
Editorial: New insights into
dyserythropoiesis: from
pathophysiology, molecular
mechanisms to treatments for
erythroid disorders

Shujing Zhang1,2,3, Yang Mei4* and Baobing Zhao1,2,3*
1Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Cheeloo College of Medicine,
Ministry of Education, ShandongUniversity, Jinan, China, 2NMPA Key Laboratory for Technology Research
and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine,
Ministry of Education, Shandong University, Jinan, Shandong, China, 3Department of Pharmacology,
School of Pharmaceutical Sciences, Cheeloo College of Medicine, Ministry of Education, Shandong
University, Jinan, China, 4Key Laboratory of Medical Virology, School of Biomedical Sciences, Hunan
University, Changsha, China

KEYWORDS

erythropiesis, erythroid disorder, erythropoietin, red blood cell, hypoxia

Editorial on the Research Topic
New insights into dyserythropoiesis: from pathophysiology, molecular
mechanisms to treatments for erythroid disorders

Erythropoiesis is a highly regulated, multistep process in which hematopoietic stem cells
differentiate into mature enucleated red blood cells (RBCs), which can be divided into 3 stages:
early erythropoiesis, terminal erythroid differentiation, and reticulocyte maturation (Hattangadi
et al., 2011; Dzierzak and Philipsen, 2013). Early erythropoiesis starts with the commitment of
multi-lineage progenitors into erythroid progenitor cells, followed by the proliferation and
differentiation into erythroid burst-forming unit cells (BFU-Es) and subsequent erythroid
colony-forming unit cells (CFU-Es). Differentiation from CFU-Es to mature red blood cells,
termed terminal erythropoiesis, involves a series of steps including proerythroblasts, basophilic
erythroblasts, polychromatic erythroblasts, and orthochromatic erythroblasts that enucleate to
become reticulocytes (Zhao et al., 2016). The nascent reticulocyte undergoes further maturation
through membrane and proteome remodeling and organelle clearance to become mature red
blood cells (Mei et al., 2020).

Red blood cells (RBCs) produced in vitro have the potential to alleviate the worldwide demand
for blood transfusion (Dias et al., 2011; Dolgin, 2017). A better understanding of the cellular and
molecular basis of erythropoiesis, will provide cues and potential targets for the RBCs produced
in vitro. In this Research Topic, Zhang et al. identified Transglutaminase 2 (TGM2) as a key
regulator in the primary fetal liver erythroid differentiation via its cross-linking enzyme activity.
TGM2 is a versatile enzyme that modulates cell survival and differentiation via multiple enzymatic
activities including cross-linking, guanosine 5′-triphosphate (GTP) hydrolysis, scaffolding, protein
disulfide isomerization, serotonylation and protein kinase activity (Eck et al., 2014). Zhang et al.
found that TGM2 is upregulated during terminal erythroid differentiation. Its cross-linking activity
inhibition but not inhibition disrupted the erythroid maturation and enucleation, which is
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evidenced by the arrested differentiation at basophilic erythroblast stage
and interfered with cell cycle progression.

Erythropoietin (EPO), produced in the kidney in a hypoxia
responsive manner, is required for erythroid differentiation. In non-
erythroid tissue, EPO increases the production of nitric oxide (NO) via
endothelial nitric oxide synthase (eNOS), which contributes to EPO
cardioprotective activity inmousemodels (Mihov et al., 2009; Teng et al.,
2011). However, the role of EPO-induced NO production in erythroid
cells is totally unknown. Lee et al. revealed that EPO activated neuronal
nitric oxide synthase (nNOS) but not eNOS in erythroid cells, which is
required for normal erythropoietic response. This is evidenced by the
reduced hematocrit in nNOS knockout mice (nNOS−/−) compared to
the equal hematocrit inWT and eNOS−/−mice. In line with this, nNOS
inhibition resulted in decreased EPO-dependent proliferation mediated
in part by decreased erythropoietin receptor expression, and decreased
proliferation of erythroid cells. These data provide evidence that NO
modulates EPO-dependent erythropoietic response.

Erythropoiesis is also triggered by numerous cellular
physiological processes, including low oxygen concentration
(<5%). Hypoxia inducible factors (HIFs) have been proven to
promote erythropoiesis via the upregulation of EPO production
(Anderson et al., 2011; Rankin et al., 2012; Franke et al., 2013). Gao
et al. revealed HIF-2α and insulin receptor substrate 2 (IRS2)
mediated the progression of erythroid differentiation under
hypoxia. IRS2 acted as a downstream effector of HIF-2α to
regulate the erythroid differentiation, providing a novel targeting
for promoting erythroid differentiation.

Erythroid disorders, in which abnormal erythrocyte maturation
and/or morphology is associated with ineffective erythropoiesis, can
result from direct impairment of medullary erythropoiesis (e.g.,
thalassemia syndromes), inherited bone marrow failure (e.g.,
Myelodysplastic Syndrome), red cell overproduction (e.g.,
Polycythemia Vera), or existing blood cell destruction (e.g., Sickle
Cell Anemia). It can also be caused by immune-mediated RBC
destruction or certain genetic diseases that predispose to abnormal
RBC production or turnover (Zhao et al., 2018). Identification the
key genes that are involved in the pathogenesis of these erythroid
disorders as well as other disease driven by similar mechanisms,
provides insights into the new therapeutic modalities for the disease

treatment. Acute lymphoblastic leukemia (ALL) is a malignant
disease of abnormal proliferation of lymphocytes in bone
marrow. Chen.et al. evaluated a potential prognostic signature
with six genes and constructed a risk model significantly closely
related to ALL. These findings may help clinicians adjust treatment
plans to differentiate patients with good and poor prognosis for
targeted treatment.
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