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N6-methyladenosine (m6A) represents the most abundant modification of
messenger RNA (mRNA) and is regulated by methyltransferases (writers),
demethylases (erasers), and m6A-binding proteins (readers). A dynamic
modification process is implicated in nearly every critical stage of RNA
metabolism, including mRNA stability, transcription, translation, splicing,
nuclear export, and decay. Notably, m6A methylation is significantly enriched
in the brain and has recently been shown to be associated with
neurodevelopmental disorders and the development of Parkinson’s disease
(PD). In this review, we summarize the proteins involved in the process of m6A
modification and elucidate the emerging role of m6A modification in PD, which
could illuminate alternative strategies for the prevention and treatment of PD.

KEYWORDS

N6-methylAdenosine (m6A), RNA methylation, methyltransferase, epigenetics,
neurodevelopment, Neurological disease

1 Introduction

Epigenetics is a form of stable inheritance that does not change the basic sequence of the
DNA and includes DNA methylation, histone modification, and RNA modification of both
mRNA and non-coding RNA (ncRNA). Compared to DNA methylation and histone post-
translational modification, RNA modification has been less thoroughly studied. However,
the recent development of RNA sequencing technology has fostered increased research into
RNA epigenetics, and more than 170 RNAmodifications have been discovered (Wiener and
Schwartz, 2021). These modifications are mainly m1A, m5C, m6A, m7G, etc. N6-
methyladenosine (m6A) was initially identified in 1974. It is considered the most
common internal transcriptional modification, especially in eukaryotic mRNA
(Desrosiers et al., 1974; Dubin and Taylor, 1975; Fang et al., 2021).

The methylation of m6A describes the addition of a methyl group at the sixth nitrogen
position of adenine and is recognized as a dynamic, reversible modification process (Jia et al.,
2011). It is regulated by methyltransferases, demethylases, and m6A-binding proteins, called
writers, erasers, and readers, respectively. M6A methylation occurs in various RNA species,
including mRNA, tRNA, rRNA, small nuclear RNA, microRNA precursors, and long non-
coding RNA (Punekar et al., 2013; Du et al., 2018; van Tran et al., 2019). The dynamic
modification of m6A occurs in nearly all stages of RNA metabolism, including mRNA
stability, transcription, translation, splicing, nuclear export, and decay (Alarcón et al., 2015a;
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Aguilo et al., 2015; Meyer et al., 2015; Yue et al., 2015; Du et al., 2016;
Yoon et al., 2017; Zhao et al., 2017).

Parkinson’s disease (PD) is a chronic neurodegenerative disease
that predominately affects the motor nervous system. Its key clinical
symptoms include resting tremors, bradykinesia, myotonia, and
postural imbalance. The pivotal pathological changes observed in
PD are the degeneration and subsequent death of dopaminergic
neurons in the substantia nigra (Lotankar et al., 2017).

M6A-specific methylated RNA immunoprecipitation (MeRIP)
has revealed abundant m6A modifications in the brain (Meyer et al.,
2012). As a result, an increasing number of studies have investigated
the functional significance of m6A modification in the nervous
system and its effects on normal physiology. In this review, we will
summarize the enzyme proteins that contribute to the process of
m6A modification and explore the emerging role and biological
significance of m6Amodification in PD. This will ultimately provide
new insights into the diagnosis and treatment of PD.

2 M6A-related proteins

2.1 Writers

M6A methylation is mainly catalyzed by a methyltransferase
complex (MTC), which includes METTL3, METTL14, WTAP,

VIRMA/KIAA1429, RBM15, ZC3H13, and Hakai (Figure 1).
METTL3, which is highly conserved in eukaryotes, was the first
m6Amethyltransferase to be discovered and is the most critical core
component of the MTC, serving a catalytic function (Bokar et al.,
1997; Geula et al., 2015). METTL14 principally acts as an RNA
binding scaffold, stabilizing the MTC structure and enhancing
METTL3’s catalytic activity. WTAP, a regulatory subunit of the
RNA methyltransferase complex, links METTL3 to METTL14 and
facilitates the dimer’s localization (Wang Y. et al., 2014; Liu et al.,
2014; Ping et al., 2014). VIRMA/KIAA1429 recruits and guides the
catalytic core methyltransferase components (METTL3/METTL14/
WTAP) to specific RNA regions for m6A methylation (Yue et al.,
2018). RBM15 and RBM15B, although they lack catalytic function,
can bind to METTL3 and WTAP, directing these two proteins to
specific RNA sites for m6A modification (Patil et al., 2016).
ZC3H13 primarily promotes MTC’s binding to RNA, and its
interaction with WTAP can substantially enhance the MTC’s
catalytic function, regulating RNA m6A methylation in the
nucleus (Wen et al., 2018). Although Hakai is less well-studied, it
is also part of the m6A biogenesis mechanism in vertebrates and
plants. In mammalian cells, Hakai strongly interacts with WTAP,
and studies indicate that it is a core member of the m6A-modified
protein family and an essential component of the MTC in
Drosophila and human cells (Horiuchi et al., 2013; Bawankar
et al., 2021).

FIGURE 1
Key proteins and corresponding functions duringm6Amethylation. M6Amethylation is regulated bym6Amethyltransferase, demethylase, andm6A
binding protein to perform a variety of biological functions. It affects critical stages of RNA metabolism and downstream gene expression regulation.
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In addition, METTL16 andMETTL5 performm6Amethylation
in a non-MTC-dependent manner. METTL6, a conserved
U6 snRNA methyltransferase, controls SAM homeostasis by
post-transcriptionally regulating the expression of SAM synthase
genes (Pendleton et al., 2017). METTL5 is mainly responsible for
catalyzingm6Amodification on 18S rRNA (van Tran et al., 2019; Lei
et al., 2023).

2.2 Erasers

The discovery of demethylases has proven that m6A
methylation is a dynamic and reversible modification process.
The currently recognized m6A demethylases are mainly FTO,
ALKBH5, and ALKBH3.

FTO, also known as fat mass and obesity-associated protein, was
the first m6A demethylase to be discovered and showed potential in
regulating selective splicing and 3′ end mRNA processing and
translation (Jia et al., 2011; Bartosovic et al., 2017; Zhang et al.,
2019). FTO can catalyze the demethylation of both m6A and
m6A.m., with preferences that are likely influenced by its
subcellular localization (Mauer et al., 2017; Wei et al., 2018). In
contrast, ALKBH5 (alkylation protein AlkB homolog 5), the second
identified m6A demethylase, exhibits no activity toward m6A.m.
substrates. It significantly influences mRNA output and RNA
metabolism by reducing the level of m6A in nuclear speckles
(Zheng et al., 2013). Both FTO and ALKBH5 catalyze the
demethylation of m6A through an Fe(II)- and α-ketoglutarate-
dependent mechanism, initially oxidizing m6A to N6-
hydroxymethyladenosine (hm6A) before converting hm6A to
N6-formyladenosine (f6A) and, eventually, transforming f6A into
adenosine (A) to complete the demethylation process. Recent
studies have reported that another AlkB family homolog,
ALKBH3, also facilitates m6A demethylation in tRNA and
enhances protein translation efficiency during cancer cell
proliferation (Ueda et al., 2017).

2.3 Readers

The m6A reader mainly contributes to RNA recruitment. The
YTH domain family, including YTHDF1, YTHDF2, YTHDF3,
YTHDC1, and YTHDC2, are the first identified m6A readers.
They bind directly to m6A through a common YTH domain
(Dominissini et al., 2012). YTHDF1 promotes translation by
elevating ribosome occupancy, recruiting translation initiation
complex eukaryotic initiation factor 3 (eIF3), or working with
YTHDF3 (Meyer et al., 2015; Wang et al., 2015; Shi et al., 2017;
Lin et al., 2019). YTHDF2 contributes to mRNA stability and
influences mRNA decay, while YTHDF3 affects the decay of
methylated mRNA mediated by YTHDF2 (Wang X. et al., 2014;
Shi et al., 2017; Fei et al., 2020). In the nucleus, YTHDC1 affects
mRNA splicing and nuclear export, as well as mediates
transcriptional repression by interacting with m6A-modified long
non-coding RNA (lncRNA). Notably, YTHDC1 recognizes m6A-
modified XIST to promote XIST-mediated X-chromosome silencing
(Xu et al., 2014; Patil et al., 2016; Xiao et al., 2016; Roundtree et al.,
2017). YTHDC2, which possesses 3’→5′ RNA helicase activity,

selectively binds to m6A on its consensus motif and improves
the translation efficiency of its target in spermatogenesis (Hsu
et al., 2017; Wojtas et al., 2017).

In addition to the YTH domain family, heterogeneous nuclear
ribonucleoproteins (HNRNPs), including HNRNPA2B1,
HNRNPC, and HNRNPG, can also act as m6A readers.
HNRNPA2B1 accelerates the processing of primary miRNA (pri-
miRNA) by interacting with the DGCR8 protein in an m6A-
dependent manner and regulates the alternative splicing of
transcripts (Alarcón et al., 2015a; Alarcón et al., 2015b). Both
HNRNPC and HNRNPG can modulate mRNA abundance and
splicing after recognizing m6A (Zarnack et al., 2013; Liu et al., 2015;
Liu et al., 2017). Moreover, insulin-like growth factor 2 mRNA-
binding proteins (IGF2BPs), including IGF2BP1/2/3, enhance
mRNA stability and translation efficiency in an m6A-dependent
manner by recognizing the GG (m6A) C motif (Huang et al., 2018).
FMRP, another m6A reader, can specifically bind to m6A-modified
RNA and interact with CRM1 to promote the nuclear export of these
RNAs, thereby regulating gene expression and influencing the
development of neural stem cells and the nervous system (Edens
et al., 2019).

3 Parkinson’s disease

3.1 Factors affecting the development of
Parkinson’s disease

PD is a multifactorial neurodegenerative disease, the etiology of
which has not been fully clarified to date, and no definitive and
reliable clinical or testing tools currently exist to determine its cause.
PD may be related to the interaction between age, environmental,
and genetic factors.

Age is the greatest risk factor for developing PD. The prevalence
of PD increases exponentially with age; 2%–3% of the population over
65 years of age is affected by PD (Pang et al., 2019; Kumar et al., 2022).
In addition, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP),
can induce typical Parkinson’s disease in both humans and primates.
Certain environmental substances, including pesticides, herbicides,
and specific industrial chemicals, share structural similarities with
MPTP. Consequently, the environment could be an etiological factor
in PD (Herrero et al., 1993; Nonnekes et al., 2018). Moreover, genetic
factors significantly influence the development of PD, with data
suggesting that genetic variation is found in 5%–10% of people
with PD. In a comprehensive analysis using a large population-
based twin registry, the heritability of PD for an age of diagnosis
of less than 50 years was estimated at 0.83 (Goldman et al., 2019;
Uwishema et al., 2022). Recently, genome-wide analyses of clinical
cases of PD patients have identified a new set of PD-associated genes,
including ANK2, DNAH1, and STAB1 (Yang et al., 2023).

3.2 Pathophysiological mechanisms of
Parkinson’s disease

The two main hallmarks of PD pathophysiology are the
accumulation of misfolded α-synuclein (α-Syn) and the decline of
dopaminergic neurons in the substantia nigra (SN). α-Syn, a soluble
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protein that is predominantly found in the presynaptic and
perinuclear regions of the central nervous system, is believed to
be integral to cell membrane processes. Normal α-Syn exists as a
single intrinsically disordered protein within the healthy brain
(Fakhree et al., 2018). However, the misfolding and aggregation
of α-Syn monomers results in the formation of pathological
oligomers and protofibrils within neurons, which are associated
with the progression of PD (Kalia et al., 2013).

Dopaminergic neurons are responsible for the storage and release
of dopamine as a neurotransmitter and represent a widely distributed
class of neurons within the brain that are crucially implicated in the
regulation of significant physiological functions. The degeneration of
nigrostriatal dopaminergic neurons is recognized as a central feature
of PD, which is triggered by various factors, including mitochondrial
dysfunction, Lewy body accumulation, neuroinflammation,
excitotoxicity, and metal accumulation (Vallone et al., 2000).

4 M6A and Parkinson’s disease

4.1 Potential relationship between m6A
erasers and PD

Chen et al. established cellular and rat models of PD using 6-
hydroxydopamine (6-OHDA) and observed significantly reduced m6A
levels in the striatal regions of the PD rat model and the PD cellular
model. They found that ALKBH5was notably elevated in the striatumof
the PD brain, while FTO remained unchanged. Conversely, the PD
cellular model exhibited upregulated FTO expression but no significant
difference in ALKBH5. FTO knockdown increased m6A levels,
subsequently inhibiting GRIN1 expression and reducing glutamate
binding to receptors, therebymitigating neurotoxicity (Chen et al., 2019).

Similarly, Geng et al. observed reduced total m6A levels and
increased FTO expression in both anMPTP-treated PDmouse model
and an MPP + induced-PD MN9D cell model. They suggested that
FTO affects ATM expression by influencing the stability of ATM
mRNA in dopaminergic neurons. FTO knockdown inhibited ATM
expression, suppressing the upregulation of α-Syn and the
downregulation of tyrosine hydroxylase (TH), thereby alleviating
dopaminergic neuron death in vitro in a PDmodel (Geng et al., 2023).

Furthermore, FTO regulation appears to be closely linked to the
control of neurotransmitter dopamine transmission (Hess et al.,
2013). FTO inactivation may impair dopamine receptor type 2
(D2R) and type 3 (D3R)-dependent control of neuronal activity
and behavioral response. FTO is thought to target GNAO1, GRIN1,
and SYN1 to facilitate the D2R–D3R–G protein-coupled inward
rectifier potassium signaling (GIRK) cascade, thereby promoting
dopamine signal transduction through D2R and D3R signals. In
addition, Qiu et al. identified five m6A-SNPs associated with PD,
three of which were located in the ALKBH5 gene, suggesting that
m6A-SNPs may contribute to the risk of PD (Qiu et al., 2020).

4.2 Potential relationship between writers,
readers, and PD

He et al. compared m6A levels in peripheral blood mononuclear
cells (PBMCs) from PD patients and healthy individuals. Their

study revealed significantly reduced m6A levels in PD patients
compared to healthy participants. The expression of m6a-related
proteins, including METTL3, METTL14, and YTHDF2, was also
notably downregulated. Further research indicated that
METTL14 influences the stability of α-Syn mRNA and modulates
α-Syn expression in anm6A-dependent manner, potentially offering
valuable diagnostic information for PD (He et al., 2023).

Yu et al. established PD mice via MPTP and confirmed the
aberrant expression of certain m6A-related proteins in the
substantia nigra and striatum. They observed significantly
reduced mRNA expression of RBM15b and YTHDF1 in the
substantia nigra of PD mice, while IGF2BP1 expression was
elevated. Moreover, in the striatum, the expression of RBM15,
HNRNPG, METTL3, YTHDF1, HNRNPC, IGF2BP3, and
RBM15 was markedly downregulated (Yu et al., 2022).

Furthermore, Gong et al. demonstrated that GLRX
overexpression attenuated motor dysfunction and dopamine
neuron degeneration in PD mice. They proposed that
IGF2BP2 enhances GLRX mRNA stability in an m6A-dependent
manner, whereas the knockdown of METTL3 substantially reduces
the presence of GLRX mRNA enriched by an IGF2BP2-specific
antibody. The study strongly associated m6A methylation
modification with the progression of PD in mice (Gong et al., 2023).

Koranda et al. discovered that METTL14 deficiency leads to
reduced m6A levels in the striatum without altering cell numbers or
morphology. This deficiency also increased neuronal excitability and
enhanced striatal sensitivity to dopamine agonist (DA) drugs,
suggesting m6A’s essential role in maintaining striatal function
and learning ability in adult mice (Koranda et al., 2018).

Additionally, Quan et al.’s data analysis suggested that
HNRNPC might contribute to PD pathogenesis by inhibiting the
proliferation of dopaminergic neurons, promoting their apoptosis,
and inducing immune inflammation (Quan et al., 2021).

Overall, the emerging evidence indicates that m6A
modifications play a pivotal role in the development of PD,
presenting potential opportunities to prevent and treat this
neurodegenerative disorder (Table 1).

5 Conclusion and prospects

As one of the most prevalent internal RNA modifications in
eukaryotic mRNA, m6A methylation has emerged as a critical
regulator of neuronal development and the pathogenesis of PD.
This revelation offers a fresh perspective on the epigenetic regulation
underlying Parkinson’s disease. Despite recent advancements, the
significance of m6A modification in PD remains poorly understood,
with several questions yet to be answered. For instance, the
variations in m6A levels during different phases of PD
development, the mechanisms responsible for these variations,
and the correlations between m6A expression disparities in
various tissue systems and the diversity of m6A functions remain
largely unknown. Addressing these queries in future studies is
crucial to unraveling the potential regulatory role of m6A in PD.

A comprehensive understanding of the role that m6A
methylation plays in physiological homeostasis and disease, along
with a deep exploration of the regulatory mechanisms governing the
expression and function of m6A-associated proteins, is imperative.
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Components of these pathways may offer promising therapeutic
targets for PD treatment. Delving into the intricacies of m6A
modifications as PD progresses will also contribute to the
investigation of PD-targeting therapies. The recognition of the
critical role of m6A methylation in PD signifies a promising
avenue for disease diagnosis and treatment, revealing new
possibilities for future research.
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