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Editorial on the Research Topic
Single cell dynamics and cell cycle length variation

How cells make decisions is one of the great mysteries of life. Understanding the
molecular mechanisms regulating cell fate decisions is key to manipulating cell
behavior to produce safe cell therapy products used for gene editing and
transplants. Cell fate decisions, including proliferation, apoptosis, differentiation,
self-renewal, and migration are regulated by signals from the microenvironment
and the cellular state at the time when signals are received. Both environmental
signals and cellular states are dynamic and change constantly creating heterogenous
cellular responses of otherwise homogenous cell populations (Haas et al., 2018).
Changes in cell cycle phases are among the best-known examples contributing to
different cellular states and heterogeneity. However, the relationship between cell
cycle, cell fate decisions, heterogeneity, and other dynamic processes in single cells,
including signaling, metabolism, and their role in differentiation remain poorly
understood. In this Research Topic, an excellent review and three original research
articles present recent advances in our understanding of how the cell cycle regulates
cell fate decisions.

Treichel and Filippi review the role of the cell cycle in hematopoietic stem cell (HSC) fate
decisions and discuss evidence that HSC fate and cell cycle progression are coupled. HSCs
are mostly quiescent and only divide occasionally to generate progeny when needed. After
division HSC daughter cells can either retain stem cell properties and return to dormancy
and/or continue to divide to differentiate into mature blood cells. However, not all HSCs are
the same and their function can be stratified based on cell cycle kinetics and their divisional
history. As HSC function declines progressively with an increasing number of past divisions,
HSC fate decisions seem to be inherently linked to the cell cycle (Bernitz et al., 2016).
However, the precise nature of this relationship is unknown. Here, Treichel and Filippi
discuss and summarize recent insights that shed light on this relationship and highlight
evidence that provides important clues for future research:

1) HSC exit from quiescence is regulated by the CDK6/cyclin D complex as CDK6High

HSCs enter the cell cycle faster than CDK6Low HSCs (Laurenti et al., 2015), 2) HSC daughter
cells after asymmetric division differ in metabolic activity and cell cycle kinetics (Loeffler
et al., 2019; Loeffler et al., 2022), and 3) loss of the trithorax protein ASH2l leads to
deregulation of mitosis associated genes, inhibits proliferation, differentiation and induces
epigenetic changes (Lüscher-Firzlaff et al., 2019).
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The original research provided in this Research Topic further
explores the relationship between cell cycle and cell fate
determination. Work in pluripotent stem cells (PSCs)
identified the G1 phase of the cell cycle as the critical
“window of opportunity” when cells are sensitive to signals
that induce changes in gene expression required for
differentiation. PSCs in G1 respond to differentiation cues
whereas cells in S or G2 phases do not respond until the
following cell cycle (Pauklin and Vallier, 2013). During
differentiation, PSCs slowly downregulate the core
pluripotency transcription factors OCT4, SOX2, and NANOG,
but the onset of differentiation can be detected earlier based on
the nuclear redistribution of these factors (Verneri et al., 2020).
Following these reports, Oses et al. focused on the cell cycle-
dependent localization and redistribution of OCT4, SOX2, and
NANOG during PSC differentiation. They hypothesized that the
S-phase functions as a window of opportunity to execute changes
in chromatin in cells that received differentiation cues in G1.
Using live cell imaging of fluorescent reporter for OCT4, SOX2,
and HP1α the authors quantified how OCT4 and
SOX2 condensates redistribute during cell cycle progression.
They specifically focused on transcription factor redistribution
in S-phase using the cell cycle reporter PCNA that can
distinguish early-, mid-, and late S-phase. Oses et al.
discovered that in response to differentiation signals in
G1 pluripotency transcription factors redistribute during the
early-S to mid-S transition. Although further work is required,
this work suggests that the early S-phase is a critical time window
when chromatin remodels to execute fate decisions.

Jiang et al. investigated how the Fibroblast Growth Factor
Receptor 1 Oncogene Partner (FOP) regulates cell cycle
progression. FOP is a centrosomal protein involved in
microtubule anchoring, ciliogenesis, and cancer development.
Primary cilia are antenna-like organelles formed by
microtubules, which are present in quiescent cells (G0 phase)
and are resorbed when cells re-enter the cell cycle (Pugacheva
et al., 2007). Primary cilia must be completely disassembled
before mitosis to release the centrioles required for mitotic
spindle formation. Using immunofluorescence imaging of
fixed cell lines, Jiang et al. show that knockdown of FOP
increases cilia length, while ectopic overexpression of FOP
suppresses cilia growth. FOP thus is a negative regulator of
ciliogenesis and promotes cell cycle re-entry of quiescent cells
by facilitating cilia disassembly.

Didaskalou et al. interrogate the role of the Hepatoma
Upregulated Protein (HURP) during division. During division,
proper mitotic spindle assembly and function are critical for
faithful chromosome segregation into the two daughter cells and
therefore cell cycle progression. The mitotic spindle is responsible
for the accurate segregation of chromosomes and consists of
microtubules, motor proteins, and microtubule-associated

proteins, including HURP, a spindle-assembly factor that bundles
and stabilizes kinetochore fibers (Koffa et al., 2006). HURP is
essential for proper chromosome segregation, but its
spatiotemporal dynamics and localization during division are
poorly understood. Using Photoactivation and Fluorescence
Recovery After Photobleaching of GFP-tagged HURP in HeLA
cells, Didaskalou et al. identify several novel HURP interaction
partners, show HURP interacts with distinct complexes in
metaphase, and demonstrate that its spatiotemporal dynamics
depend on phosphorylation at Ser627.

Understanding the mechanisms underlying fate decisions will
improve our understanding of stem cell function and differentiation.
This knowledge will allow us to manipulate cell fate decisions to
produce high-quality cell therapy products at scale. Recent research
presented in this Research Topic and elsewhere suggests that cell fate
decisions are intrinsically linked to the cell cycle and events during
cell division (Pauklin and Vallier, 2013; Loeffler et al., 2019; Loeffler
et al., 2022). Despite recent progress, our understanding of how the
cell cycle regulates cell fate decisions is incomplete, and further
research is needed to accomplish the long-sought goal of controlling
cell fate decisions.
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