pathways (p-value <0.05 and resampling >80%). Row and column represents pathway and omics, respectively. Right
p-value represents the pathway significance in the Cox survival analysis. p-value in the box represents the significance of different omics in the pathway.
NA represents no omics in the pathway. cnv: copy number variation data; exp: gene expression data; met: DNA methylation data; mut: mutations data.
The cnvPOS and cnvNEG represents positive and negative, respectively.
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GSE141198 dataset was used to verify the prognosis model.
GSE144269 dataset was used to verify the expression of key
genes. Based on the expression of key genes in the specific
pathway, variables were screened using the least absolute
shrinkage and selection operator (LASSO) method. Multi-factor
Cox regression model was used to construct the risk score model of
related genes. The calculation formula is as following: Risk Scores =
Σ Coef (i) * Exp (i). The median risk score was used as the cut-off
point to divide patients into the high- and low-risk groups. The
Kaplan-Meier and time-dependent ROC curve were used to analyze
the survival curve and verify the accuracy of the risk score.

Relationship between risk score and
clinical features

Univariate and multivariate Cox analysis were used to determine
whether the risk score was an independent prognostic factor. After
testing collinearity, all independent prognostic parameters and related
clinical parameters were included to construct a stepwise Cox regression
model to predict 1-, 3- and 5-year overall survival of liver cancer patients.
A nomogramwas drawn to calibrate the curve to compare predicted and
observed overall survival. The potential net benefit of nomogram and
risk score with other independent prognostic factors was compared
using decision curve analysis (DCA). In addition, differences of risk score
among different clinical subgroups were compared.

Molecular characterization of key genes in
risk model

Firstly, the expression levels of key genes in the risk model
were evaluated in TCGA database with Wilcox test method, and

verified in the GSE144269 dataset. Secondly, UALCAN database
was used to investigate the protein expression of key genes in
liver cancer patients. Thirdly, the GSE36915 dataset
(including 68 cases and 21 normal controls) was downloaded
to identify differentially expressed microRNAs (miRNAs)
with |log2 fold change (FC)| >0.6 and p < 0.05. ENCORI
database was used to obtain the miRNAs targeted to key
genes. Those differentially expressed miRNAs that negatively
regulated key genes were intersected with the predicted results in
the database to obtain the miRNA-mRNA pairs. In addition,
ENCORI database was used to acquire long non-coding RNAs
(lncRNAs) targeted by miRNAs obtained above, which were
overlapped with lncRNAs that positively correlated with key
genes (pearson correlation coefficient >0.2 and p < 0.05) to
obtain the lncRNA-miRNA pairs, followed by network
construction between lncRNAs, miRNAs and key genes.
Fourthly, according to the median expression value of
key genes in each sample, all samples were divided into the
high- and low-expression groups. Kaplan-Meier analysis was
used to evaluate the influence of key genes on survival. Fifthly,
receiver operating characteristic (ROC) curve was utilized
to estimate the potential diagnostic value of key genes using
the pROC package. Area under the curve (AUC) is an evaluation
index of model performance. Finally, those drugs
associated with key genes were identified based on the
DGIdb database.

Analysis of tumor immune
microenvironment (TIME) cell infiltration

The single sample gene set enrichment analysis (ssGSEA)
algorithm was applied to quantify the relative abundance of

FIGURE 2
Circle plots representing the frequency of modules with a single or a combination of significant omics variables. The four innermost layers represent
the combination of omics (the yellow sector means ‘presence’/the blue sector means ‘absence’), while the external layer represents the frequency of the
combination. The explicit p-values of the overlap between omic-specific sets of pathway were displayed on the right panel.
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immune cells in TIME of liver cancer. The enrichment score was
used to represent the relative abundance of infiltrating cells in
each sample to observe the difference of immune cell infiltration
between high- and low-risk groups. The “ESTIMATE” in R was
used to calculate the immune score, matrix score, tumor purity,
and ESTIMATE score of each patient. In addition, correlation
analysis was performed for key genes, risk score, and immune
cells. Finally, the expression of some immune checkpoints in the
high- and low-risk groups, and the association between immune
checkpoints and risk score was evaluated and analyzed,
respectively.

Real time qPCR (RT-qPCR) validation of key
genes associated with patient survival

To further investigate the expression patterns of key genes
related to patient survival, the RT-qPCR was performed in the
blood samples of 20 patients who relapsed after 3 and 6 months. The
inclusion criteria were as follows: (1) Patients were diagnosed with
liver cancer, which were confirmed by pathological examination; (2)
Patients had not receive radiotherapy or chemotherapy prior to
diagnosis; (3) Patients had no other malignant tumors. The
exclusion criteria were as follows: (1) Patients complicated with

FIGURE 3
The “integrin cell surface interactions” signaling pathway. (A) module summary of the pathway. Row and column represents pathway and omics,
respectively. The leftmost p-value represents the pathway significance after resampling. p-value in the box represents the significance of different omics
in the pathway after Cox survival analysis. NA represents no omics in the pathway. cnv: copy number variation data; exp: gene expression data; met: DNA
methylation data; mut: mutations data. The cnvPOS and cnvNEG represents positive and negative, respectively. (B) heatmap of module 6 of the
pathway. The heatmap shows the profiles of prioritized genes for each omics. On top sample annotations are reported. (C) The Kaplan–Meier curves of
module 6 of the pathway. Patient groups were defined using the combination of expression and CNVs classes. (D) PPI network of all genes in the pathway.
The genes in the red frame are those screened out.
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other malignant tumors or viral infections; (2) Patients received
adjuvant chemotherapy or targeted therapy before surgery; (3)
Patients had incomplete clinical data. All individuals provided
informed consent with the approval of the ethics committee of
Sichuan Academy ofMedical Sciences & Sichuan Provincial People’s
Hospital (2020-101).

Total RNA of the blood samples was extracted using the RNAliquid
hypervelocity whole blood (liquid sample) total RNA extraction kit
(Beijing Huitian Oriental Technology Co. LTD). 1 μg RNAwas applied
to synthesize cDNA by FastQuant Reverse Transcriptase (TIANGEN).
Then RT-qPCR was performed in an ABI 7300 Real-time PCR system
with SYBR® Green PCR Master Mix (Applied Biosystems). Relative
gene expression was analyzed by fold change method.

Cell culture and transfection

Based on the preliminary experimental results (data not shown),
two cell lines (Hepg2 and Hep3B2-1-7) and one molecule (ITGAV)
were selected for further molecular mechanism studies. Hepg2 and
Hep3B2-1-7 cell was respectively used for overexpression and
knockdown experiment, followed by cell proliferation, cell cycle, cell
apoptosis, cell scratches and transwell assay, and Western blotting
analysis. Hepg2 and Hep3B2-1-7 cell were cultured in Minimum

Essential Medium (MEM) medium (Gibco, USA) containing 10% of
fetal bovine serum, 1% of non-essential amino acid, 1% of double
antibiotics, and 5% of CO2 at 37°C incubator. The transfection was
performed according to Lipofectamine™ 2000 kit (Invitrogen, CA).

Cell counting kit-8 (CCK8) assay

The cells were digested by trypsin (Gibco, USA), counted, and
adjusted to concentration of 1 × 104 cells/mL. 100 μL of cell
suspension was added to each well of the 96-well plate and
cultured for 4 h. According to the given concentration gradient
of gatifloxacin, three compound wells were set for each gradient, and
the corresponding concentration of gatifloxacin was added to each
well. Subsequent tests were conducted after 24 h of culture. 10 μL of
CCK-8 solution (APExBIO, United States) was added to the 96-well
cell culture plate and incubated for 1 h. The absorbance at 450 nm
was measured with a microplate reader (Bio-Rad, United States).

Cell cycle analysis

Cell cycle agent (4A BIOTECH, Suzhou, China) was used to
perform cell cycle analysis. 4 mL of 95% pre-cooled ethanol

FIGURE 4
Construction of prognostic risk scoring model based on 4 key genes in pathway of integrin cell surface interactions. (A–C): the analysis of risk score
distribution, survival curve and ROC curve in the TCGA database. (D–F): the analysis of risk score distribution, survival curve and ROC curve in the
GSE141198 dataset.
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FIGURE 5
Relationship between risk score and clinical features. (A, B): univariate Cox analysis and multivariate Cox analysis in the TCGA database. (C, D):
univariate Cox analysis and multivariate Cox analysis in the GSE141198 dataset. (E): Nomogram of clinical features and risk score. (F): calibration curve of
the nomogram in 1-year, 3-year and 5-year. (G): net benefit analysis of nomogram by DCA. Purple line means none of the samples were processed (the
net benefit is 0). Blue line indicates that all samples have been processed. The X-axis represents the threshold probability experienced by the patient.
If the curve is close to two reference (purple and blue) lines, the model has no application value. While if the curve is higher than two reference lines in a
large threshold interval, the model is better. (H): differences in risk score among different clinical subgroups. *p < 0.05; **p < 0.01; ***p < 0.001. ns: not
significant.
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(Sinopharm Chemical Reagent Co., Ltd., Shanghai, China) was
added into 1 ml of cell suspension drop by drop and fixed at 4°C
for 2 h or longer. The cells were centrifuged at about 1,000 rpm
for 3–5 min. 5 ml of pre-cooled PBS (MDL) was added into
supernatant. The cells were re-suspended, and the cells were
centrifuged again to precipitate. After removing the supernatant,
the cells were dispersed appropriately. 0.4 mL of propidium
iodide staining solution was added to each tube of the cell
sample. Cell precipitation was slowly and fully suspended, and
bathed at 37°C for 30 min in darkness for further cell cycle
analysis by flow cytometry.

Cell apoptosis analysis

The cell apoptosis was assessed using apoptosis agent (4A
BIOTECH). The cells were digested with trypsin and incubated with
medium. All adherent cells were blown off and gently blown away. The
cells were collected and centrifuged at 1,000 rpm for 5 min. After
removing the supernatant, 1 mL of pre-cooled PBS was added into
cells for suspension. The cells were centrifuged again and aspirated the
supernatant. The cells were suspended with binding buffer. 100 μL of
cell suspension wasmixed with 5 μL of Annexin V/FITC and incubated
at room temperature under dark conditions for 5 min. Cells weremixed

FIGURE 6
Expression analysis and ceRNA network construction of 4 key genes in the prediction model. (A, B): mRNA expression levels of 4 key genes in the
TCGA database and GSE144269 dataset. (C): protein expression levels of 4 key genes in the UALCAN database. ***p < 0.001; ****p < 0.0001. ns: not
significant. (D): volcano map of 22 miRNAs in the GSE36915 dataset. (E): ceRNA regulatory network based on 4 key genes, 22 miRNAs and 56 lncRNAs.
Round, inverted triangle and purple diamond represent key gene, miRNA and lncRNA, respectively. Red and green represent upregulation and
downregulation.
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with 10 μL of propyl iodide solution and 400 μL of PBS for cell
apoptosis analysis with a flow cytometer (BD, USA).

Cell scratches and transwell assay

When the cells seeded in 6-well plate reached a confluent state, a
single scratch was made using a sterile 10 μl pipette tip. The cells
were then incubated with serum-free culture medium in 5% of CO2

incubator at 37°C. Images of the scratches were captured at 0, 24 and
48 h under a microscope (Novel, XS-2100). The width of the scratch
was analyzed using ImageJ software according to the protocol
(https://imagej.nih.gov/ij/docs/guide/index.html). The migration
rate was calculated as follows: (scratch area at 0 h—scratch area
at target time)/scratch area at 0 h *100%.

Before the experiment, the cells were starved in serum-free medium
for 12 h. The cells were digested with trypsin and centrifuged at
1,000 rpm for 3 min. After removing the supernatant, the cells were
washed with PBS. After supernatant was discarded, the cells were
suspended in serum-free medium containing 0.1% of BSA for cell
count. The cell density was adjusted to 1 × 105/mL in serum-free
medium containing 0.1% of BSA. 500 μL of complete medium was
added into 24-well plate. 200 μL of cell suspension was added in
transwell chamber. The cells were transferred to a 24-well plate
containing the complete culture medium and incubated for 24 h in
the cell incubator. After removing the upper chamber medium, the cells
were wiped with the moistened cotton swab. The bottom of Transwell
chamber was immersed in 10% of the methanol solution to fix the cells
for 30 s and transferred to pure water. After washing off the methanol,
the bottom of transwell chamber was immersed in crystal violet dye for
dyeing for 2 min, and cleaned with pure water until the backgroundwas
clear. Microscope photography was performed.

Western blotting analysis

The protein was extracted from cells using RIPA kit (Beyotime,
Shanghai, China). The quantification of the protein concentrations
was analyzed using a BCA Protein Assay Kit (MDL, Beijing, China).

Then, protein samples were separated via SDS-PAGE (Bio-Rad,
United States) and transferred onto 0.22 μm polyvinylidene fluoride
membrane (Millipore, Billerica, MA). The membrane was blocked
with 5% non-fat dried milk for 1 h, incubated overnight with diluted
anti-actin (1:1,000, T0022, CST), anti-Bcl-2 (1:2000, bs-0032R,
BIOSS), anti-ITGAV (1:2000, bs-2203R, BIOSS), anti-MAPK (1:
2000, bs-0637R, BIOSS), and anti-PXN (1:2000, YT-3606, Immuno
Way) on a shaker at 4°C, and then rinsed in TBST for three times
(10 min each time). Then, the membrane was incubated with HRP-
conjugated affinipure goat anti-rabbit IgG (H + L) (Proteintech,
China) for 1 h at room temperature, followed by a wash in TBST.
The protein bands were visualized by using ECLTM Western
blotting Detection Reagents using ChemiDoc MP
Chemiluminescence imaging System (Bio-Rad, United States).
The relative expression of protein was calculated as the ratio of
the gray value of target protein to the gray value of the reference
using ImageJ software according to the protocol (https://imagej.nih.
gov/ij/docs/guide/index.html).

Results

Pathway and module analysis

A total of 2,185 pathways were downloaded from the Reactome
database. Among which, there were 1,317 pathways with more
than 10 genes. After resampling, 42 pathways were identified with
more than 80% success rates, which were significantly associated
with survival (Figure 1). In total, 752 of the 2,185 pathways were
used for module analysis. These 752 pathways were divided into
5,190 modules and resampled to obtain 265 modules (involving
111 pathways) with more than 80% resampling success rates,
which were remarkably related to survival. Gene expression
guides survival association in 189 modules, methylation in 50,
mutation in 6, and CNVs in 90 modules (Figure 2). After taking the
intersection between 42 and 111 pathways above mentioned, a
total of 4 pathways (containing more than two omics)
were identified, including integrin cell surface interactions
(R-HAS-216083), antigen presentation: folding, assembly and

FIGURE 7
Analysis of prognosis, diagnosis and drug prediction of 4 key genes in the prediction model. (A) survival curve. (B) ROC curve. (C) drug prediction.
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peptide loading of class I MHC (R-HAS-983170), signaling by
retinoic acid (R-HSA-5362517), and factors involved in
megakaryocyte development and platelet production (R-HSA-
983231). In view of related literature report and further study,
pathway of integrin cell surface interactions was chosen as the
main core of this study.

Pathway of integrin cell surface interactions

In pathway of integrin cell surface interactions, the number 6
(Figure 3A) was found, in which gene expression and CNVs well

predicted patients’ survival. It is noted that cartilage oligomeric
matrix protein (COMP), fibrinogen beta chain (FGB) and
secreted phosphoprotein 1 (SPP1) genes were clearly the most
representative for expression; COMP, collagen type IV alpha
2 chain (COL4A2) and integrin subunit alpha V (ITGAV) genes
were significantly the most representative for CNVs (Figure 3B).
Combining the expression and CNVs variables, we found that
patients characterized by low expression of COMP, FGB and
SPP1, and few level of CNVs (COMP, COL4A2 and ITGAV) had
a significantly better prognosis (Figure 3C). The PPI network of
all genes in the “integrin cell surface interactions” pathway was
shown in Figure 3D.

FIGURE 8
Association analysis between risk score, 4 key genes and immune cell infiltration. (A–F): differences of infiltration degree of 23 kinds of immune cells,
EMT, immune score, ESTIMATE score, stromal score and tumor purity in high-risk and low-risk groups. (G): association analysis. (H): differences of
immune checkpoints in high-risk and low-risk groups. *p < 0.05; **p < 0.01; ****p < 0.0001. ns: not significant. (I): association between immune
checkpoints and risk score.
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Construction of prognostic risk scoring
model based on 4 key genes in pathway of
integrin cell surface interactions

In pathway of integrin cell surface interactions, COL4A2,
COMP, ITGAV, and SPP1 were used to perform LASSO Cox
regression analysis to construct the prediction model of the
overall survival rate of liver cancer patients in the TCGA
database. The minimum partial likelihood deviation was used to
obtain the best λ value. Multivariate Cox regression was used to
construct the risk scoring model with the following formula: Risk
Score = (COL4A2 * 0.065143343) + (COMP * −0.189426999) +
(ITGAV * 0.074265423) + (SPP1 * 0.124743891). According to the
median of the risk score, all samples were divided into the high- and
low-risk groups. It can be observed that there are a higher
proportion of death samples in the high-risk group (Figure 4A).
Furthermore, COL4A2, COMP, ITGAV, and SPP1 were
upregulated in the high-risk group. Survival analysis indicated
that the overall survival of patients in the high-risk group was
significantly lower than that in the low-risk group (Figure 4B). The
consistency index was 0.64. AUC values of risk score for 1-, 3-, and
5-year survival were 0.695, 0.631 and 0.659, respectively (Figure 4C).
The predictive ability of the risk score was validated in
GSE141198 dataset. Similarly, a higher proportion of death
samples were observed in the high-risk group (Figure 4D). In the
high-risk group, the overall survival of patients was significantly
lower than that in the low-risk group, with a consistency index of
0.54 (Figure 4E). AUC values of risk score for 1-, 3- and 5-year
survival were 0.565, 0.571, and 0.544, respectively (Figure 4F).

Relationship between risk score and
clinical features

The univariate and multivariate Cox analysis were used to
determine the correlation between risk score and clinical features.
The result showed that T staging and risk score could be used as
independent prognostic factors (Figures 5A,B). The result was

validated in the GSE141198 dataset (Figures 5C,D). A nomogram
was constructed to predict the 1-, 3- and 5-year overall survival
probability of liver cancer patients by combining the risk score with
and T stage (Figure 5E). Calibration curves showed that the
nomogram had a high accuracy in 1-year overall survival
(Figure 5F). These results suggest that, compared with the use of
single prognostic factor, the nomogram constructed by multiple
factors may be a better predictor of short-term survival in patients
with liver cancer. Additionally, the potential net benefit of the
prognostic model was further demonstrated through DCA. DCA
curves of T stage, risk score and nomogram at 1-, 3- and 5-year were
analyzed (Figure 5G). The result showed that nomogram (DCA
curve in green) had a higher contribution to predict prognosis at
each time point. The differences of risk score in different clinical
subgroups were also compared (Figure 5H). The result showed that
the risk score was significantly different in the tumor status, stage
and grade groups.

Expression analysis and ceRNA network
construction of 4 key genes in the
prediction model

The mRNA expression levels of COL4A2, COMP, ITGAV,
and SPP1 were significantly increased in liver cancer tissues
(Figure 6A). The result was validated in the
GSE144269 dataset (Figure 6B). Protein expressions of
COL4A2, COMP, ITGAV, and SPP1 were analyzed based on
UALCAN database. COL4A2 and SPP1 were significantly
upregulated in liver cancer tissues (Figure 6C). A total of
404 miRNA-mRNA pairs, including 308 miRNAs, were
obtained in ENCORI database. In the GSE36915 dataset, a
total of 204 differentially expressed miRNAs were identified in
liver cancer, including 28 upregulated and 176 downregulated
miRNAs. After taking interaction between 308 predicted
miRNAs and 176 downregulated miRNA, a total of
22 downregulated miRNAs were obtained (Figure 6D).
LncRNAs related to these 22 miRNAs were searched based on
the ENCORI database. Totally, 703 lncRNA-miRNA pairs were
found, involving 411 lncRNAs. Among which, 162 lncRNAs were
differentially expressed in liver cancer in the TCGA database. The
correlation between 162 lncRNAs and 4 key genes was analyzed.
A total of 56 lncRNAs were positively associated with 4 key genes.
The ceRNA regulatory network was constructed based on
4 upregulated key genes, 22 downregulated miRNAs and
56 upregulated lncRNAs (Figure 6E). Some ceRNA pairs were
identified, such as NEAT1/BAIAP2-AS1-ITGAV-hsa-miR-542-
3p and MAPKAPK5-AS1-ITGAV/SPP1-hsa-miR-450b-5p.

Analysis of prognosis, diagnosis and drug
prediction of 4 key genes in the
prediction model

Based on the expression levels of 4 key genes, patients were
divided into high and low expression groups according to the
median expression. Patients with low expression of ITGAV and
SPP1 genes had longer overall survival (Figure 7A). COL4A2 and

FIGURE 9
The in vitro expression analysis of COMP, ITGAV and SPP1 in
patients who relapsed after 3 and 6 months. Fold change >1 and fold
change <1 represents upregulation and downregulation, respectively.
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COMP were found to have no significant effect on survival. In
addition, ROC analysis showed that these 4 key genes had a potential
diagnostic value for liver cancer patients (Figure 7B). The AUC
values of COL4A2, ITGAV, SPP1, and COMP were 0.915, 0.75,
0.722, and 0.684, respectively. Finally, based on DGIdb database,
19 drugs were observed to potential target key genes. It is a pity that
no drugs are found to be associated with COMP. COL4A2 was
targeted by 3 drugs, ITGAV was targeted by 10 drugs, and SPP1 was
targeted by 6 drugs (Figure 7C). For instance, ITGAV was targeted
by CILENGITIDE. SPP1 was targeted by bothWORTMANNIN and
TACROLIMUS.

Association analysis between risk score,
4 key genes and immune cell infiltration

The immune cell infiltration levels in high-risk and low-risk groups
were evaluated using ssGSEA. Infiltration level of 16 kinds of immune
cells was significantly higher in the high-risk group than that in the low-
risk group (Figure 8A). Moreover, epithelial mesenchymal transition
(EMT) 1, EMT2 and EMT3 were significantly higher in the high-risk
group, suggesting that matrix activation suppresses the antitumor effect
of immune cells (Figure 8B). In addition, the immune score (Figure 8C),
ESTIMATE score (Figure 8D), and stromal score (Figure 8E) were

FIGURE 10
Overexpression of ITGAV promotes tumor cell proliferation and inhibits tumor cell apoptosis. (A, C and E): the effect of over expression of ITGAV on
cell proliferation, cell cycle and cell apoptosis; (B, D and F): the effect of knockdown of ITGAV on cell proliferation, cell cycle and cell apoptosis. *p < 0.05;
**p < 0.01; ***p < 0.001.
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significantly higher in the high-risk group. On the other hand, the
tumor purity was lower in the high-risk group than that in the low-risk
group (Figure 8F). Correlation analysis showed that the risk score and
4 key genes were positively related to 16 kinds of immune cells
(Figure 8G). For example, risk score, ITGAV, and SPP1 were the
most significantly positively associated with activated dendritic cell.
COL4A2 and COMP were the most significantly positively associated
with Type 1 T helper cell and regulatory T cell, respectively. In immune
checkpoint analysis, cytotoxic T-lymphocyte associated protein 4
(CTLA4) and T cell immunoreceptor with lg and ITIM domains
(TIGIT) were the two most significantly upregulated immune

checkpoints in the high-risk group compared with low-risk group
(Figure 8H). Furthermore, CTLA4 was the most significantly
positively associated with risk score (Figure 8I).

RT-qPCR validation of key genes associated
with patient survival

The RT-qPCR experiment was applied to further analyze the
expression patterns of 3 key genes (COMP, ITGAV, and SPP1) in
liver cancer patients who relapsed after 3 and 6 months. Clinical

FIGURE 11
Overexpression of ITGAV promotes tumor cell migration in the cell scratches assay. The experiments were replicated three times. Scale bar =
100 μm **p < 0.01; ***p < 0.001.
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information of these patients was presented in Supplementary Table
S1. The expression of these genes was downregulated in patients who
relapsed after 6 months compared with that in patients who relapsed
after 3 months (Figure 9). Although the result was not significant,

the trends were in line with those of previous analysis, probably due
to the small sample size and the large heterogeneity among samples.
That is to say that low expression of COMP, ITGAV, and SPP1 is
associated with better prognosis of patients.

FIGURE 12
Overexpression of ITGAV promotes tumor cell migration and invasion in the Transwell assay. The experiments were replicated three times. Scale
bar = 100 μm.
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Overexpression of ITGAV promotes tumor
cell proliferation and inhibits tumor
cell apoptosis

In view of previous analysis results and related literature reports,
one of the key genes, ITGAV, was used for further molecular
mechanism analysis. From the CCK-8 experiment, we found that
overexpression of ITGAV obviously promoted tumor cell
proliferation at 48 and 72 h after transfection, while knockdown
of ITGAV markedly inhibited the proliferation of tumor cells
(Figures 10A,B). However, no effect of ITGAV overexpression/
knockdown on the cell cycle was observed (Figures 10C,D). In
the cell apoptosis analysis, overexpression of ITGAV significantly
inhibited tumor cell apoptosis (Figure 10E). Correspondingly,

knockdown of ITGAV remarkably promoted tumor cell
apoptosis (Figure 10F).

Overexpression of ITGAV promotes tumor
cell migration and invasion

Cell sratches analysis (Figure 11) showed that overexpression of
ITGAV significantly promoted the migration of tumor cells at 24 and
48 h after transfection, while knockdown of ITGAV remarkably
inhibited the migration of tumor cells. The result of transwell assay
(Figure 12) also showed that overexpression of ITGAV promoted the
migration and invasion of tumor cells. Knockdown of ITGAV inhibited
the migration and invasion of tumor cells.

FIGURE 13
The effect of over expression and knockdown of ITGAV on the protein expression of BCL2, PXN, and MAPK. *p < 0.05; **p < 0.01.
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Western blotting analysis

It is reported that ITGAV silencing inhibits cell proliferation,
invasion and self-renewal of breast cancer cell lines by altering the
expression of BCL2 apoptosis regulator (BCL2) and paxillin (PXN)
(Cheuk et al., 2020). In addition, changes in integrin expression
activate downstream proteins through cascade phosphorylation of
mitogen-activated protein kinase (MAPK). In order to explore the
molecular mechanism by which ITGAV promotes tumorigenesis of
liver cancer, the protein expression of BCL2, PXN, and MAPK was
detected after overexpression and knockdown of ITGAV. The result
showed that overexpression of ITGAV significantly increased the
expression levels of BCL2, PXN, and MAPK, while knockdown of
ITGAV would decrease the expression levels of BCL2, PXN, and
MAPK (Figure 13). This indicated that ITGAV may play important
roles in tumorigenesis of liver cancer by activating the expression of
BCL2, PXN and MAPK.

Discussion

Integrin plays important roles in the regulation of cell proliferation,
differentiation, migration and survival. The expression pattern of
integrin is different and upregulated in primary and metastatic liver
cancer tissues (Sircana et al., 2019). Within the integrin family, integrin
β1 has been studied in solid tumors (Lugano et al., 2018; Zhang et al.,
2022). Knockdown of integrin β1 could slow down liver cancer
progression by inhibiting MET proto-oncogene, receptor tyrosine
kinase (MET) and epidermal growth factor receptor signaling
(Bogorad et al., 2014; Speicher et al., 2014). In addition, enhanced
integrin signaling by the extracellular matrix and mammalian target of
rapamycin (mTOR)/AMP-activated protein kinase (AMPK)-prominin
1 (CD133) is involved in liver tumorigenesis (Chen et al., 2015; Sircana
et al., 2019). Interestingly, the expression of integrin is positively
associated with poor prognosis in liver cancer (Masumoto et al.,
1999). In this study, we found that integrin cell surface interactions
signaling pathway was significantly related to survival in liver cancer
patients. Based on 4 genes (COMP, SPP1, COL4A2, and ITGAV) in the
pathway of integrin cell surface interactions, a risk score model for
prognosis of liver cancer was constructed. The median risk score was
used as the cut-off point to divide patients into the high- and low-risk
groups. In this study, we found that COMP, SPP1, COL4A2, and
ITGAVwere upregulated in the high-risk group. The overall survival of
patients in the high-risk groupwas significantly lower. Furthermore, the
T stage and risk score could be used as independent prognostic factors.
The nomogram (based on T stage and risk score) could be a better
predictor of short-term survival in patients with liver cancer.

The combination of different omics biomarkers and model
construction methods had been applied to increase accuracy of
diagnosis and prognosis prediction. Integrative analysis of DNA
methylation and gene expression identified several hepatocellular
carcinoma (HCC)-specific CpG islands with promising diagnostic
value (Cheng et al., 2018). Deep learning-based multi-omics
(including mRNA expression, miRNA expression, CpG methylation
and clinical information) integration identified two subtypes model of
HCC patients with independent predictive values on patient survival in
TCGA cohort (Chaudhary et al., 2018). Herein, we applied MOSClip
for the first time to integrate multi-omics data (including gene

expression, mutations, CNVs, and DNA methylation data) of liver
cancer to construct a prognostic model for predicting prognosis. The
risk scoring model constructed by four genes achieved good prognosis
prediction effect and was validated in the validation dataset. Compared
with previous studies, this study adopted a new analysis method and
covered more omics data, which provided a more comprehensive
perspective and deeper analysis for HCC prognosis research.

It has been proposed that COMP is a new non-invasive
biomarker to assess the risk of liver cancer (Andréasson et al.,
2015; Norman et al., 2015). It is found that liver cancer-associated
fibroblasts secrete COMP to promote proliferation, invasion,
migration and EMT in liver cancer cells (Sun et al., 2019).
SPP1 is associated with liver cancer risk in cirrhosis (Mazziotti
et al., 2002; Duarte-Salles et al., 2016). SPP1 has been regarded as a
preclinical target for liver cancer treatment (Zheng et al., 2020). The
model of SPP1 combined with centromere protein A (CENPA),
melanoma-associated antigen family member B6 (MAGEB6), and
homeobox D9 (HOXD9) can predict the overall survival in liver
cancer patients (Long et al., 2018). Additionally, models consisting
of SPP1 and lecithin-cholesterol acyltransferase (LCAT) are good at
predicting liver cancer diagnosis, prognosis and recurrence (Long
et al., 2019). COL4A2 is a significantly upregulated gene in liver
cancer cells (Wang et al., 2020). Splice variants for COL4A2 are co-
up-regulated in the liver cancer tumors (Lai et al., 2011). Over
expression of COL4A2 is highly related to shorter progression-free
survival in patients with liver cancer (Liu et al., 2020). Thus, it can be
seen that COMP, SPP1, and COL4A2 play important roles in the
development of liver cancer.

Overexpressed ITGAV is found in liver cancer (Xia et al., 2014).
It is worth mentioning that ITGAV is a potential immune related
prognostic index for liver cancer patients (Zhang et al., 2020).
Herein, we found that ITGAV was regulated by some lncRNAs
and miRNAs. Some ceRNA relational pairs were identified,
including NEAT1/BAIAP2-AS1-ITGAV-hsa-miR-542-3p and
MAPKAPK5-AS1-ITGAV-hsa-miR-450b-5p. NEAT1 is
specifically overexpressed in liver cancer (Fujimoto et al., 2016).
NEAT1 overexpression is an independent risk factor related to the
prognosis of liver cancer patients (Liu et al., 2017). Increased
expression levels of BAIAP2-AS1 are found in patients with liver
cancer (Yang et al., 2021). Moreover, knockdown of BAIAP2-AS1
inhibited the proliferation and metastasis of liver cancer cells.
MAPKAPK5-AS1 expression is elevated in liver cancer (Wang
et al., 2021). Furthermore, high expression of MAPKAPK5-AS1
is associated with advanced stage and lymph node metastasis of
patients with liver cancer. Hsa-miRNA-542-3p, downregulated in
liver cancer, inhibits tumor cell growth (Wu et al., 2017). Hsa-miR-
450b-5p loss promotes liver cancer progression (Li et al., 2019). It is
found that hsa-miR-450b-5p is negatively related to survival in liver
cancer patients (Pascut et al., 2020). It is suggested that NEAT1/
BAIAP2-AS1-ITGAV-hsa-miR-542-3p and MAPKAPK5-AS1-
ITGAV-hsa-miR-450b-5p axis may be involved in the process of
liver cancer. The results of cell assay showed that overexpression of
ITGAV promoted tumorigenesis. Furthermore, overexpression of
ITGAV significantly increased the expression levels of BCL2, PXN,
and MAPK. It is reported that ITGAV silencing inhibits cell
proliferation, invasion, and self-renewal of breast cancer cell lines
by altering the expression of BCL2 and PXN (Cheuk, Siu, 2020). In
addition, changes in integrin expression activate downstream
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proteins through cascade phosphorylation of MAPK. It is suggested
that ITGAV may play important roles in tumorigenesis of liver
cancer by activating the expression of BCL2, PXN, and MAPK.

It is well known that the immune response plays important roles
in the development of tumors. In this study, the infiltration level of
16 kinds of immune cells was significantly higher in the high-risk
group compared with the low-risk group. The immune score,
ESTIMATE score and stromal score were significantly higher in
the high-risk group than those in the low-risk group. Moreover,
EMT1, EMT2 and EMT3 were significantly higher in the high-risk
group. EMT endows epithelial cells with invasive and migratory
capacity in metastases of liver cancer (Thiery et al., 2009; Jou and
Diehl, 2010). In immune checkpoint analysis, CTLA4 and TIGIT
were the two most significantly upregulated immune checkpoints in
the high-risk group. TIGIT expression promotes liver cancer
progression through tumor-associated immune suppression
(Zheng et al., 2020). It is suggested that matrix activation and
expression of immune checkpoints are related to the antitumor
effect of immune cells in the high-risk group. Correlation analysis
showed that ITGAV and SPP1 were the most significantly positively
associated with activated dendritic cell. COL4A2 andCOMPwere the
most significantly positively associated with Type 1 T helper cell and
regulatory T cell, respectively. Mature dendritic cells can mediate
liver cancer immune evasion (Lurje andHammerich, 2020). Type 1 T
helper cells play important roles in the development of primary liver
cancer (Chen et al., 2021). Type 17 T helper cells to type 1 T helper
cells ratio is served as a potential prognostic marker for scoring the
severity of liver cancer (Yan et al., 2014). In peripheral blood and
tumor tissue of liver cancer patients, increased regulatory T cell is
associated with tumor stage and patients survival (Beyer and
Schultze, 2006; Fu et al., 2007; Gao et al., 2007; Shen et al., 2010;
Takata et al., 2011). It is indicated that the association between
ITGAV, SPP1, COL4A2, COMP, and immune cells may be involved
in the progression of liver cancer.

In addition, ROC analysis showed that ITGAV, SPP1, COL4A2,
and COMP had a potential diagnostic value for liver cancer patients.
The AUC values of COL4A2, ITGAV, SPP1, and COMP were 0.915,
0.75, 0.722, and 0.684, respectively. Based on DGIdb database, we
found that ITGAV was targeted by CILENGITIDE. SPP1 was
targeted by both WORTMANNIN and TACROLIMUS.
CILENGITIDE, an inhibitor of integrin αvβ3, can suppress
tumor progression in clinical trials and improve the outcome in
patients (Stupp et al., 2014). The combination of WORTMANNIN
and SORAFENIB enhances the inhibitory of liver cancer cell lines
(Liu et al., 2022). In patients with liver cancer, high TACROLIMUS
intra-patient variability (IPV) is significantly related to an increased
risk of overall mortality and disease recurrence (Kim et al., 2022). It
is suggested that ITGAV and SPP1 may be considered as potential
diagnostic biomarkers and therapeutic targets for liver cancer.

The risk score model constructed by genes (COMP, SPP1,
COL4A2, and ITGAV) in the pathway of integrin cell surface
interactions may be used to predict survival in liver cancer
patients. Our result could be helpful in improving patient
outcomes and contributing to diagnosis and treatment decisions
for liver cancer. However, there are limitations in our study. Firstly,
deeper molecular mechanism of identified genes is not investigated.
Some animal models are further needed to study the biological
function of identified genes in the disease. Secondly, the molecular

profile of identified genes with different samples, such as patients in
different stage/grade of liver cancer, is needed in the further study.
Thirdly, correlation analysis between clinical information of patients
and identified genes is further needed. Last but not least, the sample
size used for RT-qPCR validation was too small, resulting in the lack
of significance of the results. Validation with a larger sample size
should be done in future work.
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