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Presently, various tissue engineering methods using adult stem cells and
biomaterials are being confirmed to regenerate vessels, cardiac muscle,
bladder, and intestines. However, there are few studies about the repair of the
lower esophageal sphincter (LES) may help alleviate the symptoms of
gastroesophageal reflux disease (GERD). This study aims to determine whether
Adipose-Derived Stem Cells (ADSCs) combined with regenerated silk fibroin (RSF)
solution could regenerate the LES. In vitro, the ADSCswere isolated, identified, and
then cultured with an established smooth muscular induction system. In vivo, in
the experimental groups, CM-Dil labeled ADSCs or induced ADSCsmixedwith RSF
solution were injected into the LES of rats after the development of the animal
model of GERD respectively. The results showed that ADSCs could be induced
into smooth muscular-like cells with the expression of h-caldesmon, calponin, α-
smooth muscle actin, and a smooth muscle-myosin heavy chain in vitro. In vivo,
the thickness of LES in the experiment rats was much thicker than those in the
controlled groups. This result indicated that ADSCs mixed with RSF solution might
contribute to the regeneration of the LES, thus reducing the occurrence of GERD.
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1 Introduction

Over the past 40 years, Gastroesophageal reflux disease (GERD) has spread fromwestern
countries to various parts of the world, seriously affecting the quality of life of patients.
Obesity, low esophageal sphincter injury, neuromuscular dysfunction, and esophageal
fibrosis are the pathological mechanism of this disease (Boeckxstaens et al., 2014). Since
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the introduction of PPI-dominated treatment, the clinical
management of GERD has markedly changed. However, reflux
symptoms in some GERD patients may be caused by weak or
non-acid reflux, not only acid-related, which has led to research
into other drugs, or minimally invasive surgery. Recent studies
showed that endoscopy-associated procedures could not reverse
the damaged LES function (Akiyama et al., 2018). Therefore,
there is an urgent need to find one alternative therapy for GERD
(Pasricha et al., 2009; Badylak et al., 2011). The latest studies showed
that multipotent stem cells could give rise to smooth muscle cells
and contribute to the regeneration of smooth muscles including
vascular vessels, bladder, pylorus, and small intestine, which
suggested that stem cells might contribute to the regeneration of
Lower Esophageal Sphincter (LES) and restore its function (Liu
et al., 2015; Gong et al., 2016; Wang et al., 2017; Rahbarghazi et al.,
2019). In addition to seed cells, the artificial niche is also a very
important factor for the regeneration of smooth muscles.

Several reports showed that induced smooth muscle cells can be
from Embryonic Stem Cells (ES), Induced Pluripotent Stem Cells,
and Adult Stem Cells (ASCs) (Magli et al., 2016; Saito et al., 2017;
Bajek et al., 2018). Although ES and iPS cells retain a higher
differentiation potential, their use was limited by ethical issues,
the formation of teratomas, etc., (Lee et al., 2017). Adipose-Derived
Stem Cells and Bone Marrow derived Stem Cells (BMSCs) (ADSCs)
are the major ASCs, which could overcome the above shortcomings
and show a high potential capability to smooth muscle cells. Our
previous studies showed that ADSCs have similar differentiation
capabilities to BMSCs in vitro (Xu et al., 2017a). Furthermore,
compared with BMSCs, ADSCs have several advantages, which
include ease of isolation and expansion, anti-inflammatory
properties, and immuneoprivileged status. Based on the previous
studies, ADSCs were used as seed cells for the regeneration of LES in
this study.

Scaffolds also play an important part in simulating the
extracellular microenvironment that might contribute to the
regeneration, repair, or replacement of malfunctioning tissues.
Silk fibroin is a natural biomaterial obtained from Bombyx mori
(B. mori) cocoons, including more than 90% of the amino acids
glycine, alanine and serine (Vepari and Kaplan, 2007). Current
studies indicated that regenerated silk fibroin (RSF) contributed to
urethra regeneration (Xie et al., 2014), bladder regeneration (Chung
et al., 2014), vessel reconstruction (Soffer et al., 2008), cartilage
reconstruction (Chao et al., 2010), and peripheral nerve repair (Ki
et al., 2015). Our research shows that RSF has good biocompatibility
and can be completely degraded within 2–6 months in vivo (Xie
et al., 2014), and ADSCs-laden RSF could contribute to the liver
function of carbon tetrachloride-induced fulminant hepatic failure
mice models (Xu et al., 2017b). The above studies suggested that RSF
was an ideal biomaterial for organ regeneration.

Several studies reported that RSF seeded with ASCs could
promote the repair of skin bone (Ruan et al., 2018), cartilage
(Luo et al., 2015), inner ear (Yin et al., 2022), spinal cord (Deng
et al., 2021), and bladder (Xiao et al., 2021) regeneration. However,
no reports showed the therapeutic potential of RSF seeded with
ADSCs on an esophageal injury. In this study, we established a reflux
animal model induced by esophagojejunostomy and focused on the
ADSCs-based tissue-engineering material for LES regeneration. Our
study proved that ADSCs could be induced into smooth muscle-like

cells in vitro, and the ADSCs or ADSCs-induced laden RSF solution
could contribute to the regeneration of LES.

2 Materials and ideas

2.1 Experimental male rats and the
establishment of the model of GERD

Three-day-old and six-week-old male rats (Charles River,
China) were purchased from the Laboratory Animal Center of
the Academy of Military Medical Sciences of China (Beijing,
China). This study has been approved by the Ethics Committee of
Animal Facilities of the General Hospital of the Chinese People’s
Liberation Army and is in accordance with the relevant
provisions of the Guidelines for The Care of Experimental
Animals. The 3-day-old rats were used to prepare the ADSCs
model, and the 6-week-old rats were used to prepare the GERD
model.

The operation was performed by Kumagai et al. (Aikou et al.,
2013). The rats underwent anesthesia induction after fasting for 24 h
before surgery, followed by an intraperitoneal injection of
pentobarbital, and a 2 cm incision was made in the middle of the
abdominal section. A 4 mm incision was made at the
esophagogastric junction, and a section of jejunum was
anastomosed at the esophagogastric junction and the distal end
of theTreitz ligament 1 cm.

In this experiment, the model rats were divided into
experimental groups and a control group, with 5 rats in each
group. After the animal models were established, the ADSCs or
induced ADSCsmixed in RSF solutions were injected into the LES of
the rats respectively, whereas RSF solutions, and simple ADSCs were
used as control groups. Start drinking water 12 h after surgery, and
start eating food 24 h after surgery. Only laparotomy was performed
in the sham operation group.

2.2 Preparation of RSF aqueous solution

In general, the silkworm cocoons were degummed and then
dissolved in a 9.0 M lithium bromide solution. The solution was
dialyzed in deionized water to get rid of the salt after being diluted,
centrifugal, and filtered. Lastly, a 13 wt% RSF aqueous solution was
established by forced airflow.

2.3 ADSCs culture and characterization

The preparation of ADSCs and the characterization were
carried out similarly to our previous studies (Chen et al., 2013).
Briefly, the adipose tissues from the inguinal fat pad of 3-day-old
rats were minced into 1 mm3 and then digested in 1 mg/mL
collagenase (Sigma) for 1 h at 37°C. Followed by the termination
of digestion and filtration, ADSCs were plated at a density of 5 ×
105/cm2 in a 6 cm dish with an expansion medium. ADSCs were
harvested when they reached 90% confluence, and the passage
4 cells were identified by flow cytometry, osteogenic and
adipogenic differentiation.

Frontiers in Cell and Developmental Biology frontiersin.org02

Zhang et al. 10.3389/fcell.2023.993741

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.993741


2.4 Identification of smooth muscular-like
cells in vitro

2.4.1 Induction
In ADSCs, 1 ng/mL transforming growth factor-β1 (TGF-β1),

50 ng/mL platelet-derived growth factor-BB (PDGF-BB), and 50 g/
mL β-mercaptoethanol were induced in 24-well plates. Then ADSCs
were cultured in HCM for 14 days. The negative control group was
undifferentiated cells and the positive control group was smooth
muscle cells.

2.4.2 Reverse transcription polymerase chain
reaction

On day 7, smooth muscle cells were differentiated 10 times.
Total RNA was isolated from ADSCs by Trizol reagent (Sigma-
Aldrich, St. Louis, MO, United States). Oligo (dT) primers were used
for reverse transcription of the first strand cDNA, and 35 cycles of
camping (95°C, 10 min; 58°C, 1 min; 72°C, 5 min), PCR with
10 pmmol/L specific primers. The PCR products were detected
by 2% agarose gel electrophoresis. The expression levels of
calponin, h-caldesmon, α-smooth muscle actin (α-SMA), and
myosin heavy chain (MHC) in smooth muscle cells (SMC) were
compared using actin as internal standard (30 cycles of
amplification). An image analyzer (Uvitec, Warwickshire, UK)
was used to quantitatively analyze the products of
undifferentiated and differentiated ADSCs. The primer sequences
used are listed in Supplementary Table S1.

2.4.3 Wb analysis
Western blot analysis is described above. In summary, total

cellular proteins were prepared by the Bradford method and
quantified. 10% sodium dodecyl sulfate-polyacrylamide gel
electrophoresis was used, and 80 μg of lysate was electrophoresed
on a nitrocellulose membrane (Immoblin-P, Millipore, Bedford,
MA, United States). Sealing film at room temperature for 2 h
with 5% fat-free milk powder and incubation overnight with
Smoothelin (Mouse Monoclonal Antibody, sc-376902, Santacruz,
America), MYH11 (Mouse Monoclonal Antibody, sc-6956,
Santacruz, America), calponin-1(Rabbit Monoclonal Antibody,
18719S, cell signaling technology, America), caldesmon-1(Rabbit
Monoclonal Antibody, 12503S, cell signaling technology, America),
α-smooth muscle actin (Rabbit polyclonal Antibody, 14968S, cell
signaling technology, America), at 4°C overnight. Wash 3 times
15 min in Tris buffer saline containing Tween 20 (TBST), the goat
anti-rabbit IgG antibody coupled with horseradish peroxidase
(HRP), rabbit anti-rabbit IgG antibody coupled with HRP (ZB-
2306, Zhongshan Jinqiao, Beijing, China) or goat anti-mouse IgG
antibody (ZF-0312, Zhongshan Jinqiao, Beijing, China) were
incubated at room temperature for 2 h. The membrane was
cleaned again in TBST. Add enhanced chemiluminescence
reagent to monitor color or anti-β-actin antibody.

2.4.4 Immunofluorescence technique
The cultured cells were fastened with 4% paraformaldehyde

(Sigma-Oldridge) at room temperature for 30 min, washed twice
with phosphate buffer solution (PBS), and infiltrated with 1% Triton
X-100 (Sigma-Oldridge) at room temperature for 20 min. The cells
were then incubated at room temperature for 2 h with a blocking

solution composed of PBS and 10% normal goat serum NGS.
Immunofluorescence staining, primary antibody calcium bridge.
For immunofluorescence staining, primary antibodies caldesmon
(1:200, Rabbit Monoclonal Antibody, ab32330, abcam, America),
calponin (1:100, Mouse Monoclonal Antibody, sc-58707, Santacruz,
America), MHC (1:100, Goat polyclonal Antibody, sc-1592 9,
Santacruz, America Antibody, sc-58707, Santacruz, America),
alpha smooth muscle actin (1:200, Rabbit Monoclonal Antibody,
ab124964, Abcam, America), Smoothelin (1:100, Mouse
Monoclonal Antibody, sc-376902, Santacruz, Ameri ca) were
used. The primary antibody was incubated overnight at 4 °C, and
the secondary antibody was incubated at 37°C for 2 h. The 4′,6-
diamidino-2-phenylindole were stained at room temperature for
5 min and photographed with a structurally illuminated
fluorescence microscope.

2.5 CM-Dil staining and cell tracing

Passage 3 and passage 4 ADSCs or induced ADSCs were labeled
with CM-Dil (Invitrogen Operate according to the instruction) and
then mixed with RSF solutions respectively. At different times of
2 weeks and 4 weeks after transplantation, the located cells in the
LES of the rats were traced by small animal imaging techniques
(Berthold Technologies LB 983 NC 100).

2.6 Necropsy and tissue processing

Rats were anesthetized with pentobarbital sodium at the 2nd, 4th,

and 6th weeks, perfused with PBS (pH 7.4) through the left ventricle
for 1 min, and buffered with 4% paraformaldehyde for 10 min. The
esophagus and stomach were excised and opened along larger
curvature. The esophagus and stomach were cut into strips 2 mm
wide parallel to the small curvature. Stored in 4% paraformaldehyde
at 4°C for 2 h, some tissues were embedded in tissue-Te OCT
complex (Tokyo Cherry, Japan), frozen in liquid nitrogen, and
embedded in paraffin to prepare 4-um sections.

2.7 Follow-up of the survival rate of the
experimental rats

ADSCs or induced ADSCs mixed with RSF solution were
injected into the LES of rats after the establishment of an animal
model of GERD respectively as the experimental groups, while
simple ADSCs or RSF solution injection were treated as
controlled groups (n = 8). Within 48 h, one rat died in the RSF
group, two rats died in the ADSCs group, two rats died in the
ADSCs-RSF group, and one rat died in the induced ADSCs-RSF
group. No animals died later than.

2.8 Statistical analysis

The data are expressed as mean ± SD. The student’s test of
esophageal thickness was performed using SPSS21.0 (SPSS Inc.,
Chicago, IL, United States) software. All statistical analyses were p <
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0.05. The comparison data between groups had obvious statistical
significance.

3 Conclusion

3.1 Cytomorphology and phenotypic
characterization of ADSCs

Cell morphology was observed under an inverted microscope.
ADSCs were rarely observed on day 2 of primary culture. The
number of cells increased on day 3 (cell density was about 70%).
On the 4th day, the cells showed a spiral structure, reaching 90%
confluence. Cells were passaged at 1:3, and ADSCs were fusiform
from passages 1 to 4. The surface markers of ADSCs were
analyzed by flow cytometry. ADSCs convey stem cell-related
surface markers CD90 and CD29 but do not convey CD11b or
CD45 (Figure 1A).

The second and third generations evaluated the adipogenic and
osteogenic differentiation of ADSCs. On day 3, small round vacuoles
began to appear in the cytoplasm. On day 8, most of the induced
cells appeared with many lipid droplets, and the cells became round,
oval, or polygonal. Oil-red-O staining identified fat differentiation,
lipid vacuoles were bright red. After 3 weeks of induction, cells
gathered in some areas, forming a multi-layer, nodular structure,
known as bone nodules. Identification of osteogenic differentiation
by alizarin red staining (Figure 1B).

3.2 Identification of smooth muscle-like
cells in vitro

Induction of TGF-β 1, PDGF-BB, and β-mercaptoethanol for
2 weeks, the differentiated cells acquired typical smooth muscle
cells morphology with spindle-like, elongated, fibroblast-shaped
cells (Figure 2A), whereas the non-differentiated control groups

FIGURE 1
Phenotypic characterization of the cultured ADSCs by flow cytometry and staining. (A) ADSCs express CD90 andCD29, but do not express CD11b or
CD45, which is consistent with stem cells. (B) Oil-Red-O staining was used to identify adipogenic differentiation, and alizarin red was used to identify
osteogenic differentiation. Scale bar = 200 μm.
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formed a monolayer of fibroblast-like cells. On days 7 and
10 after differentiation, the expressions of several smooth
muscular genes or proteins were examined by RT-PCR, and

Western blot. Uninduced cells served as negative controls. The
results of RT-PCR showed that smooth muscle-related genes
including h-caldesmon, α-SMA, and smoothelin were

FIGURE 2
The morphological changes of adipocytes and the changes of smooth muscle-related markers after muscle differentiation were observed by RT-
PCR, Western blot analysis, and immunofluorescence staining. (A) After muscle tissue differentiation, the cell morphology gradually changed. From day
10, the cells were induced to be spindle-shaped, strip-shaped, and fibroblast-like cells, while the untreated ADSCs formedmonolayer fibroblast-like cells
(control group). (B) Gene expression of caldesmon, α-SMA, calponin, MHC, and smoothelin was significantly detected in smooth muscle-like cells
on day 7, then enhanced 10 days after muscle differentiation. Undifferentiated cells were set as a negative control.* Compared with the uninduced group,
the difference was statistically significant; # Day 10 compared with the day 7 group, the difference was significant. (C) Western blot analysis of smooth
muscular-related markers in the smooth muscle-like cells on day 7, and day 10, undifferentiated adipose-derived stromal cells (ADSCs) served as a
negative control. (D)On day 10 after differentiation, immunofluorescence staining showed that differentiated smooth muscle-like cells expressed heavy
calmodulin-binding protein, α-SMA, calmodulin, MHC, and smoothelin, while undifferentiated ADSCs did not express smooth muscle-related markers.
Scale bar = 200 μm.
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significantly enhanced in smooth muscle-like cells, which agreed
with the conclusion of Western blot (Figure 2B).

The expression of caldesmon, α-SMA, calponin, MHC, and
smoothelin in smooth muscle-like cells was confirmed by Western
blot analysis (Figure 2C). The expression of caldesmon, α-SMA,
calponin, MHC, and smoothelin increased on the 7th and 10th days
in the smoothmuscle-like cells compared with undifferentiated ADSCs.

10 days after differentiation, immunoluorescence staining
showed that differentiated smooth muscle-like cells expressed
calcineurin binding protein, α-SMA and smooth muscle fat,
while undifferentiated ADSCs did not express smooth muscle-
related markers (Figure 2D).

3.3 Identification of animal model of GERD
and the location of ADSCs in LES

Most rats survived after esophagojejunostomy until sacrifice. HE
staining showed that there were no signs of anastomotic stricture, but
inflammatory evidence could be observed, which demonstrates that
reflux induced by esophagojejunostomywas successfully established. To
investigate the engraftment of ADSCs, the ADSCs or induced ADSCs
mixed with RSF solution or simple RSF solution were injected into the
LES of rats. On weeks 2 and 4, small animal imaging technology was
used to observe the fluorescence emitted byADSCs.With the passage of
time, the fluorescence region gradually decreased and disappeared in
the sixth week (Figure 3). On the contrary, there was no fluorescence
expression in the group of RSF solution.

3.4 The thickness of LES between
preoperation and postoperation

To address whether ADSCs mixed with RSF aqueous could
regenerate the LES of the rat model of GERD, RSF aqueous, ADSCs,

and ADSCs mixed with RSF aqueous were transplanted to oral side
of esophagojejunum anastomosis respectively. After
transplantation, the thickness of LES in different group rats was
calculated at different time points of week 2, 4, and 6. As result,
compared with the saline and RSF group, the thickness of lower
esophageal muscles in the experimental groups increased
significantly and more significantly in ADSCs-RSF and induced
ADSCs-RSF groups. Along with the time going on, compared with
the ADSCs group, the thickness of LES in the induced ADSCs-RSF
showed statistical differences at week 6 after transplantation. In
addition, the inflammatory response showed no evident difference
(Figure 4).

4 Discussion

Gastroesophageal reflux disease is mainly caused by lower
esophageal sphincter (LES) injury. At present, it is common in
clinical practice after endoscopy-associated procedures, and very
few are caused by esophageal hiatal hernia caused by diaphragm
loss. The disease seriously affects the quality of life of patients. At
present, the treatment methods based on long-term use of PPI
(Chen and Brady, 2019) have problems such as renal dysfunction
(Maret-Ouda et al., 2020), Clostridium difficile and pulmonary
infection (Cao et al., 2018; Nguyen et al., 2020), and osteoporosis
(Mortensen et al., 2020). The pathogenesis of gastroesophageal
reflux disease is mainly LES injury caused by many factors
(Boeckxstaens et al., 2014), which leads to the retrograde entry
of digestive juice into the esophagus and causes esophageal
mucosal injury. At present, researchers proposed that
reconstruction of LES will become a more effective treatment
for gastroesophageal reflux disease based on the pathogenic
mechanism. Stem cells are a kind of cells with self-
proliferation and differentiation ability (Zakrzewski et al.,
2019). After stem cells are implanted into the damaged LES,

FIGURE 3
To investigate the engraftment of ADSCs, simple RSF, the ADSCs, the RSFmixedwith ADSCs, or RSFmixed induced ADSCswere injected into the LES
of rats. Small animal imaging technology observed that ADSCs emitted fluorescence in the second week, and the fluorescence area gradually decreased
in the fourth week.
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they can repair the structure of the LES and restore its
physiological function. Biomaterials can provide a
microenvironment similar to the extracellular matrix for the
proliferation and differentiation of stem cells (Chen and Liu,
2016), thereby might build an LES regeneration
microenvironment to reconstruct the function of LES.

In our previous studies, we have demonstrated that RSF
combined with adult stem cells can promote liver
reconstruction (Xu et al., 2017b). Also, RSF combined with
adult stem cells has the same effect in organs including the
bladder (Chung et al., 2014) and urethra (Xie et al., 2014; Xiao
et al., 2021). Based on our previous studies, in this study, we first
established an induction system for ADSCs to differentiate into
smooth muscle-like cells. Then, we verified the biocompatibility
between the ADSCs and RSF by HE staining, SEM analysis, and
LIVE/DEAD staining in vitro and in vivo, we found the RSF
scaffold could be gradually degraded after 3 months with the
reduction of the inflammatory index (Xu et al., 2017c), but
without tumorigenicity and coinfection. Finally, after we mixed
ADSCs with RSF aqueous solution, and then injected the mixture
into the LES of the GERD model, we explored the potential
mechanism of ASDCs combined with RSF aqueous solution to

promote LES regeneration from two aspects. On the one hand,
ADSCs might contribute to the regeneration of the LES of the
animal model of GERD, because of the transdifferentiating
function of ADSCs in the scaffolds of RSF. on the other hand,
based on the volume effect or reactive proliferation of biomaterials,
the thickness of LES can be increased to a certain extent, which
may contribute to the anti-reflux barrier of LES without side effects
and toxicity. In summary, local injection of adipose-derived
mesenchymal stem cells combined with RSF may be another
method for the treatment of LES injury caused by
gastroesophageal reflux disease. In the future, these regenerated
smooth muscle materials might be applied in GERD patients
caused by endoscopy-associated procedures.

5 Conclusion

Our result indicated that ADSCs mixed with RSF solution might
be an alternative treatment for LES injury-caused GERD. Thus, local
injection of adipose-derived mesenchymal stem cells combined with
RSF might contribute to the regeneration of the LES and reduce the
occurrence of GERD.

FIGURE 4
Establish gastroesophageal reflux rat models and transplant PBS, RSF, ADSCs, ADSCs-RSF, and induced ADSCs-RSF into the lower esophagus of the
models separately. (A) HE staining showed the thickness of the lower esophagus sphincters (LES) measured at 2, 4, and 6 weeks after transplantation. (B)
According to Statis data, compared with the control group and RSF group, the thickness of LES in the experimental groups increased significantly and
more significantly in ADSCs-RSF and induced ADSCs-RSF group. Along with the time going on, compared with the ADSCs group, the thickness of
LES in the induced ADSCs-RSF showed statistical differences at 6 weeks after transplantation. * Compared with the control group, the difference was
statistically significant; # Compared with the RSF group, the difference was significant; ** The difference between the two groups was statistically sense.
Scale bar = 200 μm.
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