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Introduction

The diversity of neural systems across 34 animal phyla is astonishing (Bullock and
Horridge, 1965; Schmidt-Rhaesa et al., 2015), with no recognized neuronal homologies
among three basal eumetazoan lineages: Ctenophora, Cnidaria, and Bilateria. The
remarkable molecular heterogeneity of neurons led to the hypothesis of independent
origins of neurons in these lineages (Moroz, 2009; 2012). Genomic and phylogenetic
data provided the initial evidence that neurons might evolve more than once (Moroz
et al., 2014; Moroz and Kohn, 2016) or even three times (Moroz et al., 2021b) as a result of
convergent evolution from the last nerveless ancestor of all Metazoa. To the best of our
knowledge, the single origin of neurons is not supported by existing data, and this historically
broadly accepted scenario should be critically evaluated as any other hypothesis. However,
identifying deep, hierarchically complex, and distant homologies across phyla, especially at
the level of specific cells or neuronal populations, is a highly controversial topic with no
established criteria. Here, we provide a brief historical overview of the homology concept and
then will discuss its applications to diverse nervous systems of invertebrates targeting the
level of individual functionally characterized neurons, controlling specific behaviors.

Brief history of ‘homology’

Richard Owen introduced the term homology (“homologue”) in 1843 to identify the
same organ in various anatomical contexts of vertebrates within his concept of an archetype
(Owen, 1843): “the same organ in different animals under every variety of form and function”
(Owen, 1843). After Darwin, the concept of homology was transformed into the evolutionary
hypothesis to retrace histories (=genealogies) of different structures. Homologous structures
share a common ancestry, similar to the single origin of animals or green plants from their
last common ancestors.

The concept was further genealogically developed by Ray Lankester in 1870, who tried to
replace the term of homology with a more mechanistic name, ‘homogeny’ [avoiding the
idealistic meaning of “ology” - see (Gouvêa and Brigandt, 2023)]. “Structures which are
genetically related, in so far as they have a single representative in a common ancestor, may be
called homogenous”—(Lankester, 1870). The name ‘homogeny’ did not survive in scientific
literature. Lankester also coined the term homoplasy: the similarity of traits not due to
common ancestry (see historical summary in (Gouvêa and Brigandt, 2023). Thus,
homoplasy is the alternative scenario to the ‘homology’ hypothesis–non-homology -
implying convergent evolution.
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Ernst May summarized the century of evolutionary thinking:
“After 1859, there has been only one definition of homologous than
makes biological sense a feature [character, structure and so on] is
homologous in two or more taxa if it can be traced back to [or
derived from] the same [a corresponding] feature in the presumptive
common ancestor of these taxa” (Mayr, 1982). Today, hypotheses of
homology have been broadly applied to all levels of biological
organizations, from genes, proteins, and organelles to organs and
organ systems both in adult organisms and in development
(Wagner, 2014; 2016; DiFrisco et al., 2023a; DiFrisco et al.,
2023b; Minelli, 2023; Rusin, 2023; Schlosser, 2023; Wanninger,
2024). However, many challenges exist at intermediate levels,
especially for neuronal types and tissues, often associated with
little-understood hierarchies of the so-called factorial concept of
homologies (Minelli and Fusco, 2013). Figure 1 represents some
terms related to the homology concept and biological innovations.

Genealogy of neurons

Dmitry A. Sakharov provided the first application of homology
to single individually identified neurons in 1970–1974 (Sakharov,
1970; 1972; 1974a; b). Specifically, he took advantage of large,
sometimes truly giant, neurons (100–1000 microns in diameter)
in the euthyneuran molluscs. These neurons are perfect models for
neuroscience, enabling fundamental breakthroughs in deciphering
cellular bases of behaviors, learning, and memory mechanisms
(Kandel, 2001). The most illustrative examples of reference
species are Aplysia californica, Clione limacina, Lymnaea
stagnalis, Helix pomatia, Pleurobranchaea californica, Tritonia
diomedia, and many others (Chase, 2002). Spherical neurons in

these species are located on the ganglionic surface; they have
different colorations and are perfectly visible and accessible for
experimental manipulations (Kandel, 2001; Moroz et al., 2006;
Moroz, 2011). In many cases, neurons have been functionally
identified as part of neural circuits controlling stereotyped or
learned behaviors (Kandel, 1976; 1979; Chase, 2002). Therefore,
they are ideal paradigms for studying genealogies of neurons at the
single-cell levels.

By mapping euthyneuran neurons with electrophysiological
and, most importantly, neurotransmitter phenotypes, it was
instantly recognized that nearly all neurons are remarkably
different. Notably, these discoveries occurred in the 1970s, well
ahead of time, and more than 50 years before the advent of single-
cell genomics, so popular today. Euthyneuran neurons are
individually unique and highly diverse in nearly all molecular
and phenotypic characteristics. A surprising feature of this
heterogeneity was the unprecedented diversity of their signal
molecules, particularly small secretory peptides (with the early
realization that most neurons are peptidergic, too). The unique
combinatorics of diverse classical transmitters and neuropeptides in
neural circuits were the hallmark of any studied system.

This situation raised a question: why are neurons so different;
and, more specifically, why do neurons have different transmitters?
Other researchers asked this question. Indeed, the logic was as
follows. Suppose the neurotransmitter action is localized only
within the space of the synaptic cleft (justifying this signal
molecule’s very name as a just messenger = transmitter). Two
transmitters (i.e., inhibitory and excitatory) might be sufficient in
that case. In the most reductionistic viewpoint, even one transmitter
might be adequate, considering the presence of different inhibitory
and excitatory postsynaptic receptors. Yet, by the 1970–1980s,
neuroscientists identified more than dozens of transmitters across
every studied neural system regardless of the species’ phylogenetic
position.

Sakharov hypothesized that neurons are different in their
transmitter specificity because they are derived from genetically
and phylogenetically different cell lineages (in modern terms). This
proposal eventually led to a more generalized hypothesis that
neurons might have different genealogies or ancestry (Sakharov,
1974a; b). The corollary of this Neuronal Polyphyly idea is that
neurons evolved from different cell types, preserving their secretory/
transmitter specificity at large evolutionary distances (Moroz, 2021).
However, it was, and it is still challenging to determine the scope of
such evolutionary distances and geological time of speciation events.
In practical terms, Sakharov started identifying homologous
individual neurons across model gastropod species with large,
identified neurons and their transmitters to address these
questions. Here, the classical criteria for homology were applied
to the single-cell level for the first time (Sakharov, 1974b; 1976).

Three original Remanne criteria for homology were
implemented (Remane, 1952):

1) The criterion of position and localization of target neurons
within homologous part of molluscan ganglia (well-studied by
that time) as well as branching patterns of neuronal processes;

2) The criterion of special quality, primarily the transmitter/
secretory phenotype, and in part, electrophysiology of
identified neurons; both parameters are critical if the

FIGURE 1
Homology as a hypothesis of evolutionary history with a
simplified integration of terms reflecting the complex hierarchical
modular organization of biological innovations.
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positional homology is not established and a neuron could
migrate to other location [ganglion] in different species;

3) The criterion of continuity–i.e., the presence and subsequent
identification of intermediate forms in related species, enabling
the genealogy tracing within a given lineage by uniting the first
and the second criteria. This assignment also addresses the tempo
of evolution within a given lineage of animals.

Notably, these criteria emphasize relatively shorter evolutionary
or taxonomical distances. Applying them for cross-phyla
comparisons is challenging due to the lack of continuity for
many phylum-specific traits and regionalization across diffuse
and centralized neural systems. Other ‘complicated cases’ might
include ultra-rapid changes in neuronal phenotypes and underlying
gene regulation within specific animal classes and orders, coupled
with the rise of novel behaviors; exploring novel habitats or food
sources results in significant reorganization of neural circuits.

The initial quest to find homologous neurons was very
successful, and several illustrative examples, as a proof-of-the
concept study, are listed below. These findings are highly
informative and hold their significance 50 years later. The first
example is a pair of serotonergic modulator neurons known as
metacerebral cells (MCC) controlling the initiation of the feeding
program across all studied euthyneuran molluscs (Sakharov, 1974b;
1976; Weiss and Kupfermann, 1976; Gillette and Davis, 1977;
Sudlow et al., 1998). This pair of cells is also the record example
of the best-traced single-cell homology back to the last common
ancestor of this lineage more than 380 million years ago (Kumar
et al., 2022). The other examples included neurosecretory cells
controlling osmotic homeostasis, such as single R15 in Aplysia
and their homologs in pulmonate molluscs; and clusters of
Aplysia R3-13 and LYC/D neurons in pulmonates (Sakharov,
1974b; 1976; Moroz, 1985) with perhaps similar functions. Later,
other neuronal homologs were identified in feeding and locomotory
circuits, center pattern generators, as well as neurosecretory cells
controlling egg-laying (Kupfermann, 1970). These discoveries
opened an exciting opportunity for novel evolutionary
classification of neurons toward a natural system of neurons
across taxa (Moroz, 2018). Regrettably, the euthyneuran molluscs
and their neural systems are often forgotten in the recent literature
about cell type evolution. In part, the outlined neuronal polyphyly
hypothesis could explain (via multiple parallel genealogies of
transmitter secretory phenotypes) why different neurons within
circuits have different transmitters and why the same
transmitters are present and conserved in various neural systems.

However, by tracing the homologies of serotonergic and
dopaminergic neurons, it was noticed that serotonin (5-HT)-
containing neurons are evolutionary more conservative in their
positions, numbers, and functions than evolutionary, more
dynamic dopaminergic neurons (Moroz, 1991). It led to studying
homologous behaviors across molluscs and beyond, recognizing that
5-HT neurons control, modulate, and integrate specific behaviors
associated with general arousal components in locomotion, feeding,
stress reactions, etc. (Sakharov, 1990; Moroz, 1991; Gillette et al., 2000;
Gillette, 2006; Lee et al., 2023) with the broadest possible innervation
of peripheral organs (Moroz et al., 1997). In contrast, dopamine/
catecholamines control more specific components of feeding and
respiratory programs within the same lineages, implying the hierarchy

of transmitters and underlying behaviors (Winlow et al., 1992). In this
respect, Moroz suggested that the antioxidant properties of 5-HT
contribute to the greater evolutionary conservation of serotoninergic
neurons and functions, in contrast to dopaminergic and related
catecholaminergic neurons, which can be easily oxidized, and their
product might act as prooxidants.

Regardless of the causality, it was a surprising consensus to
realize that 5-HT controls and integrates similar (as in molluscs, e.g.
(Rosen et al., 1989)) types of arousal-associated behaviors across
phyla (Sakharov, 1990), with the most illustrative examples in
leeches (Lent, 1974; Lent, 1985; Lent et al., 1988), and with
remarkably similar volume integration of effectors by a pair of
5HT-containing Retzius neurons in each segmental ganglion (Lent,
1985). There are numerous similar observations of 5HT-dependent
control among representatives of bilaterians, including Arthropoda,
Annelida, Nematoda, and Mollusca (Hay-Schmidt, 2000; Gillette,
2006; Tierney, 2020). Thus, at least some types of secretory-specific
neurons might be involved in integrating homologous behaviors, but
this statement might not be generalized for all transmitters, circuits,
and species with high evolutionary plasticity at relatively small
phylogenetic distances (e.g., across families). Here, we refer to
animal lineages under substantial environmental pressure, such
as adaptation to hypoxic conditions while exploring new habitats
(e.g., freshwater pulmonate gastropods or meiofauna) or
anthropogenic factors of catastrophic nature for entire ecosystems.

In summary, different transmitters and neurons secreting these
transmitters might have different evolutionary dynamics. There are
facts indicating a shift of transmitter phenotypes both in
development within the same species (Demarque and Spitzer,
2012; Spitzer, 2015; Spitzer, 2017; Bertels et al., 2022) and macro-
evolution (Bertuzzi et al., 2018; Moroz et al., 2021b).
Macroevolutionary shifts might occur in arthropods, where
glutamate is primarily localized in efferent neurons with motor
function vs. the predominant presence of glutamatergic neurons in
sensory and interneuron parts of molluscan and vertebrates’ nervous
systems. Furthermore, the evolutionary expansion of glutamatergic
neurons in vertebrate brains is very dramatic; it might be linked to
higher bioenergetic demands, as summarized elsewhere (Moroz
et al., 2021a).

Understandably, the examples mentioned above of mosaic
distribution of glutamatergic and dopaminergic neurons across
phyla do not always imply the homologization of these neuronal
populations. In other words, a single or a few molecular markers or
modules cannot be an unbiased criterion for neuronal
homologization. The modular nature of gene regulatory networks
(Wagner, 2014; DiFrisco et al., 2023a; DiFrisco et al., 2023b; Rusin,
2023) and lineage-specific evolutionary changes (apomorphies and
synapomorphies) are not yet incorporated in the quest to identify
homologous neurons across taxa.

Complex homologies, cell-type tree of
life

Introducing molecular biology into neuroscience dramatically
increased mechanistic and genomic deciphering of neuronal
functions. The emerging and growing complexity of neuronal
populations led to identifying many proteins, genes and non-
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coding regions as regulators of neuronal phenotypes. The concepts
of terminal selection of neuronal identity and transcriptional factor-
specific barcoding of neuronal phenotype have been developed using
an ultra-small number of neurons in the nematode C. elegans as a
reference point (Hobert, 2016; 2021). Nevertheless, targeting
homology assessments for single neuronal types across species is
still challenging, with no universal criteria to define molecular
reporters at large evolutionary distances (e.g., classes and phyla).
Here, we also refer to molecular markers for practical applications
(e.g., in situ hybridization or immunohistochemical experiments) to
label neural populations in representatives of basal metazoan phyla
with limited information about the neural organization.

Many researchers recognized that similar molecular markers
and genes encoding master regulators expressed in non-homologous
structures. Nielsen and Matrinez (2003) provided many illustrative
examples in this direction, with surprises of expression of Distal-less
and Pax 6 in unexpected places across ectoderm and mesoderm
derivatives, which are not homologous embryonic layers (Nielsen
and Martinez, 2003). But these data illuminate modular ways to
encode more generalized ‘elementary’ molecular functions such as
[photo]reception (Pax 6), making tissue “tips” (Dlx), holes (Bra),
and that is the main reason that they can be co-opted in different
structures (or cells).

To reflect this situation, Nielson and Martinez introduced the
term homocracy (from ‘democracy’). “Structures are homocratic if
they express the same patterning gene(s).” Homocratic structures
might be homologous, but the same genes may have different
cooption in non-homologous structures and molecular modules.
This explanation means recruitments of similar genes in different
programs, with many examples when complex structures might have
chimeric origins, such as eyes and neural systems with mosaic
expressions of numerous genes. On the other hand, “homologous
structures are homocratic in many cases”; this descriptive terminology
could be applicable to different neurons and neuronal cell types. The
modular nature of genome regulation involves multiple distant non-
coding cys-regulatory elements, which allows rapid co-option ofmany
molecular blocks by ‘bringing’ them from one functional domain to
another domain using small structural changes in the regulatory
machinery [Hinman et al., 2003; Davidson, 2010). This type of
molecular modular architecture has some functional redundancy.
It could be a foundation (exaptation, see (Gould and Vrba, 1982)]
for very rapid transitions from temporal to spatial differentiation
outcomes and different cell phenotypes.

Following this inherently molecular modular and redundant
architecture, it was clear that there are no pan-neuronal genes
(Moroz and Kohn, 2015) as universal molecular markers to
identify neurons across large evolutionary distances phenotypically.

It might be valuable to consider not only the cooption of different
genes to different functions but also defining versatile functional
modules as groups of proteins and genes co-expressed and co-
regulated, which incorporate the concept of terminal selection of
neuronal identity (Hobert, 2016; 2021) and modularity of neuronal
machinery (Arendt, 2020). The idea of reconstruction of themetazoan
Cell-type Tree of Life is an exciting and promising direction (Arendt
et al., 2016). Here, the cell types are treated as biological species with
different molecular regulatory modules and evolutionary trajectories,
which overlap with earlier hypotheses of tracing neuronal homologies.
The quantitative metric was introduced by employing tools of

statistical geometry to evaluate the treeness models of cell type
evolution (Kin et al., 2015; Liang et al., 2015). However, it was not
applied to individual neurons or specific neuronal populations, and
broad comparative single-cell genomic data are required from
representative of all animal phyla (Moroz, 2018; Moroz and
Romanova, 2022). The taxonomical level of resolution should only
empirically come from the extensive development of comparative
single-cell datasets combined with building cell trees (Arendt et al.,
2016) across all 30+ animal phyla and all 90+ classes of Metazoa,
perhaps even targeting specific orders and families as can be
demanded from respective ecological contexts.

With new tools of comparative single-cell genomics on the
horizon (Tarashansky et al., 2021), it is possible to provide
homologization of cell type in sponges (Musser et al., 2021), where
different scRNA-seq data allowed detection of cellular homologs at
large evolutionary distances. Whether cell-type neuronal homologs
can be found across phyla is still largely unknown. The terra incognita
is the complexity, diversity of molecular modules, and highly dynamic
regulation of cell phenotypes. Thus, returning to the classical
continuity criterion would be reasonable by revisiting a well-
established lineage of identified neurons within closely and more
distantly related genera, families, orders, and subclasses (within
gastropods, leeches, and arthropods) as proposed initially by
Sakharov (Sakharov, 1974b). Such a strategy will systematically
enable the deciphering of apomorphies, synaptomorphies, gene-
regulatory networks, and homoplasy (Figure 1) within specific
neuronal lineages, and in the context of their evolutionary
connectivity and functions as a foundation for unbiased genealogy
of neurons across taxa.
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