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Pluripotent stem cells of the mammalian epiblast and their cultured
counterparts—embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs)—
have the capacity to differentiate in all cell types of adult organisms. An artificial
process of reactivation of the pluripotency program in terminally differentiated
cells was established in 2006, which allowed for the generation of induced
pluripotent stem cells (iPSCs). This iPSC technology has become an invaluable
tool in investigating the molecular mechanisms of human diseases and
therapeutic drug development, and it also holds tremendous promise for iPSC
applications in regenerative medicine. Since the process of induced
reprogramming of differentiated cells to a pluripotent state was discovered,
many questions about the molecular mechanisms involved in this process have
been clarified. Studies conducted over the past 2 decades have established that
metabolic pathways and retrograde mitochondrial signals are involved in the
regulation of various aspects of stem cell biology, including differentiation,
pluripotency acquisition, and maintenance. During the reprogramming process,
cells undergo major transformations, progressing through three distinct stages
that are regulated by different signaling pathways, transcription factor networks,
and inputs from metabolic pathways. Among the main metabolic features of this
process, representing a switch from the dominance of oxidative phosphorylation
to aerobic glycolysis and anabolic processes, are many critical stage-specific
metabolic signals that control the path of differentiated cells toward a pluripotent
state. In this review, we discuss the achievements in the current understanding of
the molecular mechanisms of processes controlled by metabolic pathways, and
vice versa, during the reprogramming process.
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Introduction

Epiblast cells residing in the inner cell mass (ICM) of the preimplantation embryo are
pluripotent stem cells that possess the capacity to differentiate into all cell types of the
mammalian organism, except extraembryonic trophoblast and primitive endoderm. Epiblast
cells under specific culture conditions are capable of infinitely maintaining a pluripotent state
ex vivo and are referred to as embryonic stem cells, or ESCs (Robertson et al., 1986;
Thompson et al., 1989; Thomson et al., 1998). The breakthrough studies of Shinya
Yamanaka’s laboratory discovered in 2006 an important process of reactivation of the
pluripotency program in terminally differentiated cells, establishing induced pluripotent
stem cells (iPSCs) via ectopic expression of the transcription factors (TFs) OCT4, SOX2,
KLF4, and cMYC (OSKM) (Takahashi and Yamanaka, 2006). Thus, iPSCs are artificially
generated counterparts of ESCs, sharing all of their main features. Along with OSKM-based

OPEN ACCESS

EDITED BY

Konstantinos Chatzistergos,
Aristotle University of Thessaloniki,
Greece

REVIEWED BY

Derek Michael Dykxhoorn,
University of Miami, United States
Tamer Onder,
Koç University, Türkiye

*CORRESPONDENCE

Sergey A. Sinenko,
s.sinenko@incras.ru

RECEIVED 26 October 2023
ACCEPTED 13 December 2023
PUBLISHED 11 January 2024

CITATION

Sinenko SA and Tomilin AN (2024),
Metabolic control of
induced pluripotency.
Front. Cell Dev. Biol. 11:1328522.
doi: 10.3389/fcell.2023.1328522

COPYRIGHT

© 2024 Sinenko and Tomilin. This is an
open-access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Cell and Developmental Biology frontiersin.org01

TYPE Review
PUBLISHED 11 January 2024
DOI 10.3389/fcell.2023.1328522

https://www.frontiersin.org/articles/10.3389/fcell.2023.1328522/full
https://www.frontiersin.org/articles/10.3389/fcell.2023.1328522/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2023.1328522&domain=pdf&date_stamp=2024-01-11
mailto:s.sinenko@incras.ru
mailto:s.sinenko@incras.ru
https://doi.org/10.3389/fcell.2023.1328522
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2023.1328522


methods, somatic cells can be reprogrammed to pluripotency by
chemical treatment (Hou et al., 2013; Liuyang et al., 2023).
Nowadays, iPSC technology has become an invaluable tool to
investigate the molecular mechanisms of cell differentiation and
embryonic development, to model human diseases ex vivo, and to
develop therapeutic drugs for their treatment. Also, iPSCs hold
tremendous promise in cell replacement therapy and regenerative
medicine (Di Giorgio et al., 2007; Karagiannis et al., 2019;
Yamanaka, 2020; Sinenko et al., 2021a; Herriges et al., 2023).
iPSC reprogramming becomes a unique experimental system to
investigate molecular mechanisms that govern the reverse cell fate
transition. It also provides important clues to understand the
molecular mechanisms of natural cell fate specification during
mammalian development. Due to reprogramming to
pluripotency, cells undergo dramatic changes in various cellular
processes, including signal transduction and transcription networks,
metabolic flux regulation, and retrograde signaling of mitochondria
to the nucleus (Prieto et al., 2020).

Recent studies have identified molecular features of iPSC
reprogramming via various genetic and genomic approaches.
Cooperative binding of TFs, along with their transient and
permanent interactions with chromatin factors, orchestrate this
reprogramming (Chen et al., 2016; Chronis et al., 2017; Knaupp
et al., 2017; Li et al., 2017). Poised iPSC intermediates and their
molecular markers have also been identified during cellular
reprogramming (Schwarz et al., 2018; Ha et al., 2022). Single-cell
analyses determined the checkpoints and cell fate decisions of this
process (Zunder et al., 2015; Tran et al., 2019a; Francesconi et al.,
2019; Guo et al., 2019). In general, reprogramming is characterized
by the silencing of the somatic gene expression program and the
activation of the pluripotency gene network. Alongside master
regulators of transcription, epigenetic modifiers play a crucial
role in pluripotency acquisition. With the help of the above
approaches, it has also been established that fibroblasts undergo
mesenchymal-to-epithelial transition, progressing through
primitive streak-like intermediates, resulting in only a small part
of cells becoming mature iPSCs (Takahashi et al., 2014; Parenti et al.,
2016; Schiebinger et al., 2019; Liu et al., 2020; Xing et al., 2020).
Molecular marker expression analysis allowed to establish at least
three stages of the iPSC generation process: early (initiation), mid
(maturation), and late (stabilization) stages (Samavarchi-Tehrani
et al., 2010; Apostolou and Hochedlinger, 2013; Ha et al., 2022).
Cells undergoing reprogramming at each of these stages have unique
gene expression and metabolic profiles. Proliferation and
suppression of proapoptotic and senescent genes, including p53,
during the early stages (days 1–4) of the process are critical for
achieving efficient reprogramming to pluripotency (Schiebinger
et al., 2019). The early stage of iPSC reprogramming is the most
important stage at which many dramatic molecular and cellular
events controlling metabolic pathways, redox events, induction of
oxidative burst, mitochondria remodeling, mitophagy, induction of
innate immunity pathway, and epigenetic landscape occur (Hansson
et al., 2012; Kida et al., 2015). The intermediate stage is less
investigated in terms of metabolic changes, while the late stage of
reprogramming is characterized by almost complete activation of
the pluripotent factor network, increased proliferation, dominance
of glycolytic metabolism, and extensive epigenetic transformation.
Activating glycolytic flux during iPSC generation improves the

efficiency of the process, while impeding glycolysis has a
suppressive effect (Folmes et al., 2011; Panopoulos et al., 2012;
Zhang et al., 2012). Changes in the expression of metabolic genes,
which underlay the shift from oxidative phosphorylation (OxPhos)
to glycolysis, precede the activation of the pluripotency circuitry
(Folmes et al., 2011; Hansson et al., 2012; Mathieu et al., 2014;
Prigione et al., 2014; Cacchiarelli et al., 2015). In this review, we
discuss recent achievements in the study of interactions among the
factors involved in the induction of pluripotency with metabolic
pathways at the levels of 1) regulation of metabolic genes, 2)
regulation of mitochondria function and biogenesis, 3)
mitochondria retrograde signaling, and 4) reactive oxygen species
(ROS) signaling. We also discuss the importance of mitochondria
and OxPhos for successful cell reprogramming. Understanding how
molecular networks that regulate cellular reprogramming interact
with metabolic processes would help to develop more efficient and
safe iPSC generation protocols, meeting the demands of
regenerative medicine.

Main characteristics of the stages of
reprogramming toward pluripotency

To date, two approaches to reprogramming terminally
differentiated cells into a pluripotent state have been established.
One makes use of reprogramming TFs (Takahashi and Yamanaka,
2006), while the other, which was developed more recently, uses a
cocktail of several low-molecular-weight inhibitors and activators
(Hou et al., 2013). These approaches appear to be quite different in
terms of the molecular mechanisms, staging, timing, and epigenetics
of reprogramming, and a chemical-based approach has been
practically uninvestigated in terms of its metabolic regulation
[reviewed in (Meir and Li, 2021; Lange et al., 2022; Wang et al.,
2023)]. Here, we discuss mainly the current view of the metabolic
characteristics described for reprogramming from terminally
differentiated somatic cells to pluripotent stem cells using the
transgene-based strategy. Four TFs, Oct4, Sox2, Klf4, and cMyc,
convert the epigenome of somatic cells into an ESC-like pluripotent
state. This approach has been extensively investigated in terms of the
molecular mechanisms of its regulation by transcription factor
network, metabolic, and epigenetic factors (Buganim et al., 2013;
Takahashi and Yamanaka, 2016; Deng et al., 2021; Teslaa and
Teitell, 2015; Wu et al., 2016; Nishimura et al., 2019; Tsogtbaatar
et al., 2020; Meir and Li, 2021). Stage-dependent landmarks of cell
reprogramming have been identified in several studies through
genome-wide analyses of the transcriptome, proteome,
epigenome, and metabolome (Maherali et al., 2007; Mikkelsen
et al., 2008; Zhao et al., 2009; Stadtfeld et al., 2010; Gundry et al.,
2012; Hansson et al., 2012). A dramatic reconfiguration of the
proteome during the first and last 3 days of the 2-week interval
of mouse cell reprogramming has been uncovered. Between these
resetting phases (i.e., during the intermediate phase) more moderate
proteome changes occur (Hansson et al., 2012). Analyses revealed a
high coordination of expression of functionally linked proteins
during the reprogramming phases. Genome-wide transcriptome
analysis also revealed two similar transcriptional waves (Polo
et al., 2012). These data, along with the results of single-cell
expression analyses (Buganim et al., 2012), suggest that iPSC
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FIGURE 1
Summary table of molecular and metabolic characteristics of cells at different stages of reprogramming toward pluripotency state, mediated by
ectopic expression of TFs Oct4, Sox2, Klf4, and c-Myc (OSKM). The process occurs during the sequential initiation, maturation, and stabilization stages, all
taking placewithin a 12-day time interval. Critical factors, the functions of which are required for the reprogramming process, are indicated in regular font.
The dominance of factors or processes is marked in bold. Functions and factors that are downregulated during reprogramming are marked with a
suppression sign (⊥); see details in the text and abbreviations.
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formation is a stepwise process tightly controlled by a set of
functionally linked genes. Based on the revealed stage-specific
regulatory networks, three phases of the reprogramming process
were identified: initiation, maturation, and stabilization (Figure 1)
(Mikkelsen et al., 2008; Samavarchi-Tehrani et al., 2010; Buganim
et al., 2012; David and Polo, 2014; Meir and Li, 2021). During the
initiation stage, cells undergo mesenchymal-to-epithelial (MET)
transition, characterized by the repression of transforming factor
beta (TGFbeta), activation of bone morphogenic protein (BMP),
stress activated of mitogen-activated protein kinase (MAPK) and
p38 MAPK signaling, and extensive remodeling of chromatin
(Maherali and Hochedlinger, 2009; Li et al., 2010; Chen et al.,
2011; Hu et al., 2014; Neganova et al., 2016; Neganova et al.,
2017; Francesconi et al., 2019; Meir and Li, 2021). A number of
epigenetic regulators of chromatin, including DOT1L
methyltransferase, histone demethylase LSD1, CBP/
EP300 bromodomains, bromodomain-containing protein BRD9,
histone chaperone CAF-1, BET family proteins, RNA Pol II
regulator RPAP1, SUMO modification, chromatin regulator
FACT, histone deacetylases HDACs, methyltransferase Setdb1,
and the TF TRIM28, act as potent barriers to reprogramming
(Cheloufi et al., 2015; Wei et al., 2015; Shao et al., 2016; Sun
et al., 2016; Miles et al., 2017; Cossec et al., 2018; Kolundzic
et al., 2018; Lynch et al., 2018; Ebrahimi et al., 2019; Sevinc
et al., 2022). Some of these factors maintain somatic cell gene
expression programs, and some suppress the MET transition,
mainly during the initial stage of reprogramming. Inhibition of
these regulators greatly enhances the reprogramming of various
types of cells. The DNA methylation epigenetic regulators Tet1/
2 demethylases, poly (ADP-ribose) polymerase-1 Parp1, and
cytidine deaminase AID are critical in reactivating pluripotency
genes during this stage of reprogramming (Bhutani et al., 2010;
Doege et al., 2012; Hu et al., 2014). After completing MET, cells
increase their proliferation rate, suppressing proapoptotic and
senescence factors, which are required for extensive epigenetic
modification (Marion et al., 2009a; Hong et al., 2009; Utikal
et al., 2009; Yunusova et al., 2017). MET also leads to the
upregulation of genes involved in cell proliferation, metabolism,
and cytoskeletal organization—c-Myc, MycN, KLF4, and Pdzk1
(Prieto et al., 2021). At this stage, cells lack DNA methylation,
and active histone modifications mediate the suppression of cell
type-specific genes (Polo et al., 2012).

At the beginning of the maturation phase, induction of certain
pluripotency genes, such as Oct4, Sox2, Fbxo15, Nanog, Foxh1, and
Sall4, takes place (Samavarchi-Tehrani et al., 2010; Buganim et al.,
2012; Hansson et al., 2012; Polo et al., 2012; Takahashi et al., 2014).
Not all pluripotency genes are activated during this phase, indicating
the importance of tight and sequential regulation of events during
this stage. During the late phase of maturation, exogenic transgenic
constructs are silenced, which is followed by activation of the
pluripotency-controlling gene network via 1) modification of the
DNA methylation pattern by the DNA methyltransferases
DNMT1 and DNMT3 and 2) modification of histones by histone
methyltransferase G9a, histone demethylase Utx/Kdm6a, and
histone deacetylase HDAC2 (Stadtfeld et al., 2008a; Brambrink
et al., 2008; Mikkelsen et al., 2008; Sommer et al., 2009; Bhutani
et al., 2010; Mali et al., 2010; Samavarchi-Tehrani et al., 2010;
Golipour et al., 2012; Mansour et al., 2012; Polo et al., 2012;

Nissenbaum et al., 2013; Wei et al., 2015). This stage represents a
prolonged, gradual gene reactivation process associated with the
recruitment of the polycomb group and NuRD complex, as well as
the upregulation of genes involved in the regulation of chromosomal
segregation and cytoskeletal organization (Mansour et al., 2012;
Chen et al., 2013; Luo et al., 2013; Rais et al., 2013). By the beginning
of the stabilization phase, the activation of additional pluripotent
genes, such as Sox2, Utf1, Lin28a, Esrrb, Klf5, Dppa2, and Dppa4, as
well as extensive epigenetic modifications, occurs (Maherali et al.,
2007; Okita et al., 2007; Wernig et al., 2007; Brambrink et al., 2008;
Stadtfeld et al., 2008b; Buganim et al., 2012). The processes of
extensive reconfiguration of DNA methylation during this stage
participate in the reactivation of the X chromosome, recovery of
telomere size, and stabilization of the pluripotent epigenetic
landscape (Stadtfeld et al., 2008b; Epsztejn-Litman et al., 2008;
Mikkelsen et al., 2008; Marion et al., 2009b; Polo et al., 2012;
Soufi et al., 2012; Huang et al., 2015; Bar et al., 2019).

Metabolic features of pluripotent stem
cells, in brief

Research on ECSs and iPSCs, collectively called pluripotent stem
cells (PSCs), relies predominantly on in vitro and ex vivo cell culture-
based conditions that are rather different from those provided by native
niches. The cell culture conditions include significantly modified
metabolic parameters, such as unlimited metabolite supply from the
cell culture medium and a lack of hypoxia conditions, both of which
differ from in vivo ICM surroundings. The first feature of iPSCs and
ESCs growing under culture conditions is a high metabolic flux via
glycolysis (Cho et al., 2006; Kondoh et al., 2007; Folmes et al., 2011).
PSCs utilize glycolysis as a main source of adenosine triphosphate
(ATP) production, generating a large amount of lactate (Xu et al., 2013)
and shunting the metabolites through the pentose phosphate pathway
(Varum et al., 2011; Rodrigues et al., 2015a; Kim et al., 2015). In
contrast, upon ESC differentiation, glycolysis is downregulated, while
oxidative phosphorylation becomes a dominant bioenergetic source of
ATP (Chung et al., 2010; Prigione et al., 2010). In this regard, PSCs
prefer hypoxic conditions, under which they rely mostly on glycolytic
metabolism activated by hypoxia-inducible factor 1- and 2-alpha
(HIF1/2α) and the glycolytic sensors – C-terminal binding proteins
(CTBPs) (Powers et al., 2008; Millman et al., 2009; Forristal et al., 2010;
Mohyeldin et al., 2010; Arthur et al., 2019; Nakamura et al., 2021).
Consistent with lesser dependence on OxPhos for ATP production,
PSCs have fewermitochondria. Furthermore, these organelles are small,
globular-shaped, and immature lamellar cristae; contain low copy
numbers of mitochondrial DNA; and are predominantly localized in
the perinuclear region—and all these parameters are associated with
pluripotency (Baharvand and Matthaei, 2003; Cho et al., 2006;
Lonergan et al., 2006; Armstrong et al., 2010; Suhr et al., 2010;
Folmes et al., 2011; Varum et al., 2011; Zhou et al., 2012; Ware
et al., 2014; St John, 2016). However, PSC-specific mitochondria are
fully functional in terms of respiratory and OxPhos activities, and the
mitochondrial functions are important for the maintenance of
pluripotency (Zhang et al., 2011; Seo et al., 2018). A knockdown of
mitochondrial DNA polymerase subunit γ (POLG), affecting
mitochondrial gene expression, enhances ESC differentiation
(Facucho-Oliveira et al., 2007). Extreme mitochondrial

Frontiers in Cell and Developmental Biology frontiersin.org04

Sinenko and Tomilin 10.3389/fcell.2023.1328522

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1328522


fragmentation and mitophagy impair mitochondrial homeostasis,
resulting in ESC differentiation (Todd et al., 2010). If compared
with differentiated somatic cells, mitochondria in PSCs have reduced
OxPhos capacities (Cho et al., 2006; Kondoh et al., 2007; Folmes et al.,
2011). Although the composition of the mitochondrial electron
transport chain (ETC) in PSCs is different from that of
differentiated cells, it is fully functional; nevertheless, mitochondrial
production of ATP is maintained at a suboptimal level in these cells.
Presumably, low OxPhos in PSCs is also important to maintain a low
level of mitochondrial ROS generation to avoid potential ROS
damaging activity toward proteins, lipids, and nucleic acids
(Armstrong et al., 2010; Prigione et al., 2010). Due to low OxPhos
and tricarboxylic acid (TCA) cycle activity, PSCs generate increased
levels of metabolic intermediates, which are exported by mitochondria
and utilized for variousmetabolic and signaling epigenetic purposes, for
instance, the biosynthesis of fatty acids or the acetylation of histones
(Wellen et al., 2009;Moussaieff et al., 2015; Intlekofer and Finley, 2019).
The reduced TCA cycle activity in PSCs is maintained by shunting
pyruvate out of mitochondria and, in part, via elevated uncoupling
protein 2 (UCP2) and reduced pyruvate dehydrogenase (PDH)
activities (Zhang et al., 2011). Several studies have revealed a feature
of PSCs to actively maintain high mitochondrial membrane potential
(MMP), which is important formaintaining a pluripotent state (Schieke
et al., 2008; Armstrong et al., 2010; Prigione et al., 2011). The highMMP
is maintained partly by the ATP hydrolase activity of ATP synthase,
which utilizes ATP produced by glycolysis (Zhang et al., 2011). The
function of high MMP in the maintenance of pluripotency requires
further clarification, as it is suggested to participate in maintaining
various metabolic processes, including regulation of the mitochondria
network, anabolic processes, and certain epigenetic processes
(Mattenberger et al., 2003; Shyh-Chang et al., 2011; Folmes et al.,
2012; Teslaa and Teitell, 2015).

Naive and primed pluripotency: mouse
and human iPSCs

Pluripotency is featured during mammalian development by
the cell of the epiblast for a relatively short time interval between
the pre-implantation blastocyst and post-implantation egg
cylinder stages. Cultured mouse PSCs derived from pre-
implantation epiblasts are represented by ESCs and those from
post-implantation epiblast-stage cells are represented by the
epiblast stem cells (EpiSCs) (Brons et al., 2007; Tesar et al.,
2007). These different developmental states of pluripotency
are referred to as naïve and primed, respectively. The
developmental and functional differences between these
pluripotency states are that primed PSCs have more restricted
differentiation potential, they are not able to contribute to germ
cells. Under cell culture conditions, mouse (m) and human (h)
ESCs are maintained in naïve and primed pluripotency states,
respectively (Thomson et al., 1998; Klimanskaya et al., 2006;
Nichols and Smith, 2009; Nakamura et al., 2016). The same
applies to mouse and human iPSCs, and the process of
reprogramming into these cells have marked species-specific
differences. In addition, the conversion of hESCs and hiPSCs
into a naïve state is still an unresolved task in many aspects (Sagi
and Benvenisty, 2016; Weinberger et al., 2016; Yilmaz and

Benvenisty, 2019). Comparative transcriptional analysis and
other analyses of the naïve and primed hPSCs have shown
that these pluripotency states have major differences in the
landscapes of transcription factors, chromatin remodeling,
activity of signaling pathways, cell surface molecules, X
chromosome activity, and transposable elements’ expression
(Gafni et al., 2013; Guo et al., 2016; Qin et al., 2016;
Theunissen et al., 2016; Collier et al., 2017; Messmer et al.,
2019; Yilmaz and Benvenisty, 2019). Global DNA
hypomethylation is featured in naive hPSCs, which contrasts
with the global DNA hypermethylation signature in primed ones
(Theunissen et al., 2016; Messmer et al., 2019).

Importantly, there are also differences in the preference over
metabolic pathways between naive and primed hPSCs. Oxidative
phosphorylation dominates and lipogenesis tends to be active in
naive hPSCs, while primed hPSCs rely on glycolysis for energy
metabolism (Takashima et al., 2014; Cornacchia et al., 2019). Naïve
mPSCs have a bivalent metabolism, with both glycolysis and
OxPhos being active (Weinberger et al., 2016).

The mouse model of cell reprogramming is the most advanced,
and the main molecular data were gained from this system. In this
model, mouse cells are reprogrammed into naïve type iPSCs within
12 days, whereas it takes 16–28 days to generate primed hiPSCs. In
addition, reprogramming efficiency is much lower for humans than
for mouse systems (Takahashi and Yamanaka, 2016). The exact
molecular differences between these systems still need to be clarified;
however, it is known that, unlike in the mouse model, c-Myc
transgene is more critical, and MET is a much later event in the
human reprogramming process (Cacchiarelli et al., 2015; Xing et al.,
2020; Thangavelu and Norden-Krichmar, 2023). Various molecular
differences between these systems have also been observed,
including JNK signaling, ERRα/ERRγ, and other activities (Yao
et al., 2014; Kida et al., 2015; Neganova et al., 2016).

Pluripotency TFs in regulation of
metabolic genes during
reprogramming

Key pluripotency TFs are involved in the direct regulation of
primarily glycolytic genes. The reprogramming factor Oct4 acts in
transcriptional regulation of multiple metabolic genes (Kang et al.,
2009; Shen et al., 2017). In PSCs, Oct4 directly regulates rate-limiting
enzymes of glycolysis—pyruvate kinaseM2 (PKM2) and hexokinase 2
(HK2) (Figure 2) (Folmes et al., 2011; Prigione et al., 2014; Kim et al.,
2015; Qin et al., 2017). It has also been shown that silencing glucose
transporter GLUT3 or PKM2 causes a reduction of OCT4 expression,
suggesting a feedback mechanism between glucose metabolism and
pluripotent TF gene expression (Christensen et al., 2015). It has been
shown that Oct4’s DNA-binding capacity depends on oxidation by
ROS. The ROS-scavenging enzyme thioredoxin (Txn), through
interaction with cysteines in the POU-domain of Oct4, is able to
restore Oct4’s DNA-binding, and furthermore, the gain of Txn
function enhances Oct4’s transcriptional activity (Guo et al., 2004).
The regulatory sites of the core pluripotent TFs Sox2, Oct4, and
Nanog have been identified in an enhancer of the humanGLUT1 gene
involved in glycolytic flux in ESCs (Yu et al., 2019). Other studies have
shown that chicken HK1, platelet phosphofructokinase (PFKP), and
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lactate dehydrogenase A (LDHA) gene promoters contain binding
sites for these TFs (Ding et al., 2022). c-MYC also possesses a function
to activate glycolysis, which is required to maintain pluripotent status
(Varlakhanova et al., 2010; Folmes et al., 2013a; Gu et al., 2016; Cliff
et al., 2017; Prieto et al., 2021; Anatskaya and Vinogradov, 2022).
c-MYC upregulates expression of PKM2 and LDHA, supporting
increased glycolysis (Figure 2) (Cao et al., 2015). These
observations are consistent with an activation of the expression of
endogenous c-Myc during the initiating stage of reprogramming (Cao
et al., 2015). The TF sterol regulatory element binding protein-1
(Srebp-1), involved in lipid homeostasis, enhances reprogramming
efficiency through interaction with and strengthening of the function
of c-Myc in the expression of pluripotent genes (Wu et al., 2016).

Although the endogenous activation of the pluripotency factor
KLF4 occurs during the initiation stage of reprogramming, its
function in metabolic regulation has not yet been determined. It
has been shown that KLF4 plays an important role in metabolic

regulation during the late stage of cell reprogramming (Figure 1).
KLF4 positively regulates T cell leukemia/lymphoma protein 1
(TCL1) expression at the late stage of reprogramming
(Nishimura et al., 2017; Nishimura et al., 2019). TCL1 suppresses
the activity of mitochondrial RNA importer RNAase and
polynucleotide phosphorylase (PnPase) through direct interaction
with these proteins (Wang et al., 2010). It has been suggested that
KLF4-induced TCL1 expression reduces mitochondrial content and
OxPhos during the late stage of reprogramming (Khaw et al., 2015;
Nishimura et al., 2017). The RNA-binding protein LIN28a/b, which
is a critical factor in cell reprogramming and pluripotency
maintenance, functions predominantly during the late/
stabilization phase and is an important regulator of metabolic
genes, mediating activation of glycolysis and maintaining low
mitochondrial function, nucleotide, and one-carbon metabolisms
(Shyh-Chang et al., 2013a; Zhang et al., 2016; Mathieu and Ruohola-
Baker, 2016; Pieknell et al., 2022).

FIGURE 2
Schematic representation of the major metabolic pathways involved in regulating the process of reprogramming differentiated cells toward a
pluripotent state. Metabolic pathways are highlighted in boxes, and key metabolic enzymes andmetabolites involved in the regulation of reprogramming
are noted in blue and purple rectangles, respectively. Transcription factors participating in positive and negative regulation of certain metabolic pathways
are placed next to each of these pathways and depicted in green and brown, respectively. (I-III)—indicated for the initiation (I), maturation (II),
stabilization (III) stages of the reprogramming process.
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TFs’ regulation of metabolic pathways
during the early/initiation stage of
reprogramming—the OxPhos
burst stage

Estrogen-related nuclear receptors (ERRs) and their
partners—peroxisome proliferator-activated receptor gamma
coactivator 1-a/and b (PGC-1α/β)—are transiently expressed at
an early stage of reprogramming. ERRα or ERRγ functions,
respectively, mediate the burst of OxPhos at the early stage of
iPSC generation in the human and mouse systems (Figures 1, 2)
(Kida et al., 2015). This metabolic burst occurs upon the activation
of glycolysis and OxPhos genes, including mitochondrial ATP
synthase (ATP5G1), succinate dehydrogenase (SDHB), isocitrate
dehydrogenase (IDH1/3A), and NADH dehydrogenase (NDUFA2),
while blocking this metabolic change impedes the reprogramming
process. It has been shown that in mice, ERRγ and PGC-1β are
highly expressed in Sca1 (−)/CD34 (−) bona fide iPSC progenitors or
intermediate cells, in which a high level of OxPhos is maintained
(Kida et al., 2015).

Nuclear factor (erythroid-derived 2)-like 2 (NRF2) is a major
TF involved in the regulation of antioxidant responses. The early
burst in OxPhos and consequent ROS generation leads to an
increase in NRF2 activity, which promotes a subsequent
glycolytic shift through HIF1α activation after the early stage
of reprogramming (Hawkins et al., 2016). It has been shown
that hypoxic conditions or HIF1α stabilization enhance
reprogramming efficiency (Yoshida et al., 2009; Mathieu et al.,
2014; Ishida et al., 2020). At this early stage of reprogramming,
HIF1α and HIF2α are stabilized, mediating the metabolic shift by
activating the expression of glycolysis genes, such as pyruvate
dehydrogenase kinase 3 (PDK3), GLUT1/3, LDHA, and HK2.
However, only HIF2α stabilization at the late stage of
reprogramming has been found to cause major suppression of
iPSC generation, in part through activation of tumor necrosis
factor-related apoptosis-inducing ligand (TRAIL)-mediated
apoptosis (Mathieu et al., 2014). This indicates at least two
functions of HIFs during cell reprogramming. Krüppel-like zinc
finger TF Glis1 mediates epigenetic and metabolic remodeling and
is able to reprogram senescent cells into a pluripotent state,
improving genome stability. During the initiation stage of
reprogramming, Glis1 upregulates glycolysis by opening
chromatin in glycolytic gene loci and closing chromatin in
somatic ones (Figure 2) (Maekawa et al., 2011; Li et al., 2020).

Activity of the tumor suppressor p53, as well as inhibited cell
proliferation, hinder the acquisition of pluripotency (Marion et al.,
2009a; Hong et al., 2009; Kawamura et al., 2009; Utikal et al., 2009).
It has been shown that NAD-dependent deacetylase sirtuin-1
(SIRT1) is activated and functions during the initiation phase of
reprogramming by acting, in part, through deacetylation of p53,
inhibition of p21, and enhancement of Nanog expression. This
SIRT1 activity is suppressed through miR-34a, leading to higher
p53 activity and, therefore, reduced reprogramming efficiency (Lee
et al., 2012). The forkhead box TFs Foxd1 and Foxo1, participating
in the regulation of ROS and cellular metabolism, may also be
involved in oxidative burst regulation during reprogramming, as
their knockdown suppresses the generation of iPSCs (Koga
et al., 2014).

TFs during the late-
reprogramming phase

Another ERR-family TF, ERRβ/Esrrb, and the zinc finger of the
cerebellum 3 (Zic3) regulate metabolic fluxes synergistically and
variably, leading to enhanced reprogramming efficiency. These
2 TFs activate many glycolytic genes cooperatively, resulting in
increased glucose consumption. At the same time, unlike Zic3,
Esrrb activates OxPhos and oxygen consumption by inducing
genes of mitochondrial complex IV (CIV), triggering the
morphological remodeling of mitochondria during cell
reprogramming (Sone et al., 2017). The ectopic expression of both
Esrrb and Zic3 during reprogramming significantly enhances the
efficiency of iPSC generation (Figures 1, 2). On the other hand,
blocking both glycolysis and OxPhos lowers reprogramming
efficiency (Sone et al., 2017). These functions of Esrrb and
Zic3 appear to be engaged at the late stage of reprogramming,
suggesting that Esrrb may be involved in completing the final
epigenetic chromatin modifications specific for naïve pluripotency.
This conclusion is supported by the finding that Esrrb can replace
Nanog function in late iPSC precursors (Festuccia et al., 2012). In
addition, it has been shown that Esrrb reactivation in these cells is
dependent on ascorbic acid (Tran et al., 2015), suggesting that this
event is a rate-limiting step during the late stage of reprogramming.

It has been shown that activating the Janus kinase/signal
transducer and activator of the transcription 3 (Jak/Stat3) pathway
is essential for reprogramming. Inhibiting Jak/Stat3 activity blocks
demethylation of Oct4 and Nanog regulatory elements during the
late reprogramming phase, affecting epigenetic modification and
retroviral transgene silencing. Jak/Stat3 activity plays an important
role in promoting the establishment of pluripotency during the late
phase of reprogramming at the epigenetic level by facilitating DNA
demethylation and open chromatin formation in pluripotent loci,
including Oct4, Nanog, and the Dlk1-Dio3 regions (Tang et al., 2012;
Wang et al., 2018). It is important to note that during reprogramming
from the primed to naive states of pluripotency, Stat3 upregulates
mitochondria-encoded transcripts and facilitates an increase in
mitochondrial metabolism (Carbognin et al., 2016). This suggests
that Stat3 activity is required during the late stage of reprogramming,
facilitating the optimal maintenance of mitochondrial respiration and
epigenetic modifications, both of which are dependent on TCA cycle
metabolites.

Metabolic fluxes during cell
reprogramming

Glycolysis

Glycolysis is a catalytic pathway that converts glucose molecules,
through a series of redox reactions, into two pyruvate molecules,
generating two ATP and two reduced nicotinamide adenine
dinucleotide (NADH) molecules. This pathway does not require
oxygen but allows efficient ATP production when glucose is
abundant, maintaining the ATP/ADP ratios required for highly
proliferative cells. However, glycolysis is much less energetically
efficient than the complete oxidation of pyruvate in the TCA cycle
and in OxPhos. Nevertheless, highly proliferative cell types, such as
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cancer and PSCs, predominantly exploit glycolysis (aerobic glycolysis)
despite an excess of OxPhos-supportive oxygen. The main reason for
the switch to glycolysis is incomplete glucose oxidation, which enables
the use of pyruvate for both anabolic needs and the biosynthesis of
macromolecules supporting biomass production in proliferating cells
(Vander Heiden et al., 2009). Intermediates of the glycolytic pathway
are also used by different anabolic pathways: (1) lipid synthesis via
acetyl-Coenzyme A (acetyl-Co A), (2) dihydroxyacetone phosphate
(DHAP), nucleotide, and NADPH synthesis through glucose-6-
phosphate and the pentose phosphate pathways (Figure 2) (Gu
et al., 2016; Lees et al., 2018; Lees et al., 2019). It has also been
suggested that the dominance of glycolysis over OxPhos is
accompanied by reduced ROS generation, which may be protective
for the cell due to the preservation of its genomic integrity. The
reduction of both OxPhos and its byproduct ROS is less damaging to
nuclear and mitochondrial DNA and RNA, as well as to proteins and
lipids (Perales-Clemente et al., 2014). The metabolic switch from
OxPhos to glycolysis after hyperenergetic flux at the early stage of cell
reprograming is a crucial step in iPSC generation. Induction and
maintenance of high levels of glycolytic activity during cell
reprogramming precede the induction of pluripotency markers and
are critical for the successful accomplishment of this process (Folmes
et al., 2011; Cao et al., 2015). Activation of 3′-phosphoinositide-
dependent kinase-1 (PDK1) by the PS48 compound, which stimulates
AKT serine/threonine-protein kinase signaling, in combination with
the ectopic expression of Oct4, is sufficient to reprogram cells to a
pluripotent state (Zhu et al., 2010). These studies have also shown that
AKT activation correlates with increased expression of glycolysis-
related genes and increased lactate production. It has been shown
that direct or indirect stimulation of glycolysis with D-fructose-6-
phosphate or with an activator of HIF1α, ethyl 3,4-dihydroxybenzoate
(EDHB), enhances reprogramming, while inhibition of glycolysis with
UCN-01, 2-deoxyglucose (2DG), or 3-bromopyruvic acid (BrPA)
suppresses reprogramming (Sato et al., 2002; Yoshida et al., 2009;
Zhu et al., 2010; Folmes et al., 2011; Panopoulos et al., 2012; Prigione
et al., 2014). Accordingly, cells with a dominance of glycolytic over
OxPhos gene expression patterns can be reprogrammed more
efficiently (Panopoulos et al., 2012). Upon inactivation of the TCA
cycle and increased glycolysis after the early stage of reprogramming,
lactate is increasingly produced and becomes actively involved in the
modification of histones and other targets with the recently identified
posttranslational modification—lactylation (Zhang et al., 2019; Li
et al., 2020). Activation of glycolytic flux by the TF Glis1 increases
acetyl-CoA and lactate levels, thereby enhancing H3 histone
acetylation (H3K27Ac) and lactylation (H3K18la) within the
chromatin of pluripotency genes, leading to their activation at the
intermediate stage of reprogramming (Li et al., 2020). Taken together,
these studies suggest that the switch to glycolytic metabolism is a
driving force on the route to pluripotency (Figure 2) (Zhu et al., 2010;
Folmes et al., 2011).

Mitochondria functions and remodeling
during cell reprogramming

Mitochondria are complex multifunctional organelles and act
as the main metabolic hub maintaining cellular homeostasis due
to their major role as energy generators, as well as regulators of

ROS production, NAD+/NADH balance, calcium homeostasis,
signal transduction, and synthesis of most metabolites, including
fatty acids, amino acids, iron/sulfur clusters, pyrimidines, heme,
and steroid hormones (Dimmer and Scorrano, 2006; Labbe et al.,
2014; Picard and Shirihai, 2022; Zhu et al., 2022; Quintana-
Cabrera and Scorrano, 2023). Mitochondria are also involved
in the regulation and remodeling of cellular processes such as
stem cell self-renewal, differentiation, and proliferation (Liesa
and Shirihai, 2013; Ma et al., 2015; Folmes et al., 2016; Folmes and
Terzic, 2016; Khacho et al., 2016; Matilainen et al., 2017; Seo et al.,
2018). The mitochondria of somatic cells serve as the main source
of ATP production, representing mature, elongated, branching,
filamentous network organelles. In contrast, the mitochondria of
PSCs are immature and represent a lower density, possess
fragmented morphology, show perinuclear localization, have
disordered mitochondrial cristae, and have reduced mtDNA
copy numbers (Cho et al., 2006; Lonergan et al., 2006; Suhr
et al., 2010; Folmes et al., 2011; St John, 2016). During
differentiation, extensive mitochondrial biogenesis and
remodeling occurs, resulting in elongated branching
filamentous networks. Mitochondrial morphology and
dynamics are linked with cristae shape and supercomplex
assembly, which are critical parameters directly regulating the
main mitochondrial functions—respiratory efficiency, TCA
cycle, OxPhos, ROS generation, and redox state (Baker
et al., 2019).

It has been shown that during cellular reprogramming,
mitochondria are gradually reconstructed to an ESC-specific
immature state, characterized by rounded morphology with poor
cristae structure, less active mitochondrial respiration, and reduced
mtDNA copy number (Armstrong et al., 2010; Prigione et al., 2010;
Folmes et al., 2011; Folmes et al., 2012; Choi et al., 2015). A
significant re-organization of the mitochondrial network during
the transition from somatic to pluripotent states occurs (Seo
et al., 2018; Skvortsova et al., 2022). The number of
mitochondria dramatically changes in iPSC precursors, reaching
its peak at the initiation stage and then declining dramatically during
the maturation and stabilization stages of the reprogramming
(Figure 1). The decline of mitochondrial content during
reprogramming, resulting in fewer spherical mitochondria with
poorly developed and immature cristae, is probably mediated by
the mitophagy process (Prigione and Adjaye, 2010; Folmes et al.,
2011; Pan et al., 2013; Ma et al., 2015; Choi et al., 2015; Naik et al.,
2019) and the inhibition of mitochondrial biogenesis (Wang et al.,
2020). An early and transient activation of autophagy occurs during
reprogramming through downregulation of the mTOR pathway
(Wang et al., 2013; Xiang et al., 2017), and overactivation of this
pathway during the early stage of reprograming is suppressive for
the process (Wu et al., 2015). The activation of autophagy and
mitophagy is mediated in part by elevated levels of ROS (Bolisetty
and Jaimes, 2013), whichmay be triggered during the oxidative burst
phase of reprogramming. However, the impact of mitophagy and
mitochondrial biogenesis at this particular stage of reprogramming
requires more investigation. The peak of mitochondrial content
coincides with an ERR-mediated oxidative burst and an increase in
mitochondrial and Nox-generated ROS, and these events induce
NRF2/Hif1-α-triggered activation of glycolytic flux in iPSC
precursors after day 3, followed by a subsequent major decline in
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mitochondrial numbers and activity by the mid- and late-
reprogramming stages (see below).

Mitochondrial fusion and fission dynamics are crucial for
somatic cell reprogramming. Activation of mitochondrial
fragmentation, which is mediated by dynamin-related protein 1
(DRP1), favors the reprogramming process at the initiation stage
(Vazquez-Martin et al., 2012a; Prieto et al., 2016). During this stage,
Ras/ERK1/2-mediated activation of Drp1 allows its recruitment to
mitochondria and triggers mitochondrial fragmentation (Serasinghe
et al., 2015; Prieto et al., 2016), which is also associated with the
activation of cyclin-dependent kinase 1 (Cdk1) via cyclin B protein
level increase (Prieto et al., 2018). It has also been shown that the
pluripotency of TF REX1 mediates activation of DRP1/
mitochondrial fission and, in parallel, activates cyclin B1/
B2 expression (Son et al., 2013). In agreement with this, the
activation of mitochondrial fusion by ectopic expression of
mitofusin-1 or -2 (MFN1 and MFN2)—proteins that activate
mitochondrial fusion—blocks the reprogramming (Figure 1) (Son
et al., 2015). MFN1/MFN2 deficiencies increase reprogramming
efficiency by participating in the switch to glycolytic metabolism.
This process is associated with inhibition of the p53-p21 pathway,
activation of RAS/RAF signaling, and ROS-mediated HIF1α
stabilization (Son et al., 2015). The endoplasmic reticulum (ER)
participates in mitochondrial fission; also, the unfolded protein
response (UPR) of mitochondria and ER are activated during cell
reprogramming. Transient activation of ectopic UPR, perhaps in
concert with mito-fission activation, enhances cell reprogramming
(Simic et al., 2019). Furthermore, mitochondria fragmentation is
associated with an increased release of mtROS, which also peaks on
day 3 of reprogramming (Tang et al., 2009; Bolisetty and Jaimes,
2013; Skvortsova et al., 2022), contributing to the regulation of the
oxidative burst-mediated switch to glycolytic metabolism (discussed
below). Thus, the processes involved in the activation of
mitochondrial fragmentation are associated with stimulation of
the cell cycle progression; they all occur during the initiation
phase and are crucial factors for efficient cell reprogramming.

TCA cycle and iPSC reprogramming

In mitochondria, the TCA (or Krebs) cycle represents the main
metabolic pathway mediating energy production, as well as
supporting the cycle intermediates to support pathways involved
in central carbon metabolism and epigenetic remodeling. In this
catalytic pathway, pyruvate, which is produced mainly via glycolysis,
is oxidized to CO2, resulting in the generation of reduced forms of
the electron donors (NADH and flavin adenine dinucleotide,
FADH2) required for OxPhos and ATP synthesis by donating
electrons to the electron transport chain. The TCA cycle
mediates the reactions to replenish TCA intermediates, using
predominantly pyruvate and glutamine as substrates (Figure 2).
The TCA cycle also supplies partially oxidized intermediates as
building blocks for anabolic processes, including lipid, amino acid,
and nucleotide biosynthesis, as well as for post-translational and
epigenetic modifications of proteins and DNA (Wellen et al., 2009;
Ruiz et al., 2012; Vardhana et al., 2019). The TCA cycle is critical for
the regulation of cellular processes such as stem cell self-renewal,
differentiation, and reprogramming through the regulation of

energy generation and supply of substrates for anabolism and
macromolecule modifications. In contrast to differentiated cells,
PSCs feature incomplete oxidation of pyruvate, allowing them to
use TCA cycle intermediates for many cellular processes, including
anabolic synthetic pathways and histone modification. It has been
shown that, in opposition to inactivation, activation of PDH by
pyruvate dehydrogenase kinase (PDK) inhibitor dichloroacetate
(DCA) reduces reprogramming efficiency, suggesting that activation
of the TCA cycle and suppression of glycolysis have a suppressive effect
on the process (Folmes et al., 2011; Rodrigues et al., 2015b).

The TCA cycle provides metabolites for epigenetic
modifications in the nucleus during embryonic development and
pluripotency induction. For example, the excess of TCA cycle
intermediates in ESCs promotes the generation of citrate, which
supports the additional production of cytoplasmic acetyl-CoA for
protein acetylation (Moussaieff et al., 2015). The increased levels of
cycle metabolites—α-ketoglutarate (α-KG), S-adenosyl methionine
(SAM), malic acid, and cofactors NAD+/NADH—are also
important for the regulation of epigenetic and metabolic
modifications during the acquisition and maintenance of
pluripotency (Figure 2) (Lee et al., 2012; Shiraki et al., 2014;
TeSlaa et al., 2016; Tran et al., 2019b; Figlia et al., 2020). α-KG
generated by isocitrate dehydrogenase 3 (Idh3) is an important
substrate for DNA and histone demethylation (TeSlaa et al., 2016).
SAM, derived from one-carbon metabolism, is a methyl donor for
both DNA and histone methylation (Shyh-Chang et al., 2013b;
Shiraki et al., 2014). Reduced NADH is required for NADH-
dehydrogenase CI ETC/OxPhos activity and ATP production (see
below) (Skvortsova et al., 2022), whereas NAD+/NADH balance is
involved in the regulation of different post-transcription
modifications during cell reprogramming (Lee et al., 2012).
Recent studies have shown that translocation of TCA cycle
enzymes—Pdha1, pyruvate carboxylase (Pcb), aconitase 2 (Aco2),
citrate synthase (Cs), and isocitrate dehydrogenase 3 (Idh3a)—to the
nucleus promotes reprogramming (Figure 2) (Li et al., 2022). This
indicates that non-canonical functions of these enzymes outside of
mitochondria reside in the nucleus and are likely to mediate a supply
of metabolites for sufficient epigenetic modifications, which are
extensively required during reprogramming. For instance, nuclear
Pdha1 increases the acetyl-CoA pool in the nucleus, leading to
chromatin remodeling within pluripotency genes by enhancing
histone H3 acetylation. TCA cycle intermediate metabolites are
critical for modifications of the epigenome in iPSCs and, thereby,
are involved in the regulation of gene expression and pluripotency
acquisition (Carey et al., 2015; Moussaieff et al., 2015; Zhang et al.,
2016; Guitart et al., 2017; Zhang et al., 2018; Fang et al., 2019).
Nevertheless, further investigations of the involvement of particular
metabolites produced by the TCA cycle during the process of iPSC
generation are yet required.

Amino acids are substrates for the biosynthesis of proteins,
lipids, and nucleotides; they are also involved in de novo purine
biosynthesis and amino acid metabolism and are linked with one-
carbon metabolism (OCM), maintaining cellular pools of one-
carbon residues associated with S-adenosylmethionine (SAM)
and folate (Locasale, 2013; Shuvalov et al., 2017; Clare et al.,
2019). This OCM donates methyl groups for the synthesis of
amino acids, nucleotides, and phospholipids; it also supplies
substrates, such as SAM, for the post-translational methylation of
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RNA, DNA, and proteins, linking changes in metabolism to
epigenetic remodeling of cells (Figure 2). Threonine metabolism
is required to maintain cellular pluripotency. Lack of threonine in
cell culture medium or inhibition of the key enzyme of threonine
metabolism, threonine dehydrogenase (TDH), results in a loss of
self-renewal, apoptosis, and cell cycle arrest in PSCs (Wang et al.,
2009; Alexander et al., 2011; Ryu and Han, 2011). Also, L-threonine
supplementation and the ectopic expression of TDH enhance the
efficiency of cell reprogramming (Han et al., 2013). The threonine
metabolism can contribute to this process via several mechanisms,
for example, by supplying methyl groups to OCM to reinforce the
biosynthesis of cellular building blocks or by supporting SAM to
promote the pluripotent state-specific H3K4me3 (Bernstein et al.,
2006; Wang et al., 2009; Shyh-Chang et al., 2013b). The biosynthesis
of the neurotransmitter serotonin by a rate-limiting enzyme,
tryptophan hydroxylase-2 (TPH2), is also involved in the
regulation of cell reprogramming. Removing TPH2 function
during the entire reprogramming process majorly enhances the
efficiency of iPSC generation, while TPH2 induction suppresses
the process, indicating the importance of tryptophan pool or
serotonin signaling in pluripotency acquisition (Sinenko et al.,
2023). The latter possibility is supported by the observed activity
of serotonin in the positive regulation of mitochondrial functions
and biogenesis (Fanibunda et al., 2019; Rao et al., 2023). It has also
been shown that a key enzyme in glycine degradation, glycine
decarboxylase (GLDC), is involved in the early stages of cell
reprogramming (Kang et al., 2019). GLDC expression appears to
be regulated by the reprogramming factors KLF4 and c-MYC, and
loss of GLDC activity impairs reprogramming, probably through a
reduction in glycolytic intermediates, which suggests that it can
function by upregulating glycolysis (Kang et al., 2019).

In addition to playing a structural role as the main
components of membranes, lipids are important energy sources
and signaling mediators. Lipid metabolism includes de novo
biosynthesis and catabolism through fatty acid oxidation
(FAO); both of these processes occur in equilibrium and are
highly context- and cell-dependent. It has been shown that
lipogenesis is enhanced during reprogramming, as fatty acid
synthase (FASN) and acetyl-CoA carboxylase 1 (ACACA)
expression are increased during the process; in addition,
supplying extra oleic acid can increase reprogramming
efficiency (Wang et al., 2017). ACACA-mediated increase in
lipogenesis supported enhanced mitochondrial fission by
blocking acetylation-dependent ubiquitin-proteasome
degradation of the mitochondrial fission 1 protein. The
pharmacological inhibition of ACACA and FASN activities
markedly decreases reprogramming efficiency, whereas
stimulating the activity of these key lipogenic enzymes
promotes this process (Vazquez-Martin et al., 2013; Wu et al.,
2016). Ectopic expression of Srebp-1, a transcriptional factor
required for lipid homeostasis, was found to enhance
reprogramming, while its knockdown suppresses the process
(Wu et al., 2016). The inhibition of lipid biosynthesis and
autophagosome formation significantly reduce reprogramming
efficiency. It has been shown that Rab32 kinase-A anchoring
protein increases lipid biosynthesis and storage, as well as
autophagosome formation, during the early and middle phases
of reprogramming, thus improving its outcome (Pei et al., 2015).

On the other hand, the catabolic FAO process is important at the
early stage of reprogramming, which coincides with the
abovementioned OxPhos burst. Activation of FAO by adding
palmitoylcarnitine—a product of the carnitine
palmitoyltransferase (CPT) system—during the first 3 days of
reprogramming is sufficient to stimulate OxPhos activity, thereby
enhancing reprogramming (Figures 1, 2) (Lin et al., 2018). After this
stage, OxPhos is suppressed by palmitoylcarnitine supplementation.
CPT1b, which is a rate-limiting enzyme of FAO, is significantly
upregulated at the early stage of reprogramming, and its ectopic
expression was found to significantly improved reprogramming
efficiency. Thus, via different mechanisms, the activation of both
lipid anabolism and catabolism support iPSC generation.

OxPhos and ETC in cell reprogramming

OxPhos is the main bioenergetic pathway operating in
mitochondria, which enables the transfer of electrons donated by
NADH and FADH2 of the TCA cycle to the redox reaction carried
out by the ETC complexes. This process creates potential gradients
and harnesses the energy to pump protons from the matrix to
intramembrane space through the inner mitochondrial membrane,
generating an electrochemical proton membrane gradient.
Mitochondrial ATP synthase using the membrane gradient
transfers protons back across the inner membrane, thereby
generating ATP. OxPhos is a far more efficient bioenergetic
pathway for ATP production than glycolysis (36 vs. 2 ATP
molecules per glucose). Furthermore, OxPhos maintains
bioenergetic homeostasis by linking multiple metabolic pathways,
including glycolysis, the TCA cycle, and FAO. ETC contains five
multi-subunit complexes, I-V (CI-CV). NADH-dehydrogenase CI is
the largest 45-subunit complex mediating dehydrogenase activity by
accepting electrons from NADH and the main contributor to
electrochemical gradient force. CII accepts electrons from FADH2

and contributes much less than CI to the total electrochemical
force (Figure 2).

It was shown that most subunits of CI, CII, and CIV are
downregulated in iPSCs, while subunits of CIII and CV were
shown to be upregulated in these cells, compared to the mouse
embryonic fibroblasts (MEFs) from which the iPSCs were derived
(Folmes et al., 2011). The CI and CII reduction in PSCs suggests that
OxPhos is mainly suppressed in these cells, while the glycolytic
pathway is dominant. As mentioned above, the proteomic analysis
identified dynamic and tightly coordinated changes in expression
and in the stoichiometry of ETC complexes at all stages of the
reprogramming (Hansson et al., 2012). The decreased expression of
NADH-dehydrogenase CI and CIV, along with increased expression
of CII, CIII, and CV subunits at the early stage, might reflect possible
stabilization of ROS levels during the oxidative burst to avoid an
excess of its production (Boekema and Braun, 2007; van Raam et al.,
2008). The reduced CI and increased CII presence at the early stage
of the reprogramming may suggest that FADH2 dominates over
NADH in electron donation to ETC, probably to avoid excessive
ROS production and to increase the NADH/NAD + ratio, which can
suppress the TCA cycle and overall OxPhos activity (Kida et al.,
2015; Lee et al., 2016). OxPhos capacity reaches a peak by days 2–3 of
reprogramming (Kida et al., 2015). We have shown that CI is
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important for cell reprogramming. Continuous suppression of CI
function through silencing NADH-ubiquinone oxidoreductase
subunits S1 or B10 (Ndufs1 or Ndub10) or through rotenone
treatment during the entire process of reprogramming impedes
iPSC generation. In contrast to the first 3 days of
reprogramming, functioning CI is in greater demand during the
intermediate and late stages of the process in terms of
reprogramming efficiency, suggesting that efficient OxPhos is
required during the entire process of iPSC generation (Skvortsova
et al., 2022). In agreement with this observation, it has been
demonstrated that induced mitochondrial respiratory dysfunction
caused by pathogenic heteroplasmy of mitochondrial DNA
(mtDNA), which encodes ETC complex subunits, also suppresses
reprogramming (Hamalainen et al., 2015; Yokota et al., 2015).
However, rare heteroplasmic iPSC clones derived via this
reprogramming acquired proper pluripotency status. It has yet to
be elucidated which part of OxPhos and ETC complexes is required
for each stage of cell reprogramming (Figure 1). Among redox
signaling regulation by mitochondrial ROS (Skvortsova et al., 2022),
OxPhos can be important for TCA cycle metabolite supply, NADH
and Acetyl CoA balance, MMP maintenance, and ATP production
during each phase of reprogramming. The contribution of CI to
ATP generation and MMP maintenance at various stages of cell
reprogramming requires investigation. Cells with inhibited ETC are
not able to oxidize TCA cycle-produced NADH, resulting in the
suppression of this catalytic cycle. This may result in diminished
biosynthesis of citrate and its derivative, cytosolic acetyl-CoA, and,
therefore, in reduced histone acetylation (Martinez-Reyes et al.,
2016). While this issue requires further investigation, it seems
likely that immortalized somatic cells or cancer cells already
recruit aerobic glycolysis and suppress OxPhos metabolic flux.
These cells are unlikely to achieve an oxidative burst during the
onset of reprogramming, which may explain their inability to
achieve a pluripotent state (Vazquez-Martin et al., 2012b; Lee
et al., 2016; Park et al., 2017; Skvortsova et al., 2018).

ROS signaling during cell reprogramming to
pluripotency

ROS are several partially reduced (gaining electrons) oxygen-
containing molecules, including superoxide anion (O2

−), hydrogen
peroxide (H2O2), and hydroxide radicals, all of which are highly
poised to interact with and modify various types of biological
molecules. High and continuous ROS exposure under, for
example, conditions when the cell antioxidant system is deficient
causes oxidative damage, leading to cell and mitochondrial genome
failure, thereby promoting cell senescence and death (Halliwell and
Gutteridge, 1984; Papa and Skulachev, 1997; Holzerova and
Prokisch, 2015). However, it is well established that ROS
function as important intracellular signaling molecules that
operate through post-translational covalent modifications of
various signaling proteins, as well as through specific sensors that
acutely respond to redox-based intracellular changes (Hamanaka
and Chandel, 2010; Suda et al., 2011; Autreaux and Toledano, 2007;
Sinenko et al., 2021b; Sies and Jones, 2020; Andreyev et al., 2005;
Lyublinskaya et al., 2015; Sauer et al., 2001). Physiological ROS
signals, mediated mainly by hydrogen peroxide, are also important

for stem cell functions, promoting the proliferation and
differentiation of these cells (Le Belle et al., 2011; Suda et al.,
2011; Sinenko et al., 2021b; Ivanova et al., 2021). ROS can be
produced in the cytosol mainly by plasma membrane NAD(P)H
oxidases (NOXs) and in mitochondria by ETC complexes.
Alongside several enzymes of the TCA-cycle–2-oxoglutarate
dehydrogenase, monoamine oxidases (MAOs), 2-oxoacid
dehydrogenase complexes (OADHC), mitochondrial snglycerol-3-
phosphate dehydrogenase (mGPDH), and dihydroorotate
dehydrogenase (DHDOH)—the electron-transferring flavoprotein
(ETF/ETF:QOR system) contributes to ROS generation in
mitochondria (Brand, 2016). In addition, in mitochondria,
electron leakage occurs due to electron transport ETC function,
leading to the formation of O2

−, H2O2, and other ROS-related
molecules (Korshunov et al., 1997; Wong et al., 2017). The main
sources of ROS in ETC are complexes I and III (Andreyev et al.,
2005; Chernyak et al., 2006; Murphy, 2009; Vinogradov and
Grivennikova, 2016; Chenna et al., 2022), and it was shown that
CI contributes mainly to O2

− generation under physiological
conditions (Votyakova and Reynolds, 2001; Kushnareva et al.,
2002). CI inactivation by genetic or pharmacological means leads
to significantly increased ROS levels (sublethal levels), which
mediate different physiological processes in various model
organisms (Sinenko et al., 2012; Tan et al., 2017; Sinenko et al.,
2021b; Knapp-Wilson et al., 2021; Skvortsova et al., 2022). Multilevel
antioxidant defense and regulatory systems tightly regulate ROS
levels in a cell type- and cell compartment-dependent manner,
mediated by redox-controlled TFs and antioxidant enzyme
systems, such as superoxide dismutase-1, -2 (SOD-1/2), catalase,
and peroxiredoxins 1-6 (Pxn1-6) (Andreyev et al., 2005; Sies and
Jones, 2020; Sinenko et al., 2021b).

The tight regulation of ROS levels is also required for different
stages of cell reprogramming to pluripotency (Figure 1). It has
been shown that activation of the innate immunity Toll-like
receptor 3 (TLR3) pathway triggers ROS generation and
signaling at the onset of the reprogramming, which is required
for its efficient accomplishment (Lee et al., 2012; Yang et al., 2013).
The NADPH oxidase 2 (NOX2) enzyme complex is involved in the
generation of ROS at this stage of reprogramming, and optimal
levels of ROS signaling are essential to induce pluripotency (Zhou
et al., 2016). Along with NOX-generated ROS, mitochondria-
derived ROS (mtROS) contribute greatly to ROS signaling at
the early stage of reprogramming (Hawkins et al., 2016;
Skvortsova et al., 2022). As previously mentioned, levels of
mtROS peak on day 3 of the process, coincident with an
OxPhos burst and high mitochondrial content. At this stage,
the main ROS contributors, CI and CIII, are correspondingly
down- and upregulated, probably to attenuate the
overproduction of ROS. This idea is consistent with the
observation that removing excess ROS during the early
reprogramming phase significantly increases the efficiency of
iPSC generation (Skvortsova et al., 2022). On the other hand,
cells undergoing reprogramming at this stage are the most resilient
to OxPhos inactivation and high ROS levels, as they better tolerate
loss of CI activity compared with later stages of the
reprogramming. The exact mechanisms by which
reprogramming is regulated by ROS and antioxidant response
systems requires further investigation.
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The abundant ROS generated by OxPhos and NOX2 during the
early reprogramming period are likely to be critical for driving
metabolic transition during subsequent phases of reprogramming.
This might be mediated by NRF2 activation via the modification of
cysteine residues of the NRF2 repressor KEAP1, leading to HIF1α
activation and stimulation of glycolysis (Mathieu et al., 2014;
Hawkins et al., 2016). It has also been shown that elevated ROS
can stabilize HIF1α, promoting reprogramming (Chandel et al.,
2000; Son et al., 2015). The increased ROS might also act via nuclear
factor kappa B (NF-κB) and c-Jun/activator protein-1 (AP-1) by
inactivating these TF, as their inactivation increases the efficiency of
iPSC generation (Filosto et al., 2003; Lingappan, 2018; Markov et al.,
2021). The high ROS levels can potentially signal through the
p38 MAPK and JNK pathways to mediate cell reprogramming
processes during the early stages (Son et al., 2013; Neganova
et al., 2016; Neganova et al., 2017). The function of ROS to
support the proliferation of various cells, including PSCs
(Ivanova et al., 2021; Kirova et al., 2022) and cells during
reprogramming (Zhou et al., 2016; Skvortsova et al., 2022), is
consistent with the importance of active proliferation at the early
stage of reprogramming. It has been shown that Nrf2 action during
reprogramming is also mediated by increased proteasome activity,
particularly by proteasome maturation protein (POMP) (Buckley
et al., 2012; Jang et al., 2014; Selenina et al., 2017; Zubarev et al.,
2022), which probably acts through the degradation of metabolism-
related proteins.

The impact of the significantly reduced number of mitochondria
and decreased mtROS at the mid- and late stages of reprogramming
requires better understanding. OxPhos suppression and increased
ROS generation upon CI inactivation at these stages result in
significantly reduced reprogramming efficiency, while
maintaining certain levels of ROS at these stages is supportive of
the reprogramming process (Skvortsova et al., 2022). Intriguingly,
optimal ROS levels during reprogramming are crucial for the
process, as simultaneous CI inhibition by rotenone and ROS
scavenging by N-acetyl cysteine synergistically suppress
reprogramming (Skvortsova et al., 2022). However, during these
stages, increased ROS presumably has a damaging proapoptotic
effect, and a certain counterbalancing by antioxidant activity is
required to improve the quality of human iPSCs (Armstrong
et al., 2010; Ji et al., 2014). In this regard, it is necessary to keep
an optimal ROS level during every stage of the reprogramming, and
the corresponding molecular mechanisms governing these processes
await further clarification.

Mitochondria genome and reprogramming

The mitochondrial genome and functions are well preserved
throughout the processes of reprogramming peripheral blood
mononuclear cells to iPSCs and during differentiation of the
latter cells into functional cerebral organoids (Duong et al.,
2021). Several studies have investigated the effects of
mitochondrial respiratory dysfunction triggered by mutant
mtDNA on cellular reprogramming. The variable amount of
mutant mtDNA in somatic cells allows for the generation of
patient-specific iPSC lines with high or low heteroplasmic levels
during reprogramming procedures (Ma et al., 2015; Kodaira et al.,

2015). Further, when iPSC lines are established, mtDNA
heteroplasmy levels are not significantly altered during in vitro
differentiation, so higher and lower percentages of heteroplasmy
are preserved in fully differentiated cells (Folmes et al., 2013b; Klein
Gunnewiek et al., 2020; Duong et al., 2021).

The generation of patient-derived iPSCs and derivatives thereof,
carrying various heteroplasmic mtDNA mutations, has also been
reported (Fujikura et al., 2012; Folmes et al., 2013b; Cherry et al.,
2013; Hamalainen et al., 2013; Yokota et al., 2015). Patient-specific
and cell-type-specific variation of the molecular pathogenic
potential of mutant m.3243A>G mtDNA was demonstrated
(Yokota et al., 2015). In addition, in vitro recapitulation of
neuronal pathophysiology in mitochondrial encephalopathy,
lactic acidosis, and stroke-like episodes (MELAS) was performed
using iPSC-derived neurons (Hamalainen et al., 2013). Thus, the
listed data demonstrate that iPSC-based approaches are highly
useful for modeling and investigating mtDNA disease
progression and the phenotypes of affected tissues.

A high-depth mtDNA sequence analysis of human iPSCs and
primary fibroblasts confirmed the age-related accumulation of
mtDNA mutations in human fibroblasts. However, this analysis
showed that heteroplasmy levels vary during cell reprogramming
and shape the mtDNA landscape on a clonal level, resulting in the
heterogeneity of derived iPSC lines (Wei et al., 2021). On the other
hand, heteroplasmy levels remained stable during the cell
differentiation process. It was also shown that during iPSC
culturing, there is a strong functional selection against mutations
in mitochondrial genes that encode ETC complex subunits
(Hamalainen et al., 2015; Kosanke et al., 2021). Thus, from a
mtDNA perspective, reprogramming to pluripotency and iPSC
culturing clears or “rejuvenates” the cell population by removing
cells carrying mutated mtDNA, which resembles the processes that
occur during germline reprogramming. In the female germline,
rapid shifts in heteroplasmy due to various modes of mtDNA
content reduction have been shown (Cree et al., 2008; Wai et al.,
2008; Cao et al., 2009; Burr et al., 2018). A similar “bottleneck” effect
can also occur at the cellular level due to the preferential replication
and loss of cells containing specific mtDNA variants during
reprogramming. mtDNA variations have been shown to influence
reprogramming efficiency (Latorre-Pellicer et al., 2019).

Conclusion

Since the discovery of TF-mediated pluripotency
reprogramming, an extensive pool of data has been developed,
helping to understand the molecular mechanisms of the
reprogramming process. In particular, during the last decade,
significant insight into the role of metabolic regulation in stem
cell pluripotency acquisition has been obtained. It was established
that metabolic demands in differentiated cells and PSCs are
different. The metabolism of slow-proliferating differentiated cells
is dependent mainly on OxPhos and active catabolic pathways, while
the metabolism of highly proliferative PSCs is dependent mainly on
the activation of aerobic glycolysis and anabolic pathways. The
reprogramming of differentiated cells into PCSs requires a major
transformation of the energy metabolism. The most critical
metabolic change occurs during the early stage of

Frontiers in Cell and Developmental Biology frontiersin.org12

Sinenko and Tomilin 10.3389/fcell.2023.1328522

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1328522


reprogramming, with the initiation of the switch from OxPhos to
aerobic glycolysis dominancy. At this stage, an OxPhos burst that
includes an increase in respiratory mitochondrial parameters occurs,
resulting in a burst of ATP and ROS production. These events are
likely to represent a signal to activate NRF2/HIF1a and other
transcriptional regulators and to induce and maintain the
activation of glycolytic and anabolic pathways. They also induce
significant changes in the mitochondrial network, which is
gradually transformed into an immature state through
fragmentation and mitophagy processes. While the dominancy of
the glycolytic pathway during the maturation and stabilization stages
of reprogramming is established, the OxPhos function and associated
optimal levels of ROS, ATP, and MMP production are required for
reprogramming process. It has been shown that metabolic changes
often determine and instruct changes during cell fate transitions and
reprogramming. This can be mediated through interaction with
signaling pathways and TF networks of various metabolites,
including NAD+, ATP, ROS, and retrograde signals from the main
metabolic organelles, mitochondria. In addition, the contribution of
metabolic pathwaymetabolites to the epigenetic remodeling of the cell
takes place. Recent studies have also shown that a single metabolic
intermediate from active metabolic pathways—glycolysis, TCA cycle,
FAO, and fatty acid synthesis—can dramatically affect stem cell
identity and the reprogramming process.

Single-cell resolution analysis of gene expression during the
reprogramming process identified that, along with the relatively
minor population of true iPSC progenitor cells that become iPSCs,
many cells pass different non-pluripotent cell fates. In most
reprogramming studies, these populations were not considered in
terms of their impact on metabolic processes and possible cell non-
autonomous effects. These processes, along with many questions
about the metabolic regulation of reprogramming, are only
beginning to be deciphered and still require clarification using,
for example, single-cell-based metabolomics methodology.

iPSCs are the most promising cell source for cell-based therapies
in regenerative medicine. In light of this, it is especially important to
gain a better understanding of molecular mechanisms, metabolic
regulations, and epigenetic signatures involved in the
reprogramming process to improve the timing and quality of the

generated iPSCs and develop better cell sources for
regenerative medicine.
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Glossary

Acetyl-CoA Acetyl-Coenzyme A

AAA Aromatic amino acids

AMPK AMP-activated protein kinase

AP-1 Activator protein 1

ATP Adenosine three phosphate

α-KG alpha-ketoglutarate

BMP Bone morphogenetic protein

CI-IV Complexes I-IV

CMA Cell-matrix adhesion

CPT Carnitine palmitoyltransferase

CTBP C-terminal binding protein

DHAP Dihydroxyacetone phosphate

DRP1 Dynamin-related 1

ERK Extracellular signal-related kinase

ERRα/γ Estrogen-related nuclear receptor alpha/gamma

ESRRB Estrogen-related nuclear receptor beta

ESCs Embryonic stem cell

ETC Electron transport chain

GLDC Glycine decarboxylase

GLUT1/3 Glucose transporter 1/or 3

FADH2 Flavin adenine dinucleotide

FAO Fatty acid oxidation

FASN Fatty acid synthase

FIS1 Mitochondrial fission 1 protein

HIF1/or 2α Hypoxia-inducible factor 1/or 2-alpha

HK1/or 2 Hexokinase 1/or 2

ICM IDH1/3 Isocitrate dehydrogenase 1/or 3

iPSCs induced pluripotent stem cells

KEAP1 Kelch like-ECH-associated protein 1

LIF Leukemia inhibitory factor

LDHA Lactate dehydrogenase A

MAPK Mitogen-activated protein kinase

MEFs Mouse embryonic fibroblasts

MET Mesenchymal-to-epithelial transition

MELAS Mitochondrial encephalopathy, lactic acidosis, and stroke-like
episodes

MMP Mitochondrial membrane potential

mtDNA Mitochondrial DNA

mTOR Mammalian target of rapamycin

MFN1/2 Mitofusin-1/or 2

NADH Nicotinamide adenine dinucleotide

NADPH Nicotinamide adenine dinucleotide phosphate

NDUFS1 NADH ubiquinone oxidoreductase core subunit S1

NF-kB Nuclear factor kappa B

NRF2 Nuclear factor (erythroid-derived 2)-like-2

NOX2 NADPH oxidase 2

OCM One-carbon metabolism

OSKM OCT4, SOX2, KLF4, and cMYC

OxPhos Oxidative phosphorylation

PDH Pyruvate dehydrogenase

PDHK1 Pyruvate dehydrogenase kinase 1

PDK1 3-Phosphoinositide-dependent protein kinase-1

PDK3 Pyruvate dehydrogenase kinase 3

PGC-1 Peroxisome proliferator-activated receptor-1

PKM2 Pyruvate kinase M2

PN TFs Pluripotency network TFs

PnPase Polynucleotide phosphorylase

POLG DNA polymerase subunit

POMP Proteasome maturation protein

PRPP Phosphoribosyl pyrophosphate

PSCs Pluripotent stem cells

PTBP1 Polypyrimidine tract-binding protein 1

ROS Reactive oxygen species

SAM S-adenosyl methionine

SDHB Succinate dehydrogenase

SOD-1/2 Superoxide dismutase 1/or 2

TCA Tricarboxylic acid

TCL1 T cell leukemia/lymphoma protein 1

TDH Threonine dehydrogenase

TFs Transcription factors

TLR3 Tall-like receptor 3

TGFbeta Transforming factor beta

UCP2 Uncoupling protein 2

UPR Unfolded protein response
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