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To function properly, neurons must maintain a proteome that differs in their
somatodendritic and axonal domain. This requires the polarized sorting of newly
synthesized secretory and transmembrane proteins into different vesicle
populations as they traverse the secretory pathway. Although the trans-Golgi-
network is generally considered to be the main sorting hub, this sorting process
may already begin at the ER and continue through theGolgi cisternae. At each step
in the sorting process, specificity is conferred by adaptors, GTPases, tethers, and
SNAREs. Besides this, local synthesis and unconventional protein secretion may
contribute to the polarized proteome to enable rapid responses to stimuli. For
some transmembrane proteins, some of the steps in the sorting process are well-
studied. These will be highlighted here. The universal rules that govern polarized
protein sorting remain unresolved, therefore we emphasize the need to approach
this problem in an unbiased, top-down manner. Unraveling these rules will
contribute to our understanding of neuronal development and function in
health and disease.
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Introduction

Neurons are highly compartmentalized cells with morphologically distinct axonal and
somatodendritic domains with specialized functions. Essential transmembrane and secretory
proteins are distributed in a polarized manner to these distinct domains. For many years we
have assumed that all transmembrane/secretory proteins (hereinafter called cargoes) follow
the same rules described in unpolarized cells, in which these proteins are synthesized in the
ribosome-harboring rough endoplasmic reticulum (ER) and sorted to the nearby Golgi
Apparatus (GA), both primarily localized in the soma of neurons. Thus, it is largely accepted
that most cargoes are centrally synthesized in the cell soma and then sorted and transported
to the axon and dendrites. This makes the task of maintaining a polarized cargo distribution
particularly challenging.

The correct sorting of proteins from the ER to the plasma membrane (PM) is organized
in multiple steps in which they are concentrated and packaged into different vesicle
populations. The cytoskeletal network and the motors that move cargoes and organelles
across it have been reviewed (Aiken and Holzbaur, 2021; Koppers and Farías, 2021; Iwanski
and Kapitein, 2023). Here, we will focus on the sorting of cargoes within the secretory
pathway and the transfer of proteins between membranous organelles. Cargo exit from the
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GA has been for a long time considered to be the main regulator of
neuronal polarity, ensuring the packaging of cargo into the right
vesicle for transport to their destination. However, new evidence
suggests that polarized trafficking is initiated early on, from the ER.
In addition, examples of sorting of newly synthesized cargoes
independent of the centralized GA have been described, adding
another layer of complexity for polarized cargo secretion in neurons.

Here, we discuss these recent advances in cargo secretion,
offering an integrated view of protein secretion in neurons. Many
questions remain open, highlighting the need for an unbiased, top-
down characterization of how different cargoes navigate the
secretory pathway to reach their destination in polarized
neurons. Their morphological complexity makes neurons
specifically susceptible to trafficking defects, leading to
neurodevelopmental and neurodegenerative disorders,
demonstrating the importance of a more comprehensive
characterization of their secretory pathways.

Exploring the ER exit of secretory cargoes

The secretory pathway starts at the rough ER. Cargoes produced
here are then confined to specialized regions of the ER, called ER exit
sites (ERES). At the ERES, the membrane is coated with COPII-
proteins (Barlowe et al., 1994). One of these proteins, Sec24,
recognizes cargoes, directly if the cargo has a cytoplasmic
domain, or indirectly through cargo receptors. There are four
Sec24 paralogs in mammalian cells and they are subdivided into
two families considering their homologies: Sec24A/B and Sec24C/D
(Pagano et al., 1999). They can interact with both amino acid motifs
and folded epitopes on secretory cargoes (Gomez-Navarro and
Miller, 2016). Many cargoes have a differential affinity for one of
the two subfamilies. A recent systematic review has compared
45 mammalian studies and summarized paralog-specific cargo
proteins and their binding motif (Chatterjee, et al., 2021).
Notably, in this review, the affinity to one or more
Sec24 paralogs for many neurotransmitter transporters has been
described. For instance, the serotonin transporter is specific for
Sec24C, while noradrenaline, glycine and GABA transporters have
been shown to interact with Sec24D. It is tempting to speculate that
different Sec24 paralogs are recruited to different ERES to recognize
polarized cargoes. However, there is no evidence of any spatial
segregation of the four Sec24 paralogs across different ERES or
neuronal compartments. A comprehensive overview of paralog-
specificity for neuronal cargoes is lacking and it is not clear how
this may contribute to cargo polarity. The sorting from the ER can be
even more challenging. Some neuronal receptors need to be pre-
assembled as a complex in the ER prior to their exit. For instance, the
dendritic glutamate AMPA receptor GluA. Recent evidence has
shown that the GluA tetramers coassemble and exit the ER by
coordinated action of several ER-resident co-factors, some of them
trafficked together with GluA to the PM (Schwenk et al., 2019). It
remains largely unknown if the assembly of protein complexes in the
ER results in more efficient trafficking, and possibly reduces the risk
of mislocalization.

If there is cargo segregation at the ERES for polarized sorting in
neurons, it would be expected that this segregation continues after
cargo-budding from the ERmembrane, and its trafficking to the GA.

Studies in non-neuronal cells suggest this possibility. The specificity
of Sec24 paralogs towards different SNAREs for vesicle fusion has
been shown in cell lines, e.g., the interaction of Sec24C/D with
Syntaxin5 (Mancias and Goldberg, 2008) and the interaction of
Sec24 A/B with Sec22b (Mancias and Goldberg, 2007; Adolf et al.,
2016). Interestingly, new evidence has challenged the view of what
happens after COPII coat formation. Initially, it was believed that
COPII vesicles bud off and multiple vesicles undergo homotypic
fusion to form the ERGIC. From there, COPI vesicles traffic to the
cis-Golgi (Scales et al., 1997). More recently, it has been suggested
that the ER-ERGIC interface consists of a series of interconnected
tubules. In this alternative paradigm, the ERES function as
gatekeepers that concentrate cargoes and mediate tubule
formation. Then, COPI aids the last trafficking step toward the
cis-Golgi (Weigel et al., 2021; Aridor, 2022). In this process, different
ARF GTPases could regulate ER to GA trafficking, as a recent pre-
print shows that different ARFs occupy distinct domains on the
tubular network connecting ER and the GA (Wong-Dilworth et al.,
2023a in pre-print). This new paradigm emerges from studies in
unpolarized cells, so it is unclear to what extent this applies to
neuronal cells. This mechanism of ER exit could support polarized
cargo selection and segregation at ERES, and their continuous
segregation at the receiving membrane (Figure 1A).

Traversing and exiting the Golgi Apparatus

We could speculate that cargo pre-sorting at the ERES results in
nanocolumns spanning from the ER to the TGN (Figure 1A). This
might aid the formation of distinct vesicle populations at the TGN.
Supporting this idea, recent studies show segregation of proteins
along the GA. For instance, APP and the β-secretase BACE1 are
spatially segregated from the ER throughout their TGN exit,
preventing APP cleavage and formation of toxic Amyloid-β
(Fourriere et al., 2022). Other examples of cargoes segregated
early in the GA are CD-MPR (lysosomal enzyme receptor) and
LAMP (lysosomal membrane protein) (Chen et al., 2017). These
proposed nanocolumns could hypothetically fit most of the current
models of intra-Golgi trafficking (Mironov and Beznoussenko,
2019).

At the TGN, cargo proteins are packaged in transport vesicles.
This is mediated by adaptor protein (AP) complexes, recruited by
docking factors such as Arf GTPases and/or phosphoinositides.
Then, the APs recognize cargoes and recruit scaffolding proteins
to form a coat for vesicle budding (for a comprehensive review see
Guardia et al., 2018). Interestingly, there are some studies showing
specificity of APs for polarized proteins in neurons. AP-1 is known
to sort several somatodendritic cargoes such as transferrin receptor
(TfR) and NMDA receptors into vesicle populations that move into
the dendrites (Farías et al., 2012; Jain et al., 2015; Guardia et al.,
2018). AP-3 is involved in the sorting of axonal proteins into
synaptic vesicle precursors and dense core vesicles (Asensio et al.,
2013; Li et al., 2016; Jain et al., 2023). AP-4 on the other hand has a
less clear-cut role in polarized sorting. It has been proposed to form
another somatodendritic vesicle population containing AMPA
receptors (Matsuda et al., 2008; Moretto et al., 2023). However,
AP-4 has also been implicated in the trafficking of autophagosomal,
lysosomal and axonal proteins (Mattera et al., 2017; Pace et al., 2018;
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Ivankovic et al., 2020; Davies et al., 2022; Majumder et al., 2022).
Notably, AP-1 and AP-3 complexes are heterogeneous through the
expression of different subunit isoforms (Guardia et al., 2018).
However, the functions of these AP variants in neurons remain
largely unknown.

Small GTPases orchestrate many steps of vesicular
transport. Rab2 has been proposed to orchestrate the
biogenesis of presynaptic vesicle precursors, since its
depletion results in the accumulation of presynaptic proteins
at the TGN (Götz et al., 2021). A study in cell lines showed that
ARF GTPases have a differential distribution at the TGN
(Wong-Dilworth et al., 2023b). Notably, in this study, some
ARFs are not observed at the TGN, while an earlier study
implicated these ARFs in the biogenesis of DCVs in neuronal

cells (Sadakata et al., 2010). Thus, the role of ARFs in TGN
export may be cell-type specific. Moreover, the differential
distribution of ARFs at the TGN could imply a role in the
polarized sorting of proteins in neurons.

Phosphoinositide conversions at the TGN play a major role in
the regulation of secretion, as reviewed by (Posor et al., 2022). The
TGN is characterized by phosphatidylinositol-4-phosphate
(PtdIns4P) which is synthesized by PtdIns 4-kinases (PI4Ks) and
promotes the recruitment of adaptor protein complexes. Notably,
early research showed that inhibiting PI4Ks disrupted polarized
trafficking (Bisbal et al., 2008). Some APs interact with distinct
PI4Ks (Craige et al., 2008; Wieffer et al., 2013), hence it is tempting
to speculate that specific phosphoinositide conversions have
implications for polarized protein sorting, possibly by priming

FIGURE 1
Putative model of cargo sorting in polarized neurons. (A) Polarized cargoes are sorted by distinct COPII isoforms at the somatic ERES. This sorting is
maintained as the cargo is trafficked through a tubular network via COPI to the cis-Golgi. Segregated cargoes traverse the GA to exit at the TGN in distinct
nanocolumns. At the TGN, the different AP complexes concentrate cargoes andmediate vesicle formation. (B)Many different vesicle populations exist in
the axon and dendrites. It is not clear which cargoes are trafficked together and to what extent the vesicle composition is fluidic. As the vesicles
mature, tethers recognize specific GTPases and phosphoinositides on the membrane. SNARE proteins are activated, and the vesicle then fuses with the
PM. (C) In neurons, proteins can also diffuse laterally within the continuous ER and be confined to peripheral ERES, or they can first be locally synthesized.
In dendrites, local cargo secretion involves Recycling Endosomes (REs) and Golgi satellites (GSs). The local secretion pathway in the axon is largely
unknown but could involve an unidentified intermediate compartment (IC).
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the membranes of different vesicle populations for recognition by
the corresponding trafficking machinery.

The diversity of post-Golgi vesicle
populations

Individual packaging of each cargo protein would be highly
inefficient and require an extensive set of distinct cargo adaptors and
sorting machinery. Instead, there are only a few APs known, and
thus, neurons must package multiple cargoes into the same vesicle
(Figure 1B). Which cargoes are being trafficked together has yet
remained ambiguous.

In the somatodendritic domain, research has shown that
AMPA- and NMDA-type glutamate receptors are trafficked
separately, by AP-4 and AP-1 respectively (Matsuda et al., 2008;
Farías et al., 2012). It is not known whether cargoes sorted by the
same AP are also in the same vesicle. Yet, the controlled delivery of
vesicles containing the somatodendritic TfR to the axon results in
missorting of NMDA receptors, suggesting these cargoes share the
same AP1-derived vesicle (Farías et al., 2015).

Early research identified two vesicle populations for protein
delivery into the axon: the Piccolo-Bassoon Transport Vesicles
delivering active zone (AZ) proteins and the Synaptic vesicle
protein Transport Vesicles (Zhai et al., 2001; Cai et al., 2007).
Since then, the delivery of these two populations separately or
together into the axon has been unclear. Moreover, it has been
suggested that a large fraction of endo-lysosomal cargo clients can be
transported within axonal carriers containing SV and AZ proteins,
as demonstrated recently across various cell types and species
(Vukoja et al., 2018; Rizalar et al., 2023). Contrarily, another
study in rat and mouse hippocampal neurons showed that only a
minor fraction of SVs and lysosomal proteins are trafficked together
(De Pace et al., 2020). Even if there is a small population of hybrid
compartments, it would be important to determine its nature,
function and regulation. Overall, we lack comprehensive
knowledge of different vesicular carriers, their cargoes, and the
machinery involved in polarized sorting. It remains largely
unexplored to which extent cargoes with distinct destinations or
functions are trafficked in the same or distinct vesicles. It cannot be
excluded that cargoes can traverse the cell via multiple transport
pathways and further investigations might give insights into how the
relative contributions of these pathways shift during development,
in response to stimuli and across neuron-specific cell types.

Cargo transfer and unloading

Secretory trafficking is concluded with fusion of the vesicle
with the PM (Figure 1B). Membrane targeting and fusion are
mediated by many regulatory proteins, but SNARE proteins
perform the final fusion step. The mechanism of SNARE
fusion has been recently reviewed (Jahn et al., 2023). Tethers
are recruited to the membrane by small GTPases and
phosphoinositides, which together have been described to
establish membrane identity (Behnia and Munro, 2005; Koike
and Jahn, 2019). SNAREs can coordinate fusion sites by forming
nanoclusters on lipid microdomains in the PM (Chamberlain

et al., 2001; Lang et al., 2001). In neurons, Syntaxin 4 (Stx4)
localizes to the somatodendritic domain and Syntaxin 3 (Stx3)
localizes to the axon. Interfering with Stx3 results in the
mislocalization of axonal membrane proteins (Soo Hoo et al.,
2016). Yet, many other SNAREs have been shown to be required
for axonal outgrowth and SNARE complexes in the axon do not
always contain Stx3 (Winkle et al., 2014; Grassi et al., 2015;
Fuschini et al., 2018; Wojnacki et al., 2020). Which subset is
required could depend on the developmental stage or cell type. In
the somatodendritic domain, Stx4 forms exocytic zones next to
the postsynaptic density for the exocytosis of NMDA-type
glutamate receptors (Kennedy et al., 2010). However, other
SNARE complexes, not necessarily containing Stx4, mediate
exocytosis of TfR, AMPA and GABAA receptors (Gu et al.,
2016; Bakr et al., 2021). Notably, SNAREs can also be present
on vesicles as cargo, while not being involved in vesicle targeting
or fusion. Which SNAREs on a vesicle are activated is highly
regulated. The combinatorial action of tethers, SNAREs,
phosphoinositides, GTPases and Sec1/Munc18-like (SM)
proteins contributes to the specificity of vesicle fusion (Koike
and Jahn, 2022). Further research is necessary to investigate how
SNAREs are regulated in neurons and how this contributes to the
specificity of vesicle fusion.

Local translation and secretion:
unconventional pathways in the axon and
dendrites

The distribution of the main secretory organelles (rough ER and
GA) in the soma, and the neuron-specific need to rapidly change
their proteome locally in response to stimuli are two seemingly
irreconcilable statements. Yet, neurons are more complex than
unpolarized cell types that have formed the foundation for our
understanding of the secretory pathway. Mounting evidence
suggests that (transmembrane) proteins are also locally
synthesized in dendrites and axons (Figure 1C) (Cajigas et al.,
2012; Holt et al., 2019).

Early research demonstrated the presence and function of ERES
complexes in the dendrites (Horton and Ehlers, 2003; Aridor et al.,
2004). Locally secreted cargoes can either traffic to the PM directly
via an unconventional pathway or progress through Golgi outposts
or satellites present in the dendrite (Mikhaylova et al., 2016; Kemal
et al., 2022; Wang et al., 2023). The lack of complete Golgi
machinery poses the possibility that unconventional secretion
pathways could be an important mechanism of delivery. This has
been described for a glutamate receptor, which can reach the
dendritic surface independently from the Golgi via recycling
endosomes (Bowen et al., 2017). This mechanism could extend to
many more neuronal membrane proteins, as work by Hanus et al.,
(2016) demonstrated the presence of various core glycosylated
(i.e., not processed by Golgi enzymes) proteins on the neuronal
surface. The glycosylation status of proteins such as ion channels
affects their properties, thus, core-glycosylation modulates synaptic
signaling. Moreover, upon neuronal activation, Golgi satellites with
glycosylation machinery can form and these can process either
newly synthesized, locally secreted proteins from the ER or core-
glycosylated proteins that are recycled from the surface (Govind
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et al., 2021). Interestingly, synaptic activity spatially confines the
secretion of biosynthetic proteins (Hanus et al., 2014).

Local protein synthesis has also been demonstrated in the axon
and its presynaptic compartments (Hafner et al., 2019). Yet, while in
the dendrite polysomes (a cluster of ribosomes) are prevalent, they
seem to be less abundant in the axon. Instead, they are observed as
monosomes scattered through the cytoplasm (Biever et al., 2020).
Local translation of transmembrane proteins, however, would
require the presence of ER-bound ribosomes. Notably, a recent
preprint by Koppers et al. (2022) demonstrated translation-
dependent interactions between axonal ER tubules and
ribosomes, regulated by specific cues, thereby elucidating how
secretory proteins can be locally synthesized within the axon.
How these proteins successively exit the ER and traffic to the PM
remains a topic for further investigation, yet some secretory
organelles for local secretion have been proposed (Merianda
et al., 2009; Cornejo et al., 2020). Lastly, Golgi-bypassing
mechanisms could play a role in the axon, as the presence of
core-glycosylated axonal proteins on the membrane (Hanus et al.,
2016) suggests that this may be indeed the case.

Concluding remarks and future
perspectives

In recent years, many advances have been made towards
understanding the secretory pathway. Nevertheless, many of
these recent studies have been performed in unpolarized cell
lines. The extremely polarized architecture of neurons and their
need to quickly adapt their proteome in response to stimuli puts
exceptional demands on their secretory machinery, making it a
highly complex system. Findings in unpolarized cells can thus not
be easily extrapolated to neurons. For example, the sorting of APP
in neurons differs significantly from other cell types, even from
polarized MDCK cells. In MDCK cells, APP distribution is
polarized towards the basolateral domain, whereas APP in
neurons distributes to the somatodendritic domain (analogous
to the basolateral domain in MDCK cells) as well as the axonal
domain (Haass et al., 1994; 2012). Moreover, recycling endosomes
play an important role in APP trafficking in neuronal cells, but not
in unpolarized cells (Tan and Gleeson, 2019). In addition, most
research focuses on either the dendrite or the axon, and often, only
one or a few cargo proteins are studied at a time. A select group of
cargoes receives a lot of attention (glutamate receptors, SV
proteins), while others remain largely overlooked. From the
study of a single cargo protein, we cannot infer any general
sorting rules. It is not clear which classes of cargo are trafficked
together and to which extent they do this. Lastly, protein transport
involves a cascade of many different interactors, rendering the
different compartment compositions fluidic, yet this temporal
component does not receive a lot of attention. In all, the
current knowledge on neuronal protein sorting is severely
fragmented. Notably, due to space limitations, we refrained
from discussing the crosstalk between the secretory and
endocytic pathways for polarized protein distribution in
neurons. The highly debated topic of transcytosis, where
proteins are first inserted on the atypical plasma membrane
domain and are then endocytosed and transported to the

correct domain, adds even more complexity to the process of
neuronal protein sorting. Moreover, overexpression of cargo can
lead to spill-over into the atypical domain, possibly obscuring the
results. Therefore, it is not clear at this moment for which proteins
and to what extent the transcytosis route plays a role (Wisco et al.,
2003; Yamashita et al., 2017; Ribeiro et al., 2019; Nabb and Bentley,
2022; Watson et al., 2023).

The Retention Using Selective Hooks (RUSH) (Boncompain
et al., 2012) and similar systems (Bourke et al., 2021) have greatly
advanced our knowledge of the secretory pathway. Now there is
an urgent need to develop and apply novel technologies to
visualize endogenous protein sorting from the ER, without
retaining/releasing cargo. Crispr-editing of neurons has been
achieved, which can be used to tag proteins at their
endogenous levels although efficiency remains a limitation at
least in cultured rat neurons (Gao et al., 2019; Willems et al.,
2020). The use of multiple-step labeling, e.g., with Halo-tag,
could help in dissecting protein sorting within the secretory
and endocytic pathways (Los et al., 2008). More importantly,
there is the need for development of novel technologies to dissect
the secretory pathway in a more comprehensive way. Recent
advances in proximity labeling technologies and spatiotemporal
proteomics (Lam et al., 2015; Qin et al., 2023) would allow to
elucidate compartment-specific composition over time as cargoes
traverse the secretory pathway in neuronal cells. Importantly, the
downstream analysis should make use of the increasing amount
of (open-access) databases and incorporate (AI-driven) tools for
protein-protein interaction or motif prediction. In the coming
years, these technological advances will allow us to reveal the
fluidic compartments and key players involved in polarized
distribution of cargoes in neurons.
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