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This review presents the advancements in nanomaterial (NM)-induced pyroptosis
in specific types of cells. We elucidate the relevance of pyroptosis and delineate
its mechanisms and classifications. We also retrospectively analyze pyroptosis
induced by various NMs in a broad spectrum of non-tumorous cellular
environments to highlight the multifunctionality of NMs in modulating cell
death pathways. We identify key knowledge gaps in current research and
propose potential areas for future exploration. This review emphasizes the
need to focus on less-studied areas, including the pathways and mechanisms
of NM-triggered pyroptosis in non-tumor-specific cell types, the interplay
between biological and environmental factors, and the interactions between
NMs and cells. This review aims to encourage further investigations into the
complex interplay between NMs and pyroptosis, thereby providing a basis for
developing safer and more effective nanomedical therapeutic applications.
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Introduction

Nanomaterials (NMs) have emerged as a promising avenue in biomedicine because of
their unique physical and chemical properties. Their applications cover diverse areas,
including drug delivery, bioimaging, and disease treatment (Sasidharan and Monteiro-
Riviere, 2015). However, with the increasing use of NMs, concerns over their potential
effects on biological systems are escalating. A particular focus of current research is NM-
induced pyroptosis.

Pyroptosis is a form of regulated cell death dependent on the formation of plasma
membrane pores by the gasdermin (GSDM) protein family (Shi et al., 2017). It
fundamentally represents an adaptive response of cells to external stimuli. It plays a
crucial role in host defense against microbes, cytokine secretion, inflammation, and tumor
immunity (Wei et al., 2022). Recent advancements in nanotechnology have led to the
widespread application of NMs in the activation and improvement of pyroptosis to improve
the efficacy of cancer treatments (Wu et al., 2021; Chen et al., 2022). While nanomedicine-
induced pyroptosis has emerged as an effective strategy for tumor therapy, pyroptosis has
advantages and disadvantages. Its effect on the human body can vary dramatically across
different genetic backgrounds, tissues, and disease stages. NMs or their degradation
products may also trigger pyroptotic toxicity in normal cells/tissues although they can
induce pyroptosis to combat tumors. Notably, NM-induced pyroptosis in immune cells
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may disrupt the body’s immune homeostasis; consequently, it affects
immune defense capabilities and even causes irreversible tissue
damage (Wei et al., 2022). Therefore, minimizing nonspecific
damage is a critical issue that must be addressed for the clinical
application of NMs. The extent of NM-induced pyroptosis primarily
depends on factors such as the characteristics of NMs, dosage,
exposure time, and the nature of the interaction between NMs
and cells (Andón and Fadeel, 2013). Therefore, an in-depth
understanding of these factors can provide insights into the
varying degrees of pyroptotic responses and a basis for
developing safer and more effective medical applications of NMs.

While studies have described the prospects for tumor treatment
via NM-induced pyroptosis, our understanding of the effect of such
materials on nontumor cells, particularly within the context of
immune cells, has a notable gap. In this review, we aim to
provide a comprehensive overview of the current research
progress on NM-induced pyroptosis in specific cell types,
elucidate existing controversies, and identify gaps in our
understanding. Thus, our goal is to offer readers an enhanced
understanding of this complex yet critical field and propose
potential directions for future research.

Definition and classification of
pyroptosis

Overview of pyroptosis

Pyroptosis is a regulated form of cell death that relies on the
GSDM protein family to form pores in the plasma membrane (Shi
et al., 2017). In this process, holes form in the cell membrane, and
the cell continuously enlarges until the membrane ruptures;
consequently, cellular contents, such as certain cytokines, are
released. Since pyroptosis was first observed in macrophages
(Gery et al., 1981), our understanding of this form of cell death
has undergone remarkable developments. Pyroptosis is mediated by
GSDM family molecules rather than inflammasomes or caspases,
suggesting that GSDMs can trigger pyroptosis in various cell types
through mechanisms that do not depend on inflammasomes and
caspases. In addition to the action of various proteases, the activation
of GSDM molecules is tightly regulated by post-translational
modifications such as succinylation (Humphries et al., 2020),
palmitoylation (Balasubramanian et al., 2023; Du et al., 2023),
ubiquitination (Shi et al., 2022), and oxidation (Devant et al.,
2023). Their activation is independent of the occurrence of
pyroptosis because of the dynamic nature of the process
involving GSDM-mediated pore formation, plasma membrane
rupture, and intracellular cytokine release, which are regulated by
multiple factors. Additionally, pyroptosis interacts with other cell
death pathways, including the potential for a switch between cell
death modes.

The GSDM family serves as executioner molecules of pyroptosis,
and its pore-forming function is a prerequisite for pyroptosis (Shi
et al., 2015; Shi et al., 2017). It comprises six members in the human
body: GSDMA, GSDMB, GSDMC, GSDMD, GSDME, and DFNB59
(Ding et al., 2016; Broz et al., 2020). The structures of all GSDMs
except DFNB59 include a cytotoxic N-terminal pore-forming
domain (PFD) and a C-terminal repressor domain (RD) (Broz

et al., 2020). Under normal circumstances, the PFD and RD
aggregate together, inhibiting the pore-forming function of
GSDM (Liu et al., 2019; Broz et al., 2020). Once activated by
specific signals, GSDM molecules are cleaved by active caspases
or granzymes, thereby separating the N- and C-termini. The cleaved
N-terminal domain can insert into the cell membrane and assemble
to form large oligomeric pores. GSDM pores can disrupt the
integrity of the cell membrane; consequently, inflammatory cell
death is triggered, and through this process, cellular contents,
including inflammatory cytokines, are released into the
extracellular space. During pyroptosis, GSDMs must be cleaved
by upstream active caspases or other proteases for activation.
Therefore, pyroptosis can be classified into four types based on
different proteases: classical inflammasome pathway (caspase-
1 mediated), nonclassical inflammasome pathway (caspase-4/5/
11 mediated), apoptosis-related caspase (caspase-3/6/7/8)-
mediated pathway, and other proteases-mediated pathway.

Classical inflammasome pathway
(caspase-1 mediated)

The classical pyroptosis pathway is mediated by the
inflammasome assembly, which is activated by recognizing
pathogen-associated molecular patterns (PAMPs) and danger-
associated molecular patterns (DAMPs); this process is
accompanied by the cleavage of GSDMD and the release of IL-
1β and IL-18 (Shi et al., 2014; Liston and Masters, 2017).
Generally, the inflammasome consists of intracellular pattern
recognition receptors (PRRs), apoptosis-associated speck-like
proteins containing a caspase recruitment domain (ASC), and
inflammatory caspases (Lamkanfi and Dixit, 2014; Yu et al., 2021).
Common PRRs, such as nucleotide-binding oligomerization
domain-like receptors (NLRs, including NLRP1, NLRP3, and
NLRC4), AIM2, and pyrin, have been extensively studied
(Rathinam et al., 2010; He et al., 2016; Rathinam and
Fitzgerald, 2016). They recognize various stimuli, such as
toxins, pathogens, and metabolites, and activate downstream
signaling pathways. The inflammasome adapter ASC, which
has PYD and CARD domains, can recruit pro-caspase-1
(Hornung et al., 2009; Fernandes-Alnemri et al., 2010;
Matyszewski et al., 2018). After the inflammasome assembly,
caspase-1 is activated, cleaving GSDMD and the IL-1β and IL-
18 precursors; consequently, pyroptosis occurs, and inflammatory
cytokines are released. During this process, a cascade of
intracellular events may take place. For instance, Miao et al.
discovered that GSDMD-NT can directly damage the
mitochondria during pyroptosis; as a result, 3ʹ–5ʹ
exoribonucleases are released into the cytoplasm. Thus, mRNA
is extensively degraded, thereby exacerbating cell pyroptosis and
amplifying subsequent inflammatory responses (Miao et al.,
2023). However, the resulting post-inflammasome activation
can vary; for example, it can lead to pyroptosis or may cause
cytokine release without cell death (Carty et al., 2019). Although
the exact mechanisms accounting for these differences are
unclear, they may involve the regulation of cell membrane
rupture and repair during pyroptosis (Kayagaki et al., 2021;
Chai et al., 2022).
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Nonclassical inflammasome pathway
(caspase-4/5/11 mediated)

In non-classical pyroptosis pathways, the upstream sensing
complexes of human caspase-4/5 (mouse caspase-11) are absent;
as such, these caspases can bind directly to signaling inducers such as
bacterial lipopolysaccharides (LPS) through their N-terminal
CARD. Consequently, they become activated (Shi et al., 2014).
The activated caspase-4/5/11 can cleave GSDMD into
N-GSDMD, which then oligomerizes and translocates to the cell
membrane; as a result, membrane pores are formed, and pyroptosis
is induced (Aglietti et al., 2016). While caspases-4/5/11 can initiate
pyroptosis via GSDMD, their role in the processing of pro-
inflammatory cytokines is relatively inefficient. Notably, these
caspases do not effectively cleave pro-IL-1β (Exconde et al.,
2023). Thus, the optimal maturation and release of IL-1β and IL-
18 typically require NLRP3 inflammasome activation, followed by
caspase-1 action. NLRP3 activation involves a cascade of
mitochondrial reactive oxygen species production, ATP release,
and K+ efflux (Ruhl and Broz, 2015; Weindel et al., 2022). These
insights highlight a complex regulatory network where non-classical
inflammasome modulate canonical pathways to fine-tune host
immune responses (Baker et al., 2015; Ruhl and Broz, 2015;
Schmid-Burgk et al., 2015).

Apoptosis-related caspase (caspase-3/6/7/
8)-mediated pathway

In addition to caspase-1/4/5/11, apoptosis-related caspases such
as caspase-8, caspase-3, caspase-7, and caspase-6 contribute to
pyroptosis. Under certain conditions, such as Yersinia infection or
specific kinase inhibition, macrophages can utilize caspase-8 as an
alternative to caspase-1 for the cleavage of GSDMD, thereby inducing
pyroptosis (Orning et al., 2018; Sarhan et al., 2018). Conversely, upon
activation, caspase-3 and -7 can cleave GSDMD at Asp87 (Asp88 in
mice); as a result, it becomes inactivated, and its ability to localize to
membranes is inhibited, effectively suppressing pyroptosis.
Additionally, tumor cell pyroptosis induced by chemotherapeutic
drugs or macrophage-derived tumor necrosis factor α (TNF-α) can
occur through the caspase-8/GSDMD/GSDME/GSDMC pathway
(Hou et al., 2020). Unlike GSDMD, GSDME is directly situated
within the apoptotic pathway, and its expression levels dictate the
switch between apoptosis and pyroptosis to some extent. This switch,
induced by chemotherapeutic drugs or cytokines such as TNF-α,
primarily depends on GSDME expression levels (Rogers et al., 2017;
Wang et al., 2017). In GSDMD-deficient macrophages, GSDME
activation by caspase-3 not only induces pyroptosis but also
facilitates cytokine secretion at various stages of this cell death
process (Zhou and Abbott, 2021). In macrophages lacking caspase-
1/11, NLRP3 can activate caspase-3/8, which then cleaves GSDME,
triggering a form of incomplete pyroptosis (Aizawa et al., 2020). This
process does not involve IL-1β release; instead, it involves IL-1α
secretion. Another entity participating in non-inflammatory caspase-
mediated pyroptosis is caspase-6. It enhances the interaction between
receptor-interacting protein kinase 3 (RIPK3) and Z-DNA-binding
protein 1 (ZBP1); thus, it activates the NLRP3/caspase-1 signaling
pathway (Zheng et al., 2020).

Pyroptosis mediated by other proteases

Granzymes, a family of serine proteases, have been recognized as
cell death mediators (Bots and Medema, 2006; Voskoboinik et al.,
2015). They can modulate inflammation by directly or indirectly
inducing pyroptosis. Granzyme A (GZMA), derived from cytotoxic
T lymphocytes, cleaves GSDMB. This interaction creates pores in
the membrane and induces pyroptosis in GSDMB-expressing cancer
cells (Zhou et al., 2020). However, this process is contingent on the
expression of GSDMB, which is absent in some human tissues and
mice. In parallel with GZMA, granzyme B (GZMB) derived from
natural killer cells can induce pyroptosis. GZMB directly cleaves
GSDME at the same site as caspase-3; consequently, its effector
N-terminal is released, and the cell membrane is perforated (Zhang
et al., 2020). This process can occur in two distinct routes: directly
through GSDME cleavage or indirectly through caspase-3
activation. This process may amplify inflammatory responses in a
tumor microenvironment, recruiting more immune cells for
antitumor immunity. Furthermore, chimeric antigen receptor
T cells stimulate caspase-3, which can cleave GSDME, causing
pyroptosis in target cells (Liu et al., 2020). Importantly, this
process can occur regardless of the presence or absence of
caspase-3; therefore, granzymes can induce pyroptosis via direct
and indirect pathways. The internalization of GSDME- and
GSDMB-activated granzymes requires perforin derived from
lymphocytes (Zhang et al., 2020; Zhou et al., 2020). Thus,
GSDME- and GSDMB-mediated pyroptosis is considered a
primary terminal effector of the perforin-granzyme cytotoxic
pathway. In neutrophils, GSDMD can be cleaved by elastase and
cathepsin G in azurophilic granules; as a result, pyroptosis is
induced, and IL-1β is secreted (Burgener et al., 2019). In human
and mouse keratinocytes, streptococcal pyrogenic exotoxin B (SpeB)
proteolytically activates GSDMA, thereby triggering pyroptosis
(Deng et al., 2022; LaRock et al., 2022). Recent research has
revealed that the NS2B3 protease of the Zika virus specifically
targets and cleaves GSDMD, resulting in pyroptosis in infected
host cells (Yamaoka et al., 2021; Kao et al., 2023).

NM-induced pyroptosis in specific cell types

Upon entering the human body, NMs, which are materials with
a size of 1–100 nm, can interact with various cell types. The
dynamics and outcomes of these interactions are highly
dependent on the inherent properties of NMs, the nature of
involved cells, and the specific microenvironment where the
interaction occurs. Depending on these parameters, cells may
respond in adaptive or defensive manners, which can lead to
various outcomes, including cell death, specifically pyroptosis.
Cell type plays a pivotal role in determining how cells interact
with NMs and hence influences the potential induction of
pyroptosis. Different cell types may elicit distinct responses to
NM exposure because of their unique physiological features and
functions. Some cells may be more susceptible to NM-induced
pyroptosis based on their inherent biological characteristics.
Current research on NM-induced cell pyroptosis primarily
focuses on cancer treatment and covers NM-mediated magnetic
hyperthermia, photothermal therapy, targeted tumor metabolism,
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chemotherapeutic drug delivery, and comprehensive therapies
involving multiple strategies. These applications have been
summarized in numerous reviews (Wu et al., 2021; Chen Y. Y.

et al., 2022). In the current review, the regulation of pyroptosis by
NMs in different types of non-tumor cells is emphasized and
summarized (Table 1).

TABLE 1 Summary of NMs induce pyroptosis in non-tumor cells.

NM types Cell types Experimental subjects Target References

Silica nanoparticles Macrophages RAW264.7 cells NLRP3/Caspase-1/GSDMD/
IL-1β

Ma et al. (2022)

Multi-walled carbon nanotubes Macrophages THP-1 cells NLRP3/Caspase-1/IL-18/IL-1β Wang et al. (2020)

Silica nanoparticles Macrophage RAW-ASC cells TLR4/NLRP3/NF-κB/Caspase-
1/GSDMD/IL-1β

Yin et al. (2022)

Multi-walled carbon nanotubes Macrophages primary human macrophages NLRP3/Caspase-1/GSDMD/
IL-1β

Keshavan et al. (2021)

Indium-tin-oxide Macrophages Mouse peritoneal macrophages NLRP3/Caspase-1/IL-1β Naji et al. (2016)

Single-walled carbon-nanohorns Macrophages J774A.1 cells Caspase-1/IL-1β He et al. (2018)

silver nanoparticles Macrophages THP-1 cells NLRP3/ASC/Caspase-1/IL-1β Simard et al. (2015)

Iron oxide nanoparticles Macrophages bone marrow-derived
macrophages

NLRP3/Caspase-1/GSDMD/
IL-1β

Liu et al. (2018)

Boron nitride nanotubes Macrophages Mouse alveolar macrophages/
THP-1 cells

NLRP3/Caspase-1/IL-18/IL-1β Kodali et al. (2017)

Molybdenum trioxide nanoparticles Macrophages Mouse alveolar macrophages NLRP3/ASC/Caspase-1/IL-1β Huber and Cerreta
(2022)

Zinc oxide nanoparticles Hepatocytes Rat hepatocytes/HepG2 cells NLRP3/Caspase-1/GSDMD/
IL-1β

Pei et al. (2023)

Silica nanoparticles Hepatocytes L02 cells ROS/NLRP3/Caspase-1/IL-1β Zhang et al. (2018)

CdSe/ZnS quantum dots Hepatocytes L02 cells ROS/Ca2+/NLRP3 Lu et al. (2016)

Arsenic and polystyrene-nanoplastics Hepatocytes Mouse hepatocytes NLRP3/ASC/Caspase-1/
GSDMD

Zhong et al. (2022)

Polysaccharide nanofiber-stabilized pickering
emulsion microparticles

Hepatocytes/
Macrophages

HepG2 cells/KUP5 cells Caspase-1/IL-1β Li et al. (2023)

Sodium stabilized mesoporous aluminosilicate
nanoparticles

Dendritic cells DC2.4 cells K+/Caspase-1/GSDMD/IL-1β Tang et al. (2022)

Molybdenum disulfide quantum dots Microglials BV2 cells NLRP3/Caspase-1/IL-1β Yang et al. (2020)

Silica nanoparticles Microglials N9 cells ROS/Caspase-1/GSDMD/IL-1β Du et al. (2019)

CdTe and CdTe@ZnS quantum dots Microglials BV2 cells ROS/NLRP3/NF-κB/Caspase-1/
IL-1β

Liang et al. (2020)

Silica nanoparticles Cardiomyocytes AC16 cells NLRP3/Caspase-1/GSDMD/
IL-1β

Wang et al. (2022)

Hydroxyapatite nanoparticles Vascular smooth muscle
cells

A7R5 cells Ca2+/ROS/NLRP3/Caspase-1/
GSDMD

Xia et al. (2022)

Graphene oxide Endothelial cells human umbilical vein endothelial
cells

NLRP3/GSDMD Cao et al. (2021)

amine-polystyrene nanoplastics Pulmonary epithelial
cells

MLE-12 cells Irg1/NF-κB/NLRP3/Caspase-1 Wu et al. (2023)

multi-walled carbon nanotubes Lung fibroblasts MRC-5 cells NLRP3/Caspase-1/IL-1β Hussain et al. (2014)

Coal dust nanoplastics Pulmonary epithelial
cells

A549 and BEAS-2B cells Caspase-1 Zhang et al. (2022)

Zinc oxide nanoparticles Keratinocytes HaCaT cells NLRP3/ASC/Caspase-1/
GSDMD

Chen et al. (2022b)

Nanodiamond Platelet Mouse platelet ROS/NLRP3/Caspase-1 Hung et al. (2022)
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Macrophages

Macrophages, which are phagocytic cells that participate in purging
foreign substances, are abundantly present in all tissues in the body
(Mantovani et al., 2004). As NMs represent exogenous entities, their
entry into the system primarily triggers a clearance response from these
macrophages. As such, macrophages are more susceptible to NM
stimulation. The intensity and outcomes of this reaction are based on
the interplay between macrophages and NMs; one such potential
consequence is pyroptosis. Yin et al. found that silica-induced
macrophage pyroptosis, which is an NLRP3-dependent process that
requires TLR4 recognition and NF-κB mediation, is related to silica-
induced lung inflammation and fibrosis (Yin et al., 2022). Reisetter et al.
reported that macrophages exposed to long and rigid carbon nanotubes
undergo pyroptosis, which is characterized by inflammasome activation,
caspase-1 activation, and IL-1β release. The addition of caspase-1 and
pyroptosis inhibitors reduces the cytotoxicity of carbon nanotubes
(Keshavan et al., 2021). Some researchers have reported that certain
NMs, such as hollow carbon spheres and graphene oxide, induce
inflammasome activation, caspase-1 cleavage, and IL-1β release in
mouse bone marrow-derived macrophages and human macrophage
cell lines without causing cell death (Andón et al., 2017; Mukherjee et al.,
2018). These studies have suggested that the occurrence of pyroptosis is
closely related to NM type. Macrophages have a remarkable plasticity as
potent phagocytic cells that can modify their functional phenotype in
response to signals from theirmicroenvironment. This plasticity explains
the contrasting roles of macrophages at different inflammation stages.
For example, they exhibit pro-inflammatory (M1) phenotypes during
the reaction phase and anti-inflammatory (M2) phenotypes during
resolution, a process known as macrophage polarization (Mantovani
et al., 2002), which is influenced by NMs (Huang et al., 2018). However,
the interplay between NM-induced macrophage pyroptosis and
macrophage polarization remains unexplored.

Dendritic cells (DCs)

Similar to macrophages, DCs possess various extracellular and
intracellular receptors that can recognize different stimuli, including
PAMPs and DAMPs. Because of the presence of these receptors, DCs
can recognize and respond to NMs by triggering immune responses.
Studies on NMs and DCs have focused on their application in
nanomedicine, particularly cancer therapy, including research on
manipulating immune responses against tumors and novel vaccine
formulations. Tang et al. demonstrated that sodium-stabilized
mesoporous alumino-silicate NMs induce pyroptosis in DCs by
releasing a Na+ surge in a pH-responsive manner (Tang et al.,
2022). This event subsequently triggers pro-inflammatory factor
production, thereby amplifying antitumor immune responses.
However, NM-induced pyroptosis in DCs has been rarely explored
likely because of the inherent characteristics of DCs or limitations in cell
models used; this gap is addressed in our discussion.

Neutrophils

Neutrophils can eliminate invading foreign substances through
various strategies, such as phagocytosis, degranulation,

antimicrobial factor secretion, and neutrophil extracellular trap
(NET) release. Silver nanoparticles (AgNPs) can rapidly penetrate
neutrophils; thus, atypical cell death is induced, and IL-1β is
released. This cell death is distinct from apoptosis and necrosis,
and it can be reversed by caspase-1 and caspase-4 inhibitors.
However, the specific mode of cell death has not been confirmed.
Additionally, AgNPs can induce NET release (Liz et al., 2015).
However, this process is not reversed by caspase inhibitors. By far,
no definitive reports have described NM-induced neutrophil
pyroptosis possibly because activated human neutrophils can
digest carbon-based NMs in an MPO-dependent manner through
NET release (Farrera et al., 2014). In fact, the resistance of
neutrophils to pyroptosis is considered unique among
inflammasome signaling cells.

Hepatocytes

The liver is regarded as a critical target of NM toxicity. In
addition to pyroptosis in macrophages, NM-induced cell pyroptosis
in hepatic cells has been explored. Pei et al. found that ZnO NMs
disrupt zinc homeostasis in rat livers and induce oxidative stress
damage (Pei et al., 2023). These events trigger the assembly of the
NLRP3-ASC-caspase-1 inflammasome and the activation of
GSDMD; consequently, pyroptosis is stimulated, and pro-
inflammatory cytokines such as IL-1β are released. Suppressing
oxidative stress can protect against pyroptosis in liver cells
exposed to ZnO NMs. Zhang et al. revealed that silica NMs
cause hepatocyte cytotoxicity in a dose- and time-dependent
manner; as a result, caspase-1-dependent pyroptosis occurs, but
this process can be alleviated by reactive oxygen species (ROS)
scavengers (Zhang et al., 2018). Lu et al. reported that quantum dots
(QDs) induce the production of mitochondrial ROS (mtROS) in
hepatocytes in a concentration-dependent manner; eventually,
NLRP3 becomes activated, and pyroptosis takes place. mtROS
and total ROS scavengers can mitigate QD-induced
NLRP3 activation and pyroptosis (Lu et al., 2016). These studies
have suggested that oxidative stress plays a pivotal role in NM-
induced pyroptosis in hepatocytes.

Other cells

In addition to immune cells and hepatocytes, other cell types,
including bronchial epithelial cells, vascular smooth muscle cells,
microglial cells, and keratinocytes, undergo NM-induced cell
pyroptosis. For instance, Hussain et al. reported that multi-walled
carbon nanotubes trigger NLRP3 inflammasome activation and
consequent cell pyroptosis in primary human bronchial epithelial
cells in a concentration- and time-dependent manner (Hussain
et al., 2014). Similarly, Xia et al. found that hydroxyapatite
nanoparticles disrupt Ca2+ homeostasis in vascular smooth
muscle cells; subsequently, they cause mitochondrial dysfunction
and cell pyroptosis (Xia et al., 2022). Consistent with previous
studies on these NM-induced cellular changes, Du et al.’s study
revealed how silica nanoparticles initiate mitochondrial ROS
production, GSDMD cleavage, and pyroptosis in microglial cells
(Du et al., 2019). Chen et al. demonstrated the combined effect of
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zinc oxide nanoparticles and UVB exposure, which can provoke
NLRP3 inflammasome activation and pyroptosis in keratinocytes
(Chen B. et al., 2022). These findings collectively highlight the potent
influence of various NMs on different cell types.

Properties of NM-induced pyroptosis

The morphological manifestations of NM-induced
pyroptosis are consistent in various cell types, characterized
by pre-rupture phenomena such as membrane bubbling,
vesicular protrusions, swelling, and cell flattening.
Mechanistically, NMs trigger the classical caspase-1-mediated
pathway of pyroptosis in non-tumor cells, predominantly
involving the GSDMD molecule, although some studies have
not assessed the expression of GSDM proteins. The surprising
uniformity of this pyroptosis mechanism in different studies
suggests that different activation pathways may interact with
the classical one, potentially overshadowing their presence.
While the secretion of mature IL-1β has been detected in
existing research, the absence of assays for the release of large
proteins such as LDH indicates that these studies cannot
distinguish between sublethal and lethal NM-induced
pyroptotic cell death. Furthermore, in vivo, NM-induced
pyroptosis can lead to a cascade of effects, including
exacerbated local or systemic inflammatory responses
attributed to cytokine release to tissue damage caused by cell
rupture and cellular content leakage. Over time, these events may
contribute to disease progression, fibrotic tissue formation
impairing organ function, or initiation of repair processes that
alter tissue integrity through scarring. Therefore, extensive
toxicological studies should be performed to verify the long-
term effects of various NMs by considering factors such as dose
dependency and individual biological variability.

Unexplored aspects and future perspectives

Despite extensive research on the potential of NMs to induce
pyroptosis, remarkable knowledge gaps remain. Current studies
primarily focus on how NMs exploit pyroptosis to combat
tumors through various mechanisms, including direct cytotoxic
effects on tumor cells and enhanced tumor immunogenicity.
However, studies have yet to explore the effects of NMs on
normal tissues and cells, such as various immune cells and drug
metabolism-related cells (e.g., hepatocytes and renal cells).
Specifically, studies should investigate whether NM-induced
pyroptosis leads to potential nanotoxicity in these non-tumor cell
environments. Further research should address this gap by
investigating the interactions of NMs and healthy cells and their
potential to trigger cell pyroptosis. Thus, any adverse effects of NMs
can be assessed, and their safe application in clinical settings can be
guaranteed.

To evaluate the pharmacodynamics and toxicology of NMs,
researchers should develop and explore more reliable in vitro and in
vivo models. Typically, studies on the pharmacological and
toxicological characteristics of NMs are conducted in three
scenarios: in vitro studies, studies on primary cells or

transformed cells from human or animal sources, or studies
using different animal models in vivo. However, in vitro and in
vivo methods have inherent limitations that should be considered.
For example, in vitro studies on DCs often involve stable cell lines
derived from humans or mice, but these immortalized cell lines may
not accurately replicate the characteristics of their primary cell lines.
Therefore, the reliability of these results largely depends on
experimental design parameters. Similarly, healthy animal models
are used to evaluate the pharmacodynamics and toxicity of NMs.
However, from an immunological perspective, healthy individuals
and those with underlying diseases or aging may react differently to
NMs. Therefore, the same NM may exhibit various therapeutic or
toxic effects on different individuals even at the same dose.
Furthermore, this variability may extend to the incidence of
phenomena such as pyroptosis.

Current research on how NMs induce pyroptosis primarily uses
a descriptive approach and focuses on observable phenomena
associated with this process. The complex molecular mechanisms
of pyroptosis, involving interactions between NMs and cells, are
poorly understood and still in the early stages of research. Pyroptosis
is a multistep process that involves various proteins and signaling
pathways, such as inflammasomes, GSDMs, and caspases. However,
studies have yet to clarify whether NMs directly interact with these
molecules or they trigger upstream events leading to pyroptosis.
Additionally, different NM types may induce pyroptosis through
different mechanisms, thereby adding complexity to this field.
Furthermore, some NMs show contradictory results although
many NMs effectively induce pyroptosis. These variations may be
attributed to different properties of NMs. Therefore, the effect of
these properties on the induction of pyroptosis should be
systematically studied.

Current studies on how NMs induce pyroptosis mainly focus on
their composition, size, shape, and surface modifications. However,
studies have not explored the influence of the biological
environment on NMs. Once introduced into a biological system,
NMs can rapidly interact with various biomolecules, including
proteins, nucleic acids, lipids, and even metabolic byproducts,
because they have a nanoscale size and a large surface area-to-
volume ratio. Through this interaction, a NM–protein corona forms.
The protein corona may regulate several aspects of NM behavior in
the body, including cell uptake, response, accumulation,
degradation, and clearance (Saptarshi et al., 2013). Furthermore,
proteins adsorbed on a NM surface may undergo conformational
changes; consequently, their immunogenicity changes, and the
body’s immune homeostasis becomes disrupted. These
interactions and subsequent modifications of NMs and
biomolecules may considerably affect how NMs induce
pyroptosis. Therefore, these complex interactions should be
comprehensively understood to predict and control the cytotoxic
effects of NMs in therapeutic applications.

The impact of environmental pollution on NM-induced
pyroptosis has been largely overlooked. Before entering
biological systems, environmental factors such as bacterial
components or allergens can easily adsorb onto a NM surface,
causing contamination. For example, certain bacterial
components, such as LPS, cannot be easily removed
completely even if NMs with attached bacteria are sterilized
before an experiment. LPS is a heat-resistant and widely
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distributed bacterial component, which is a ubiquitous potential
contaminant even in the absence of live bacteria. Current LPS
detection methods are easily interfered by various factors, such as
buffer components and detergents (Li et al., 2015; Schwarz et al.,
2017); consequently, excluding LPS interference in NM
experiments is difficult. The mechanisms by which LPS
regulates immune responses are complex, and they may
exacerbate inflammation or induce immune tolerance.
Therefore, the presence of environmental contaminants such
as LPS on NMs can remarkably affect the interaction of these
materials with biological systems; potentially, they alter
pyroptosis induction.

Conclusion

This review comprehensively outlines the mechanisms and
classifications of cellular pyroptosis. It also summarizes how
various types of NMs can induce pyroptosis in nontumor cells.
Nonetheless, further studies should explore other issues such as how
NMs interact, how the characteristics of NMs influence pyroptosis,
and how biological and environmental factors affect these processes.
Future research will not only expand our understanding of the
complex interactions between NMs and cellular systems but also
provide a foundation for the safer and more effective use of
nanotechnologies in clinical scenarios. As we further elucidate
these complexities, we look forward to developing novel
therapeutic strategies, thereby maximizing the potential of
nanotechnology combined with cellular pyroptosis, which can be
pivotal for medical advancements.
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