
Morphology-based deep learning
approach for predicting
adipogenic and osteogenic
differentiation of human
mesenchymal stem cells (hMSCs)

Maxwell Mai1†, Shuai Luo2†, Samantha Fasciano3,
Timilehin Esther Oluwole2, Justin Ortiz4, Yulei Pang1* and
Shue Wang2*
1Department of Mathematics, Southern Connecticut State University, New Haven, CT, United States,
2Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven,
CT, United States, 3Department of Cellular and Molecular Biology, University of New Haven, West Haven,
CT, United States, 4Department of Mechanical and Industrial Engineering, University of New Haven, West
Haven, CT, United States

Humanmesenchymal stem cells (hMSCs) aremultipotent progenitor cells with the
potential to differentiate into various cell types, including osteoblasts,
chondrocytes, and adipocytes. These cells have been extensively employed in
the field of cell-based therapies and regenerative medicine due to their inherent
attributes of self-renewal and multipotency. Traditional approaches for assessing
hMSCs differentiation capacity have relied heavily on labor-intensive techniques,
such as RT-PCR, immunostaining, and Western blot, to identify specific
biomarkers. However, these methods are not only time-consuming and
economically demanding, but also require the fixation of cells, resulting in the
loss of temporal data. Consequently, there is an emerging need for a more
efficient and precise approach to predict hMSCs differentiation in live cells,
particularly for osteogenic and adipogenic differentiation. In response to this
need, we developed innovative approaches that combine live-cell imaging with
cutting-edge deep learning techniques, specifically employing a convolutional
neural network (CNN) to meticulously classify osteogenic and adipogenic
differentiation. Specifically, four notable pre-trained CNN models, VGG 19,
Inception V3, ResNet 18, and ResNet 50, were developed and tested for
identifying adipogenic and osteogenic differentiated cells based on cell
morphology changes. We rigorously evaluated the performance of these four
models concerning binary and multi-class classification of differentiated cells at
various time intervals, focusing on pivotal metrics such as accuracy, the area under
the receiver operating characteristic curve (AUC), sensitivity, precision, and F1-
score. Among these four different models, ResNet 50 has proven to be the most
effective choice with the highest accuracy (0.9572 for binary, 0.9474 for multi-
class) and AUC (0.9958 for binary, 0.9836 for multi-class) in both multi-class and
binary classification tasks. Although VGG 19matched the accuracy of ResNet 50 in
both tasks, ResNet 50 consistently outperformed it in terms of AUC, underscoring
its superior effectiveness in identifying differentiated cells. Overall, our study
demonstrated the capability to use a CNN approach to predict stem cell fate
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based on morphology changes, which will potentially provide insights for the
application of cell-based therapy and advance our understanding of
regenerative medicine.
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Introduction

Mesenchymal stem cells (MSCs) have great potential for tissue
engineering, regenerative medicine, and cell-based therapy due to
their capacity for self-renewal and multipotency. Under certain
chemical or biophysical stimulation, MSCs can be differentiated
into various lineages, including osteoblasts, adipocytes, neurons, and
chondrocytes (Augello and De Bari, 2010; Zhao et al., 2022a; Zhao
et al., 2022b; Fasciano et al., 2023). MSCs can be isolated from
various sources, including bone marrow, adipose tissue, placenta,
umbilical cord or umbilical cord blood, respectively (Han et al.,
2019). MSCs also possess various physiological effects, such as
maintenance of tissue homeostasis, regeneration, and
immunomodulatory properties, making them valuable for cell-
based therapeutic applications (Zhou et al., 2021). MSCs offer
considerable potential for regenerative medicine and therapeutic
research; however, clinical trials utilizing MSCs face challenges such
as variations in donor-derived cells, stability of stemness,
differentiation capacity, and production inconsistency (Zhou
et al., 2021). To meet the demand for a large number of
functional stem cells for successful clinical translation, such as
tissue regeneration, effective quality control of MSCs functions is
required for high-quality, consistent, large-scale biomanufacturing
of MSCs (Dwarshuis et al., 2017; Aijaz et al., 2018).

Although MSCs have been studied for decades, it is highly
challenging to exclusively differentiate MSCs into a single desired
cell type. Consequently, the identity and purity of the resulting cell
population are critical for cell-based therapies. At present, the
evaluation of the identity and purity of cell populations derived
from MSCs typically involves measuring specific marker genes, or a
combination of suchmarkers. However, this method of classification
raises concerns regarding the selection and specificity of these
marker genes. Furthermore, current approaches for characterizing
MSCs functions are lacking in clinical relevance, throughput, and
robustness, highlighting the necessity for an automatic and robust
method for quality control in MSCs functions.

Recently, it has been reported that MSCs functions, particularly
differentiation potential, relate to cell morphology by exploiting
advances in high-resolution microscopic imaging (Nombela-Arrieta
et al., 2011; Singh et al., 2014; Kim et al., 2022a). For example, MSCs
morphology has been correlated with differentiation capacity
(Matsuoka et al., 2013; 2014; Lan et al., 2022a) and passage
number (Lo Surdo and Bauer, 2012). Recent advancements in
machine learning provide opportunities for predicting stem cell
fate by utilizing large datasets of stem cell characteristics (Fan et al.,
2017; Ashraf et al., 2021; Zhu et al., 2021). Among these machine
learning methods, deep learning techniques have emerged as
powerful tools to predict and identify stem cell patterns and
lineage relationships (Kusumoto and Yuasa, 2019; Ren et al.,

2021). These models can identify key features such as molecular
signatures, cell morphology, and gene expression that influence stem
cell fate, allowing for precise differentiation predictions. Deep
learning algorithms can analyze this data to develop predictive
models that accurately forecast the fate of stem cells, such as
their differentiation into specific cell types, including osteocytes,
adipocytes, or neurons. Machine learning algorithms have also been
employed to predict MSC osteogenic potential (Matsuoka et al.,
2013; Lan et al., 2022a), microenvironmental cues (Vega et al., 2012;
Chen et al., 2016), and neural stem cell differentiation and blastocyst
formation (Liao et al., 2021; Zhu et al., 2021). However, the majority
of machine learning-based approaches rely on datasets collected
from fixed cells rather than live cells. This method, exemplified by
techniques like immunofluorescent staining, is time-consuming and
uneconomical. Thus, there is an urgent need for an effective deep
learning-based approach that can accurately predict and identify the
fate of stem cells without the need for cell fixation and staining.

Recently, there has been growing interest in identifying
differentiated stem cells based on accurate cellular morphology
recognition using a simple microscope setup, thanks to the use of
convolutional neural networks (CNNs) (Matsuoka et al., 2013; Dursun
et al., 2021; Kim et al., 2022a; Chen et al., 2023). Matsuoka et al. has
applied Ridge Regression as the machine learning modeling method to
quantitatively predict cellular osteogenic potential (Matsuoka et al.,
2013). Waisman et al. trained a CNN with transmitted light
microscopy images to distinguish pluripotent stem cells from early
differentiated cells (Waisman et al., 2019). Zhu et al. developed a deep
learning-based platform to predict neuron stem cells (NSCs)
differentiation using brightfield images without labelling (Zhu et al.,
2021). Kusumoto et al. developed an automated deep learning-based
system to identify endothelial cells derived from induced pluripotent
stem cells (Kusumoto et al., 2018). Recently, Lan et al. developed a deep
learning model called osteogenic convolutional neural network
(OCNN) based on single-cell laser scanning confocal microscope
(LSCM) images to predict osteogenic differentiation of rat bone
marrow mesenchymal stem cells (rBMSCs) (Lan et al., 2022b). The
OCNNmodel demonstrated its potential in predicting osteogenic drug
effects, biomaterial development for bone tissue engineering, and cell-
matrix interaction research. A transfer learning-based approach was
utilized as the feature extractor predicting, with four well-performing
models (VGG 19, InceptionV335, Xception, and DenseNet121) pre-
trained on ImageNet. With over 85% accuracy, the results
demonstrated the potential of a computer vision based method for
identifying stem cell differentiation (Kim et al., 2022b). More recently,
Zhou et al. introduced a predictive model for classifying hMSC
differentiation lineages using the k-nearest neighbors (kNN)
algorithm (Zhou et al., 2023). It provided accurate prediction of
lineage fate on different types of biomaterials as early as the first
week of hMSCs culture with an overall accuracy of 90.63% on the test
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data set. Although various CNN approaches have been employed to
predict cell differentiation based on cellular morphology, achieving
high prediction accuracy and precision remains a challenge. In
response, our study leveraged innovative methodologies, integrating
live-cell imaging with advanced deep learning techniques, specifically
using a Convolutional Neural Network (CNN), to achieve exceptional
prediction efficiency in identifying adipogenic and osteogenic
differentiated hMSCs. Although several deep-learning based
methods have been utilized to efficiently predict stem cell fate
based on microscopic images, there is a still emerging need to
identify and predict stem cell lineages based on live-cell imaging
without fixation and staining. This motivated our work. Moreover,
in order to choose appropriate deep-learning approaches, we have
reviewed previous studies and most current deep-learning models. We
systematically developed and evaluated four distinct CNN models:
VGG 19, Inception V3, ResNet 18, and ResNet 50, to discern the
cellular morphology changes associated with adipogenic and
osteogenic differentiation. These four models were chosen based on
their performance regarding accuracy, parameters, and performance in
other deep-learning applications (Saber et al., 2021; Sahinbas and
Catak, 2021; Palanivel and Nallasamy, 2023). Recently, ResNet 18 and
ResNet 50 are most popular networks in classification of stem cell
differentiation (Waisman et al., 2019; Chen et al., 2023; Kim et al.,
2023). However, a comprehensive comparison of these two models
with other models (VGG 19, Inception V3) has not been investigated,
to the best of our knowledge. Our comprehensive analysis spanned
multiple time points, ranging from 1 day to 15 days. We placed a
primary focus on essential performance metrics such as accuracy, area
under the Receiver Operating Characteristic curve (AUC), sensitivity,
precision, and F1-score, applying these to both binary and multi-class
classification of differentiated cells.

Materials and methods

Cell culture

Human Bone Marrow Derived Mesenchymal Stem Cells
(hMSCs) were acquired from Lonza and PromoCell. According
to the manufacturer, hMSCs were isolated from normal adult
human bone marrow withdrawn from bilateral punctures of the
posterior iliac crests of normal volunteers. Four vials of cells are
purchased from different volunteers with different ages, which
indicate the heterogeneity of hMSCs. hMSCs were cultured in
mesenchymal stem cell basal medium MSCBM (PT-3238, Lonza)
with GA-1000, L-glutamine, and mesenchymal cell growth factors
(PT-4105, Lonza). Cells were cultured in 10 cm tissue culture dishes
at 37°C and 5% CO2 in a humidified incubator. Cells were
maintained regularly with medium change every 3 days and
passaged using 0.25% EDTA-Trypsin (Invitrogen).

hMSCs osteogenic differentiation

Osteogenic induction medium were prepared by adding
Osteogenic Differentiation SingleQuotsTM Supplements (PT-
4120), which include dexamethasone, L-glutamine, ascorbate,
penicillin/streptomycin, MCGS, β-glycerophosphate into 170 mL

of hMSC osteogenic differentiation basal medium (PT-3924,
Lonza). To induce osteogenesis, hMSCs were plated at the
concentration of 3 × 103 per cm2 of tissue culture surface area in
a 12- well plate. Cells were incubated at 37°C in a humidified
atmosphere of 5% CO2 to allow cells to adhere. Following
incubation, MSC basal medium was replaced with osteogenesis
induction medium. A control group of hMSCs were cultured in
basal MSC medium without osteogenic induction.

hMSCs adipogenic differentiation

Adipogenic induction medium were prepared by adding
Adipogenic Differentiation SingleQuots Supplements (PT-4135),
which include h-insulin, L-glutamine, MCGS, dexamethasone,
indomethacin, IBMX, and GA-1000, into 170 mL of adipogenic
differentiation medium. To initiate adipogenesis, hMSCs were
seeded onto tissue culture surfaces at a density of 3 × 103 cells
per square centimeter in a 12-well plate. After incubating for 24 h at
37°C in a humidified atmosphere containing 5% CO2 to promote cell
adhesion, the MSC basal medium was substituted with an
adipogenic induction medium. A control group of hMSCs was
grown in MSC basal medium without the addition of induction
factors.

Alkaline phosphatase activity (ALP) staining

To quantify hMSCs osteogenic differentiation, cells were stained
for alkaline phosphatase (ALP) using the alkaline phosphatase kit
using a modified protocol. For live staining, hMSCs were stained
using AP live stain at the concentration of 10x stock solution for
30 min according to the manufacturers’ instructions. For nucleus
staining, Hoechst 33,342 staining solution was prepared in 1x PBS at
1:2000 dilution and added to cells for 15 min. The cells were then
washed three times with 1 × PBS, 15 min each time, before taking
images.

Data acquisition and preprocessing

Images were captured using the ZOE Fluorescent Cell Imager
with an integrated digital camera (BIO-RAD). All bright field images
were taken after 1, 2, 3, 5, 7, 10, and 13 days of differentiation. Our
data set contains 2,336 images taken at varying times after the initial
culturing of the cells and divided into four groups: control,
adipogenic, osteogenic, and adipogenic + osteogenic. The source
images are gray scale with a resolution of 2,592 × 1,944 pixels.

The image preprocessing steps are as follows: 1) Resizing each
image with bilinear interpolation and then converted to RGB format
using Floyd-Steinberg dithering. 2) Normalizing RGB values by
mean and standard deviation, with specific parameters detailed in
Supplementary Table S1 RGB Normalization Values. 3) Cropping
the images to match the input size required by the models. For the
training data, this cropping is performed randomly, while for the
testing data, a center crop is applied to ensure consistent results
during testing. 4) Horizontal reflection was applied to increase the
diversity and reduce the risk of overfitting.
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The models utilized in our study were pretrained on the
ImageNet1k dataset, a vast repository comprising over one
million images categorized into one thousand distinct classes.
Intriguingly, this dataset predominantly encompasses images of
non-cellular subjects, with the majority of classes representing
animals or household objects. Furthermore, the dataset exhibits
fine-grained classification, exemplified by the presence of multiple
distinct classes for closely related species, such as four different crab
species and three distinct lobster species. Consequently, these
pretrained models can be conceptualized as having undergone
training not only in image classification but also in image
differentiation. To adapt these models for our specific tasks, we
introduced an additional densely connected layer featuring softmax
activation, enabling them to produce probability distributions for
each class. Additionally, all models were equipped with a stochastic
gradient descent with momentum (SGDM) optimizer, characterized
by a learning rate (α) set to 0.001 and momentum (β) set to 0.99,
while employing categorical cross-entropy loss. Importantly, prior
to training, we initialized each model’s weights based on their
respective pretraining, with none of the convolutional layers
being frozen. This decision was guided by the substantial
dissimilarity between our dataset and the ImageNet1k dataset.
Allowing all convolutional weights to be trainable permitted the
models to leverage their pretraining “knowledge” as a foundational
starting point, expediting the transfer of this knowledge into a
completely novel domain.

Transfer learning

Transfer learning is defined as applying a model trained on a
general task to a new related task (You et al., 2019). Building a model
using only cell images as training data is often not the most practical
strategy since it requires large computational resources, and high
quality labeled data is scarce. In addition, the deeper a network
becomes (i.e., the more layers it has), the more training data it
requires to converge on a best estimate for all parameters. Pre-
trained convolutional neural networks (CNNs) have been trained on
large-scale data sets and have learned general feature representations
that capture meaningful patterns and structures in images of all
types. In order to properly adapt these models to our task, we
provide additional training data that is used to fine tune the
parameters of the final layers in the network (Paszke et al.,
2019). This fine-tuning process helps customize the model for
our particular application while benefiting from the general
knowledge the pretrained model has already learned.

Evaluation metrics

To assess the performance of both binary and multi-class
classification models, it necessitated the utilization of two distinct
sets of evaluation metrics to evaluate their respective performances.
For binary classification, we classified cells without differentiation as
negative class, while cells exhibiting adipogenic differentiation were
classified as positive class. In the context of multi-class classification,
one-vs-rest (OvR) strategy was applied, where one class is treated as

positive and the rest of the classes are combined into the negative
class.

To evaluate and compare the different model performance, the
true positive (tp), true negative (tn), false positive (fp), and false
negative (fn) values were calculated. Then, five major measurements,
including accuracy, precision, recall, F1 Score, and AUC, were
calculated as follows, Eqs 1–4.

Accuracy � tp + tn

tp + fp + fn + tn
(1)

Precision � tp

tp + fp
(2)

Recall � tp

tp + fn
(3)

F1 Score � 2pRecallpPrecision
Recall + Precision

(4)

Precision, also known as repeatability, quantifies the extent to
which repeated measurements conducted under consistent
conditions yield comparable outcomes (Eq. 2). In probabilistic
terms, precision denotes the likelihood of a correct classification
when the model predicts a positive label. On the other hand, recall,
or sensitivity, is defined as the ratio of true positives to the sum of
true positives and false negatives (Eq. 3). One can conceptualize
recall as the proportion of correctly classified values, given that the
true class for those values is positive. An important facet of
precision and recall lies in their equilibrium
relationship. Assuming that true positives and true negatives
remain constant, elevating precision necessitates a
corresponding reduction in recall. This adjustment occurs
because the mitigation of false positives entails an increase in
false negatives. Therefore, to quantify this trade-off, we calculate
the harmonic mean of precision and recall, commonly known as
the F1 score, Eq. 4. It is worth noting that precision, recall, and
F1 score were compared exclusively for the binary classification
because they are calculated assuming only two output classes.

The other two metrics, accuracy and area under ROC curve
(AUC), were calculated and compared for both binary and multi-
class classification. Accuracy is a fundamental metric used to assess
classification models, representing the ratio of correct predictions to
total number of predictions. AUC measures the probability that a
random positive is positioned to a random negative example. AUC
ranges in value from 0 to 1, with 0 indicating a model with
completely incorrect predications and 1 indicting a model with
entirely accurate predictions. AUC is desirable for the following two
reasons: 1) AUC is scale-invariant. It measures how well predictions
are ranked, rather than their absolute values. 2) AUC is
classification-threshold-invariant. It measures the quality of the
model’s predictions irrespective of what classification threshold is
chosen. However, AUC is originally designed for binary
classification. To apply AUC value for our multi-class
classification, we utilized the “one vs. rest” method, i.e., we
calculated binary AUC sores for each class independently and
then averaged the four binary classification AUC scores as overall
AUC score for multiclass. This is crucial, particularly considering
our smallest class, “adipogenic + osteogenic,” which we anticipated
would be challenging for the models to distinguish due to its multi-
class nature.
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Results

Datasets and procedures

Upon stimulation, hMSCs undergo a morphology change,
transitioning from a spindle shape to a round shape.
Consequently, we captured images on days 1, 3, 5, 7, 10, 13 and
15 of hMSCs undergoing adipogenic and osteogenic differentiation.
For comparison, a positive control without induction was
conducted. It is worth noting that a group of cells exposed to
both adipogenic and osteogenic induction media was included to
evaluate the CNN training model. In total, our dataset comprises
2,336 images, spanning control, adipogenic, osteogenic, and
combined adipogenic + osteogenic groups. A schematic
illustration of the deep learning framework and the deep neural
network training process is depicted in Figure 1. After collecting the
raw image data, general features like cell morphological changes are
detected to form the convolution and pooling layers. Subsequently,
specific features such as calcium deposition during osteogenic
differentiation and lipid vacuole formation during adipogenic

differentiation are identified. Finally, the dataset is classified into
different groups based on these distinctive features, as illustrated in
Figure 1A. To leverage the benefits of large neural networks while
working with a limited dataset and preserving the predictive efficacy
of our model, we pre-trained four different model architectures:
VGG 19, Inception V3, ResNet 18, and ResNet 50 on the
ImageNet1k dataset. This dataset is a vast repository containing
over one million images categorized into one thousand distinct
classes. For both binary and multi-class classification, all images
were partitioned into three distinct sets, ensuring a balanced
distribution. This resulted in a train-validation-test ratio of 3:1:1.
It is important to note that this balanced partitioning ensured a
roughly even distribution of each of the four classes across the
training, validation, and test datasets. As a result, the training dataset
for multi-class classification included 1,407 images, the validation
set contained 473 images, and the test set had 456 images. For binary
classification, the training set had 935 images, the validation set
313 images, and the testing set 304 images, as shown in Figure 1B.

Following each training epoch, the model was systematically
evaluated with a single pass over the validation dataset, and the

FIGURE 1
Schematic Illustration of the deep learning (DL) framework and deep neural network (DNN) training process used to identify mesenchymal stem cell
differentiation. (A) Illustration of overall deep learning framework. Mesenchymal stem cells were acquired from four different donors. Bright field images
of hMSCs with different treatments were obtained for classification. (B) Illustration of the process of deep neural network (DNN) training. The raw image
data were initially obtained and divided into different datasets: training, validation, and testing sets on a ratio of 60:20:20. To increase the datasets,
the images were cropped to increase the total number of datasets. Finally, the datasets were trained, tested, and validated using transfer learning.
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training data was shuffled. Subsequently, we selected the model with
the highest validation accuracy as our final choice. Four pre-trained
model architectures, VGG 19, Inception V3, ResNet 18, and ResNet
50 were subsequently compared to assess their network performance
in terms of accuracy and area under the receiver operator
characteristic curve (AUC). All models were trained and
evaluated using the same data set splits for a total of 30 epochs
before the final results were compared. Additionally, all
convolutional layers were initialized based on the weights
obtained during each model’s pretraining on the ImageNet1k
dataset. Figures 2A–D showed the comparison of training and
validation accuracy per training epoch of VGG 19, Inception V3,
ResNet 18 and ResNet 50. All these four model architectures
exhibited high validation accuracy (higher than 90%) after
15 training epochs. We observed that extending the training
epoch count might not enhance the outcomes. Out of these four
networks, Inception V3 stood out with closely aligned training and
validation accuracy and required fewer than 10 epochs to achieve
approximately 90% validation accuracy. Both ResNet 18 and ResNet
50 demonstrated comparable training and validation accuracy
trends. Increasing the depth of network from 18 to 50 marginally
enhanced the validation accuracy, Figures 2C, D. It is worth noting

that VGG’s training and validation curves show a significant
difference in accuracy, with the model achieving notably higher
accuracy on the training dataset compared to the validation dataset.
Furthermore, as the number of training epochs increases, the curves
do not converge to the same value, a clear indicator of overfitting. To
address this, implementing early stop becomes essential to achieve
improved convergence and strike the balance between model
complexity and generalization.

Binary classification

To evaluate the performance of the four CNN networks,
namely, VGG 19, Inception V3, ResNet 18, and ResNet 50, a
binary classification was first conducted to identify adipogenic
differentiated cells, as illustrated in Figure 3A. In our study,
images characterized by a distinct adipogenic differentiation
profile were designated as the positive class (Figure 3A, Adi
group), while images without characteristics were categorized as
members of the negative class (Figure 3A, control group).
Figure 3B–D showed the ROC curves of these four different
models, VGG 19, Inception V3, ResNet 18, and ResNet 50. For a

FIGURE 2
Comparison of training and validation accuracy per training epoch of different models, VGG 19 (A), Inception V3 (B), ResNet 18 (C), and ResNet
50 (D). All CNN networks achieved results close to 100% of accuracy after 15 training epochs.
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comprehensive evaluation and comparison of these models for
binary classification tasks, various performance metrics,
including accuracy, AUC, precision, sensitivity, and
F1—score, were assessed and analyzed at multiple time points
(day 1, day 2, day 3, day 5, day 7, day 10, day 13, and day 15), as
summarized in Table 1.

VGG 19 consistently exhibited high accuracy and AUC values
across all evaluation days, with an overall accuracy and F1-score of
0.9572 and 0.9587, respectively. It demonstrated excellent
sensitivity and precision, especially on day 10, where it achieved
perfect scores. Inception V3 displayed a strong overall
performance, with an overall accuracy of 0.9507 and F1-score
of 0.9527. Although Inception V3 demonstrated a lower accuracy
on day 1, it rapidly improved to achieve accuracy levels and
matched VGG 19 from day 2 onwards, eventually reaching
perfect accuracy (1.0000) on days 6, 7, and 10. ResNet 18, on

the other hand, showed remarkable accuracy initially, but
experienced some fluctuations, reaching a maximum of
1.0000 accuracy on day 7. Overall, ResNet 18 displayed
fluctuating performance, resulting in an overall F1-score of
0.9365. While it achieved outstanding outcomes on day 1 and
day 15, it experienced a decline in scores on day 3. Nonetheless, it
consistently maintained high levels of precision and sensitivity.
Finally, ResNet 50 consistently performed exceptional accuracy,
maintaining a perfect score (1.0000) on multiple days, indicating
robust and consistent performance. Its overall F1-score is 0.9571. It
achieved perfect accuracy and AUC values on multiple days and
demonstrated high sensitivity and precision, indicating robust and
consistent binary classification capabilities.

In summary, all four models displayed strengths and weaknesses
in various aspects of their performance. ResNet 50 and VGG
19 emerged as the top-performing models in terms of accuracy,

FIGURE 3
Binary classification and respective ROC curves of four different testing models, VGG 19, Inception V3, ResNet 18, and ResNet 50. (A) Brightfield
images of hMSCs under varying conditions. Control: cells were cultured in basal medium without induction; Adi: cells were induced for adipogenesis;
Ost: cells were induced for osteogenesis; Ost + Adi: cells were cultured in ostegenic and adipogenic induction mediumwith 1:1 ratio. Scale bar: 100 µm.
ROC curves of VGG 19 (B), Inception V3 (C), Resnet 18 (D), and ResNet 50 (E).
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with ResNet 50 achieving perfect accuracy on all days. Inception
V3 also performed well, while ResNet 18 exhibited variable
performance but still maintained robust precision and sensitivity.

Therefore, the choice of the most suitable model may depend on
specific task requirements and priorities among these performance
metrics.

TABLE 1 The performance of each model for binary classification.

Model Dataset Accuracy AUC Sensitivity Precision F1 - score

VGG 19 Day 1 0.9211 0.9972 1.0000 0.8636 0.9268

Day 2 0.9487 0.9974 1.0000 0.9091 0.9524

Day 3 0.9750 0.9950 0.9500 1.0000 0.9744

Day 5 0.9250 0.9850 0.9500 0.9048 0.9268

Day 7 0.9750 0.9950 0.9500 1.0000 0.9744

Day 10 1.0000 1.0000 1.0000 1.0000 1.0000

Day 13 0.9333 1.0000 0.9000 1.0000 0.9744

Day 15 0.9744 1.0000 0.9500 1.0000 0.9744

Overall 0.9572 0.9895 0.9618 0.9557 0.9587

Inception V3 Day 1 0.8158 0.9806 0.9474 0.7500 0.8372

Day 2 0.9487 1.0000 0.9000 1.0000 0.9474

Day 3 0.9500 1.000 0.9000 1.0000 0.9474

Day 5 0.9250 1.0000 0.9000 0.8696 0.9302

Day 7 0.9750 0.9850 0.9500 1.0000 0.9744

Day 10 1.0000 1.0000 1.0000 1.0000 1.0000

Day 13 1.0000 1.0000 1.0000 1.0000 1.0000

Day 15 1.0000 1.0000 1.0000 1.0000 1.0000

Overall 0.9507 0.9926 0.9618 0.9438 0.9527

ResNet18 Day 1 0.9737 1.000 0.9474 1.0000 0.9730

Day 2 0.9487 0.9921 0.9000 1.0000 0.9474

Day 3 0.8000 0.9825 0.6000 1.0000 0.7499

Day 5 0.9500 0.9750 1.000 0.9091 0.9524

Day 7 0.9750 0.9750 0.9500 1.0000 0.9744

Day 10 0.9474 1.0000 0.8889 1.0000 0.9412

Day 13 0.9000 1.0000 0.8500 1.0000 0.9189

Day 15 1.0000 1.0000 1.000 1.0000 1.0000

Overall 0.9375 0.9890 0.8917 0.9859 0.9365

ResNet 50 Day 1 1.0000 1.0000 1.0000 1.0000 1.0000

Day 2 0.9231 1.0000 0.8500 1.0000 0.9189

Day 3 0.8000 1.0000 0.6500 1.0000 0.7500

Day 5 0.9750 1.0000 1.0000 0.9524 0.9756

Day 7 0.9750 0.9975 0.9500 1.0000 0.9744

Day 10 1.0000 1.0000 1.0000 1.0000 1.0000

Day 13 1.0000 1.0000 1.0000 1.0000 1.0000

Day 15 1.0000 1.0000 1.0000 1.0000 1.0000

Overall 0.9572 0.9958 0.9236 0.9932 0.9571
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Multi-class classification

We proceeded to conduct multi-class classification using all
datasets: control, osteogenic differentiation, and adipogenic
differentiation. As shown in Figure 4A, hMSCs under osteogenic
and adipogenic differentiation exhibited distinct morphological
changes compared to the control group. In the control group,
where hMSCs were cultured in basal medium without
differentiation induction, they maintained spindle shapes. In
contrast, osteogenic-induced hMSCs transitioned from a spindle
to a cuboidal shape as they differentiated and mineralized. Similarly,
adipogenic-induced hMSCs transitioned from a spindle to a
cuboidal shape and then formed lipid vacuoles, as depicted in
Figure 4B. Observable morphological changes led us to
hypothesize that the four pre-trained convolutional neural
network models, namely, VGG 19, Inception V3, ResNet 18, and
ResNet 50, could classify these three classes effectively. We then
compared the performance of these models, focusing on accuracy

and AUC, as shown in Table 2. Regarding accuracy, both VGG
19 and ResNet 50 displayed outstanding results with an overall score
of 0.9474. Inception V3, though slightly behind with an accuracy of
0.9342, still demonstrated a strong performance. ResNet 18 closely
matched the results of VGG 19, achieving an overall accuracy of
0.9408. When it came to AUC, ResNet 50 stood out with the highest
overall value of 0.9936. VGG 19 and ResNet 18 also performed
commendably with overall AUC scores of 0.9928 and 0.9925,
respectively. Inception V3, with an overall AUC of 0.9899,
showcased a competitive classification capability. In summary, all
four models exhibited excellent performance, characterized by
accuracy and AUC. ResNet 50 stood out with high accuracy and
AUC, while VGG 19 also maintained high accuracy. Although
Inception V3 and ResNet 18 had slightly lower accuracy and
AUC values, their performance remained commendable.

Furthermore, we plotted and compared the accuracy of each
model across different time points in Figure 5. All four models
consistently achieved excellent performance with accuracy above

FIGURE 4
Multi-class classification of control, adipogenic differentiation, and osteogenic differentiation. (A) Representative images of hMSCs under different
conditions. Control: cells were cultured in basal medium without induction; OST: cells were induced for osteogenesis. Scale bar: 100 µm. Green: ALP
staining; Blue: cell nucleus stained with HoeChst 33,342. (B). Brightfield images of hMSCs under adipogenic differentiation conditions at different time
points. Green fluorescence indicates lipid marker (Bodipy). Scale bar: 50 µm. (C) ROC curves of VGG 19, Inception V3, Resnet 18, and ResNet 50.
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90% for the cells at day 1, 2, 7, 10, 13, and 15. Intriguingly, on days
3 and 5 of differentiation, the accuracy slightly dipped to around
88%. This decline might be due to the heterogeneity of the cells. Even

with this minor reduction in accuracy on days 3 and 5, all models
exhibited impressive overall performance, with VGG 19 and ResNet
50 being particularly noteworthy.

Additionally, it is vital to recognize that each model has its
unique set of parameters, as outlined in Supplementary Table S2.
Although models with more parameters have the potential to
manage more intricate scenarios, it is crucial to understand that
continuously increasing the parameter count might not yield
proportional benefits, especially when there’s limited training
data. Moreover, larger models require more computational
resources both for training and for producing results. Towards
the conclusion, we generated confusion matrices represented in
Figures 6, 7, providing a more comprehensive evaluation. Notably,
in the multiclass task, Inception V3 did not perform as well as other
models in distinguishing from the control group. In the binary
classification task, however, the model demonstrated excellent
precision but exhibited a trade-off with recall, particularly when
compared to ResNet 50.

Discussion

In this study, we developed and compared four convolutionary
neural network models, including VGG 19, Inception V3, ResNet
18, and ResNet 50, to identify adipogenic and osteogenic
differentiated cells based on morphology changes. To obtain
better performance, all these four CNN models were pre-trained
on the ImageNet1k dataset, a vast repository comprising over one
million images categorized into one thousand distinct classes. Next,
we evaluated the performance metrics of these four models in both
binary and multi-class classification of differentiated cells across
multiple time points (day 1, day 2, day 3, day 5, day 7, day 10, day 13,
and day 15). The key performance metrics include accuracy, AUC,
sensitivity, precision, and F1-score. Among all these four different
models, ResNet 50 proves to be the most effective choice with its
highest accuracy and AUC in both multi-class and binary
classification tasks. Although VGG 19 matched ResNet 50’s
accuracy in both tasks, ResNet 50 consistently outperformed with
better AUC scores, emphasizing its effectiveness in identifying

TABLE 2 Comparison of accuracy and AUC of each model for multiclass
classification.

Model Dataset Accuracy AUC

VGG 19 Day 1 0.9825 1.0000

Day 2 1.0000 1.0000

Day 3 0.8814 0.9957

Day 5 0.8833 0.9957

Day 7 0.9661 0.9849

Day 10 0.9649 1.0000

Day 13 0.9184 1.0000

Day 15 0.9821 1.0000

Overall 0.9474 0.9928

Inception V3 Day 1 0.9474 0.9935

Day 2 0.9831 0.9978

Day 3 0.8305 0.9769

Day 5 0.8333 0.9667

Day 7 0.9322 0.9654

Day 10 0.9649 1.0000

Day 13 1.0000 1.0000

Day 15 1.0000 1.0000

Overall 0.9342 0.9899

ResNet18 Day 1 0.9649 0.9995

Day 2 0.9661 0.9983

Day 3 0.8305 0.9871

Day 5 0.9500 0.9987

Day 7 0.9492 0.9771

Day 10 0.9649 1.0000

Day 13 1.0000 1.0000

Day 15 0.9107 0.9776

Overall 0.9408 0.9925

ResNet 50 Day 1 0.9474 0.9991

Day 2 0.9661 0.9987

Day 3 0.8644 0.9833

Day 5 0.9167 0.9867

Day 7 0.9661 0.9893

Day 10 0.9474 1.0000

Day 13 1.0000 1.0000

Day 15 0.9821 0.9990

Overall 0.9474 0.9936

FIGURE 5
Comparison of test accuracy of different days using four different
models, including VGG 19, Inception V3, ResNet 18, and ResNet 50.
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differentiated cells. As mentioned earlier, when comparing their
performance, it is crucial to consider the parameters and resources
of each network. Although ResNet 50 has more parameters, the
substantial gain in accuracy in both binary and multi-class
classification compensates for this limitation. In comparison,
VGG 19 had slightly more parameters than ResNet 50. Thus,
ResNet 50 excelled in accuracy and AUC while maintaining a
moderate parameter count, making it the preferred choice for
identifying adipogenic and osteogenic differentiated cells based
on morphological changes. Furthermore, the marginally longer
processing time of ResNet 50 was not a significant concern,
especially when juxtaposed with traditional methods that take
hours. It is also worth mention that the field of deep learning is
dynamic, with continuous research leading to the development of
new models and improvements. The models utilized in this study
represent only a subset, and numerous other models and variations
have emerged over the years. Four pre-trained models were selected
for this study, all demonstrating satisfactory performance. This
pioneering work aims to establish these models as benchmark
models within the field. Moving forward, our focus will center on
DenseNet and Vision Transformers (ViT). Recognizing the
potential for ensemble methods to outperform individual models,

we anticipate leveraging the strengths of all these architectures to
enhance overall model performance.

These morphology-based CNN approaches offer significant
advantages in predicting osteogenic and adipogenic
differentiation, especially in the fields of biomanufacturing, cell-
based therapy, and regenerative medicine. Moreover, these four
models have the potential to predict other stem cell differentiation,
such as, cell fate of human induced pluripotent stem cells (iPSCs),
provided there are observable morphological changes associated
with lineage adoption. These approaches offer automated tools for
the precise discrimination between cell types, eliminating the need
for manual feature classification, which is both time-consuming and
expensive. Traditional approaches that involve staining biomarkers
also rely heavily on specific staining reagents, markers, and cell
types, which are factors that can affect prediction accuracy. In
contrast, morphology-based CNN approaches are robust to
variations in cell shape and adaptable to a wide range of
experimental conditions. Their proficiency in handling vast
datasets facilitates comprehensive analyses of cell differentiation
processes, potentially hastening advancements in biomanufacturing,
tissue engineering, and regenerative medicine. One of the key
challenges in biomanufacturing lies in achieving a high purity of

FIGURE 6
Confusionmatrixes of multi-class classification of different models. (A) VGG 19model, (B) Inception V3model, (C) ResNet 18model, and (D) ResNet
50 model.
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a specific lineage of stem cells, thus, one potential application in
biomanufacturing is the integration of a deep-learning approach
into automated, real-time analysis and feedback-controlled
osteogenic differentiation. Specifically, we envision an automated
platform capable of detecting changes in stem cell morphology,
predicting stem cell fate, and controlling and directing osteogenic or
adipogenic differentiation in real time. If an unexpected lineage is
identified and reaches a certain percentage, this automated platform
could adjust the microenvironment, for instance, by adding a
chemical inducer to the bioreactor, to steer MSCs towards
differentiating into a specific lineage.

Future efforts to improve the classification model should include
incorporating more training data from a diverse range of donors and
time points. Additionally, traditional staining assays will be
performed to validate the model’s efficiency by staining for
osteogenic biomarkers, such as ALP and Runx, as well as
adipogenic markers like PPAR-γ. Subsequent models could also
enhance their capabilities by incorporating more types of
differentiated cells, including chondrogenic differentiation, and
employing multi-label classifications without relying on
independent classes. Such improvements would further enhance
the versatility of these models, providing a deeper understanding of
their precision in analyzing intricate aspects of cell morphology. An
alternative strategy to identify a broader spectrum of cells involves
the adoption of a Recursive Convolutional Neural Network (RCNN)

architecture. Instead of classifying the entire image, an RCNN can
systematically evaluate regions within each image, allowing for
precise localization and identification of differentiated cells. This
approach not only facilitates the independent identification of
multiple cell types but also provides information about the
spatial distribution and size of each cell cluster, enabling the
computation of differentiation degrees. It offers a more
streamlined and efficient alternative compared to using two
separate models. Nonetheless, it is important to note that this
technique requires more complex training data, necessitating the
delineation and labeling of each cell, which poses a significant data
annotation challenge. Despite these challenges, the RCNN approach
holds substantial promise and has the potential to simplify the
overall cell identification process.

Conclusion

In this study, we developed and compared four convolutional
neural network (CNN) models: VGG 19, Inception V3, ResNet 18,
and ResNet 50, for the purpose of identifying adipogenic and
osteogenic differentiated cells based on cellular morphological
changes. We conducted a comprehensive evaluation of these
models in both binary and multi-class classification of
differentiated cells at various time points (day 1, day 2, day 3,

FIGURE 7
Confusion matrixes of binary classification of different models. (A) VGG 19 model, (B) Inception V3 model, (C) ResNet 18 model, and (D) ResNet
50 model.
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day 5, day 7, day 10, day 13, and day 15), focusing on the key
performance metrics that include accuracy, AUC, sensitivity,
precision, and F1-score. Among these four models, both VGG
19 and ResNet 50 showed excellent performance with high
accuracy for both binary (0.9572) and multi-class classification
(0.9474). ResNet 50 showed consistent performance with high
AUC (0.9936) for multi-class classification. Importantly, all these
four models exhibited exceptional performance with the overall
accuracy of more than 0.93, and overall AUC score of more than
0.94. By analyzing the daily images of differentiated cells, all these
models can accurately detect subtle morphological changes within
1 day of differentiation. In summary, our study underscores the
immense potential of using a CNN approach to predict stem cell fate
based on cellular morphological changes of differentiated cells. This
approach holds promise for enhancing the application of cell-based
therapy and expanding our knowledge of regenerative medicine.
Additionally, this non-invasive method, relying solely on basic
bright-field microscope images, has the potential to facilitate
biomanufacturing and the translation of these advancements into
practical cell-based therapies.
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