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Background:Disulfidptosis is a newly discovered form of regulated cell death. The
research on disulfidptosis and tumor progression remains unclear. Our research
aims to explore the relationship between disulfidptosis-related genes (DRGs) and
the clinical outcomes of papillary thyroid carcinoma (PTC), and its interaction on
the tumor microenvironment.

Methods: The single-cell RNA seq data of PTC was collected from GEO dataset
GSE191288. We illustrated the expression patterns of disulfidptosis-related genes
in different cellular components in thyroid cancer. LASSO analyses were
performed to construct a disulfidptosis associated risk model in TCGA-THCA
database. GO and KEGG analyses were used for functional analyses. CIBERSORT
and ESTIMATE algorithm helpedwith the immune infiltration estimation. qRT‒PCR
and flow cytometry was performed to validate the hub gene expression and
immune infiltration in clinical samples.

Results:Weclustered PTC scRNA seq data into 8 annotated cell types.With further
DRGs based scoring analyses, we found endothelial cells exhibited the most
relationship with disulfidptosis. A 4-gene risk model was established based on
the expression pattern of DRGs related endothelial cell subset. The risk model
showed good independent prognostic value in both training and validation
dataset. Functional enrichment and genomic feature analysis exhibited the
significant correlation between tumor immune infiltration and the signature.
The results of flow cytometry and immune infiltration estimation showed the
higher risk scores was related to immuno-suppressive tumor microenvironment
in PTC.

Conclusion:Our study exhibited the role of disulfidptosis based signature in the
regulation of tumor immune microenvironment and the survival of PTC
patients. A 4-gene prognostic signature (including SNAI1, STC1,

OPEN ACCESS

EDITED BY

Takeo Fukagawa,
Teikyo University, Japan

REVIEWED BY

Hu Qiangshebg,
Tongji University, China
Zhushu Guo,
Central South University, China

*CORRESPONDENCE

Hanxing Sun,
shx12006@rjh.com.cn

Yue Wang,
wy01a36@rjh.com.cn

Jiqi Yan,
jiqi_yan@126.com

†These authors have contributed equally
to this work

RECEIVED 06 October 2023
ACCEPTED 01 November 2023
PUBLISHED 14 November 2023

CITATION

Liao Z, Cheng Y, Zhang H, Jin X, Sun H,
Wang Y and Yan J (2023), A novel
prognostic signature and immune
microenvironment characteristics
associated with disulfidptosis in papillary
thyroid carcinoma based on single-cell
RNA sequencing.
Front. Cell Dev. Biol. 11:1308352.
doi: 10.3389/fcell.2023.1308352

COPYRIGHT

© 2023 Liao, Cheng, Zhang, Jin, Sun,
Wang and Yan. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Cell and Developmental Biology frontiersin.org01

TYPE Original Research
PUBLISHED 14 November 2023
DOI 10.3389/fcell.2023.1308352

https://www.frontiersin.org/articles/10.3389/fcell.2023.1308352/full
https://www.frontiersin.org/articles/10.3389/fcell.2023.1308352/full
https://www.frontiersin.org/articles/10.3389/fcell.2023.1308352/full
https://www.frontiersin.org/articles/10.3389/fcell.2023.1308352/full
https://www.frontiersin.org/articles/10.3389/fcell.2023.1308352/full
https://www.frontiersin.org/articles/10.3389/fcell.2023.1308352/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2023.1308352&domain=pdf&date_stamp=2023-11-14
mailto:shx12006@rjh.com.cn
mailto:shx12006@rjh.com.cn
mailto:wy01a36@rjh.com.cn
mailto:wy01a36@rjh.com.cn
mailto:jiqi_yan@126.com
mailto:jiqi_yan@126.com
https://doi.org/10.3389/fcell.2023.1308352
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2023.1308352


PKHD1L1 and ANKRD37) was built on the basis of disulfidptosis related
endothelial cells. The significance of clinical outcome and immune
infiltration pattern was validated robustly.

KEYWORDS

papillary thyroid carcinoma, prognostic signature, disulfidptosis, immune infiltration,
endothelial cells

1 Introduction

Thyroid cancer is the most common endocrine malignancy
(Chen et al., 2016). Papillary thyroid carcinoma (PTC) account
for almost 80% of thyroid cancer cases, and its incidence is
rapidly increasing in worldwide (Haugen et al., 2016; Siegel
et al., 2022). Although most thyroid cancers have a good
prognosis and can be treated surgically, there is still a lack of
standard treatment for those highly aggressive and poorly
differentiated tumors, which are prone to progression to
advanced tumors (Giannini et al., 2019; Ruiz et al., 2023).
There is a rather part of patients not sensitive to radioactive
iodine (RAI) ablation and thyroid stimulating hormone (TSH)
suppression treatment (Tiedje and Fagin, 2020). Thus, it is urgent
to find new molecular targeted therapies and immunotherapies
for these aggressive tumors. Compared to other solid tumors, the
tumor ecosystem of PTC remains poorly characterized and new
insights are needed to explore the progression of papillary
thyroid carcinoma (Pu et al., 2021).

Disulfidptosis is a newly discovered type of regulated cell
death (RCD), different from apoptosis and ferroptosis, this
procedure cannot be mitigated by previous inhibitors of cell
death (Liu et al., 2023). It is found that under glucose
starvation situation the expression of solute carrier family
7 member 11 can induce the abnormal accumulation of
cystine and the other disulfide (Liu et al., 2021). The
formation of these disulfide bonds between actin cytoskeletal
results in the collapse of the cytoskeleton structure and eventually
cell death. Further, the treatment of glucose transporter (GLUT)
inhibitors can trigger disulfidptosis which indicates that the
inducement of disulfidptosis might be a promising therapeutic
strategy (Zheng et al., 2023). It is also reported that the
disulfidptosis procedure is closely related to the regulation of
immune response in multiple tumor microenvironment (Qi et al.,
2023; Zhao et al., 2023).

Since the research on disulfidptosis in cancer progression is
still in its initial stage, this study comprehensively collected the
reported disulfidptosis-related genes (DRGs) and further
combined papillary thyroid carcinoma scRNA-seq dataset
and bulk RNA-seq database from the cancer genome atlas
(TCGA) to explore the key cell cluster associated with
disulfidptosis. The hub genes were selected to construct a risk
model based on DRGs under LASSO Cox regression algorithm.
The downstream analysis proclaims the function of the risk
model in clinical prognosis, genomic features, functional
enrichment and immune microenvironment investigation.
Our comprehensive study provides new sight into
disulfidptosis related tumor heterogeneity and therapeutic
targets in thyroid cancer.

2 Materials and methods

2.1 Data collection

The PTC single-cell RNA sequencing dataset (GSE191288)
was obtained from the Gene Expression Omnibus (GEO)
repository. The mRNA sequencing data of patients with
thyroid cancer were downloaded from The Cancer Genome
Atlas (TCGA) (https://portal.gdc.cancer. gov/projects/TCGA-
THCA). The pathological data was screened in which only
papillary thyroid carcinoma was retained. These data were
used for the analysis of cell clustering and the establishment
and validation of a DRGs based prognosis model.

2.2 Patient samples

All postoperative thyroid specimens were collected from
Ruijin Hospital, Shanghai Jiao Tong University School of
Medicine. Specimens were collected in accordance with
institutional protocols and informed consent were obtained.
For flow cytometry, fragments of fresh tumor tissue specimens
were digested by Liberase TL (Roche Diagnostics) and DNase I
(Roche Diagnostics) for 30 min. Single cells were filtered through
70 μm cell strainers and re-suspended in Percoll (40%,
GEHealthcare) for gradient centrifugation, as previously
described (Liao et al., 2023).

2.3 Flow cytometry and antibodies

Dead cells were first excluded by using Fixable Viability Dye
eFluor780 (eBioscience, San Diego, CA). Intracytoplasmic staining
was performed under the instructions of Fix/Perm Kit (BD
Biosciences). The following antibodies were used for the human
specimens: anti-CD45 (HI30), anti-CD68 (Y1/82A), anti-CD3
(OKT3), anti-CD8 (SK1) and anti-CD4 (SK3). All antibodies
were purchased from BioLegend (San Diego, CA). Flow
cytometric analysis was performed on an LSRFortessa system
(BD Biosciences, San Jose, CA). All the FACS plots were
analyzed and plotted by FlowJo V10.8.1.

2.4 Primers and quantitative real-time PCR
(qRT‒PCR)

Primer for SNAI1: 5′- TCGGAAGCCTAACTACAGCGA -3’
(forward), 5′- AGATGAGCATTGG CAGCGAG-3’ (reverse).
Primer for STC1: 5′- GTGGCGGCTCAAAACTCAG -3’
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(forward), 5′- GTGG AGCACCTCCGAATGG -3’ (reverse). Total
RNA of cells was extracted using TRIzol reagent (Invitrogen, USA).
cDNA was obtained by reverse transcription using a Vazyme

HiScript III RT SuperMix for qPCR reagent kit. The qRT‒PCR
was performed on an ABI 7900HT Real-Time PCR system (Applied
Biosystems, USA).

FIGURE 1
The landscape of scRNA seq of thyroid samples. (A) The unified manifold approximation and projection (UMAP) of 32 cell clusters. (B, C) The cells
from 1 normal and 6 tumor samples. (D) The cell annotation of the clusters. (E) The universal marker gene used for cell annotation. TG, TSHR, TPO for
follicular cells; CD79A for B cells; CD3D, CTLA4, CD8B for T cells; TPSAB1 for mast cells; PDGFRA for fibroblasts; VWF for endothelial cells; HIGD1B for
pericytes.
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2.5 The process of scRNA dataset and cell
annotation

The routine process followed the Seurat v3 guidelines, which
included the cell QC procedure, normalization and PCA
dimensional reduction. The harmony R package was used for batch
effect removing (Korsunsky et al., 2019). After PCA dimensional
reduction, different cell clusters were labeled with the first 20 PCs
and a resolution value of 0.4. Marker genes manually to match the cell
annotation in the CellMarker database (http://biocc.hrbmu.edu.cn/
CellMarker/) with SingleR and scType R package (Aran et al., 2019;
Choi et al., 2020). The marker genes of each subset clusters were
conducted by FindAllMarkers with the default parameters.

2.6 Cell cluster score based on
disulfidptosis-related genes (DRGs)

Through reviewing the literatures related to disulfidptosis, we
collected a disulfidptosis-related gene set of 107 genes (Supplementary
Table S1). To evaluate the correlation between different cell clusters and
disulfidptosis procedure, an assessment was conducted by the DRGs

gene set based scoring algorithm. Six independent scoring algorithms
were used, including AUCell, singscore, UCell, ssGSEA, JASMINE and
viper scores. These scores were normalized and visualized by boxchart.

2.7 Cell-cell communication networks

We applied the Cellchat19 (v1.4.0) R package for a systematic
analysis of cell-cell communication networks. Cellchat have a database
involving interactions among ligands, receptors and their cofactors,
identifiying communications between 2 cell groups mediated by these
signaling genes, and associating each interaction with a probability
value, so as to significantly identify the interaction probability under the
randomly permutes statistic test (Jin et al., 2021). The visualization of
these cell-cell interactions was also performed by Cellchat19.

2.8 LASSO cox regression analysis

To establish a prognostic signature, we employed the LASSO
penalized Cox proportional hazards regression technique through
the glmnet R package. The optimal lambda was determined

FIGURE 2
Cell cluster scoring based on DRGs. (A–F) The boxplot of 8 cell clusters under AUCell, singscore, UCell, ssGSEA, JASMINE and viper DRGs based
scores.

Frontiers in Cell and Developmental Biology frontiersin.org04

Liao et al. 10.3389/fcell.2023.1308352

http://biocc.hrbmu.edu.cn
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1308352


according to the result of a maximum cross-validation likelihood
calculation. The caret R package was applied to build the
classification of the TCGA-THCA cohort and assess machine
learning classifiers for the classification task. The Kaplan–Meier
survival curves of both data set were plotted using survival R package.

2.9 Functional enrichment analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analyses were performed to evaluate the
functional enrichment of the DEGs. GO analysis indicated the possible
role of differentially expressed target genes in the cellular component

(CC),molecular functions (MFs), and biological processes (BPs). KEGG
pathway analysis revealed the signaling pathways involved in the
regulation of cell function by these genes.

2.10 Immune landscape estimation and
genomic analysis

The immune cell infiltration estimation of TCGA was based on
CIBERSORT algorithm, and the stromal and immune
microenvironment estimation was done by ESTIMATE algorithm
(Yoshihara et al., 2013; Newman et al., 2015). The maftools R
package was employed to analyze the gene mutation pattern, and
tumor mutational burden (TMB) was calculated as the number of
somatic base substitutions or indels per megabase (Mb) of the coding
region target territory of the test, as previously described (Jin et al., 2022).

2.11 Statistical analysis

The statistical and bioinformatic analysis was conducted by R
4.2.0. The Log-rank survival analysis and Cox proportional hazards
regression were performed using R package survival and survminer.
The establishment and validation of the nomogram were performed
and plotted using rms and Hmisc R package. The statistical analysis
was performed via unpaired Student’s t-test analysis or Wilcoxon
signed rank test unless specified. All p values were two-sided, and p <
0.05 were considered statistical significance (pp-value <0.05,
ppp-value < 0.01, pppp-value <0.001).

3 Results

3.1 Single-cell sequencing analysis of PTC
and normal thyroid samples

With the help of single-cell RNA sequencing, we have a better
understanding of the cellular components of thyroid cancer. The
sequencing of 6 tumor samples from 3 patients and 1 normal
sample were obtained from dataset GSE191288 (Wang et al., 2022).
After normalization and dimensionality reduction through UMAP
algorithm, cells were segregated into 32 clusters (Figure 1A). Using
the FindAllMarkers function, the signature genes of each cluster was
defined. The normal and tumor sample origin of these cells was also
visualized (Figures 1B, C). With the analysis of the representing gene
markers of these clusters, the final cell annotation was completed via the
Cellmarker database. 32 clusters were categorized into 8 cell types,
including follicular cells, pericytes, T cells, Myeloid cells, endothelial
cells, B cells, fibroblasts and mast cells (Figure 1D). The universal
marker genes which classified the main cell types were shown in the
dotplot (Figure 1E).

3.2 Endothelial cells show closest
relationship to DRGs in PTC

Through reviewing the reported articles, we collected a 107-gene
set of disulfidptosis-related genes (DRGs). In order to analysis the

FIGURE 3
The expression pattern of endothelial cell subsets in PTC. (A) The
endothelial cells from normal and tumor samples. (B) The UMAP of
5 subsets of endothelial cells. (C) The gene expression pattern of
5 endothelial cell subsets. (D) The violinplot of 5 subsets under
AUCell, singscore, UCell, ssGSEA, JASMINE and viper DRGs based
scores.
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correlation between the different cell types in PTC and DRGs
expression module, we applied a series of scoring algorithms,
including AUCell, singscore, UCell, ssGSEA, JASMINE and viper

scores (Figures 2A–F). Eight different cell types annotated in scRNA
data were scored by 6 independent scoring algorithms. Among the
results, we found that endothelial cells and pericytes showed the best

FIGURE 4
A prognostic signature based on DRGs related endothelial cells. (A) The LASSO coefficient profile plot shows the correlation between the deviance
and log(λ). (B) The partial likelihood of deviance for the LASSO Cox regression analysis. (C) The survival plot of the high-risk group and low-risk group in
the training dataset. (D) The survival plot of the high-risk group and low-risk group in the validation dataset. (E, F) The ROC curve plots of the prognostic
model in training and validation dataset.
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correlation with DRGs. With further cell-cell interaction network
analysis endothelial cells also showed a close connection to the
tumoral cell entities (Supplementary Figure S1). It is also reported
that these DRGs were most abundantly enriched in endothelial cells
in lung cancer (Ni et al., 2023). The critical role of endothelial cells
with the ability of sprouting angiogenesis in PTC tumor progression
has already been issued (Winnik et al., 2009; Pu et al., 2021). Thus,
we targeted on the endothelial cells and DRGs in the following study.

3.3 The expression pattern of DRGs related
endothelial cell subsets

To further explore the role of endothelial cells in disulfidptosis
related procedures, we used PCA algorithm to distinguish the
different subsets of endothelial cells (ECs) in PTC (Figures 3A,
B). ECs were categorized into 5 different subsets: CD69− subset,
SLC7A11- subset, PLPP1+ ARL15+ subset, LCN2+ subset and

DUSP2+ subset according their representative gene expression
patterns (Figure 3C). The AUCell, singscore, UCell, ssGSEA,
JASMINE and viper scores of DRGs were applied in these
5 subsets, the result showed that DUSP2+ subset was the best
correlated endothelial cell subset with the high expression of
IGHA1, IGKC and LYZ, while CD69-subset was the least
relevant subtype with the high expression of CX3CL1 and
FABP5. The differentially expressed genes (DEGs) between these
two subsets might indicate a special expression signature as a bridge
connecting DRGs and endothelial cells in PTC.

3.4 A prognostic signature based on DRGs
related endothelial cells

526 DEGs were generated from differential gene analysis.
Combined with TCGA-THCA survival data, 46 prognostic
differentially expressed target genes were determined. To prevent

FIGURE 5
The prognostic value of risk score. (A, B) The forest plot of OS univariate andmultivariate COXmodel analysis. (C) The nomogram plot predicting the
overall survival probability by age, N stage and risk score. (D) The Calibration curves of the nomogram using the bootstrap method in internal validation.
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overfitting, LASSO Cox regression was used to establish a more
precise prognostic model (Figure 4A). After LASSO analysis, 4 hub
genes were identified as a prognostic signature, including SNAI1,
STC1, PKHD1L1 and ANKRD37. The risk score was generated as
the following equation: RS= (0.04*SNAI1exp.) + (0.016*STC1exp.)
+ (0.008*PKHD1L1exp.) + (0.099*ANKRD37exp.) (Figure 4B). To
establish and validate the prognostic value of the risk score, TCGA-
THCA database was divided into a training dataset and a validation
dataset through machine learning algorithm by caret R package. In
each dataset, patients were divided into high-risk group and low-risk
group, the Kaplan–Meier survival analysis demonstrated a
significant overall survival difference between two groups both in
training and validation dataset (p < 0.05) (Figures 4C,D). The ROC
curve of this signature is shown and the AUC values for 1, 3 and
5 years is calculated (Figures 4E,F). We further identified age and the
risk score as an independent prognostic factor by univariate and
multivariate Cox regression analysis (Figures 5A,B). Using clinical
data from TCGA dataset, we created a nomogram based on the risk
score, N stage and age (Figure 5C). The 1-, 3-, and 5-year calibration

curves were further implemented to show the nomogram model
performed well on the robustness and efficacy (Figure 5D).

3.5 Functional analysis and genomic features
beneath the risk score

The DEGs between high-risk group and low-risk group were
displayed in the volcano plot and principal component analysis, in
which 130 genes were upregulated and 255 were downregulated
(Figures 6A, B). Next we performed functional enrichment analysis
of these 385 DEGs. GO analysis showed that DEGs mainly enriched
in ‘production of molecular mediator of immune response’ in BP,
‘immunoglobulin complex’ in CC and ‘antigen binding’ in MF
(Figure 6C). The result of KEGG pathway analysis showed
‘Allograft rejection’ was the most activated pathway and ‘Protein
export’ was most suppressed pathway (Figure 6D), and detailed
correlation analysis between KEGG pathway and risk score was also
performed (Supplementary Figure S2). With further investigation in

FIGURE 6
Functional enrichment analyses of differentially expressed genes. (A) Volcano plot of DEGs between high-risk group and low-risk group. (B) Principal
component analysis of DEGs. (C) Results of GO enrichment analysis. (D) Results of KEGG pathway enrichment analysis. (E, F) Results of Reactome
pathway and WikiPathways enrichment analysis.
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pathway enrichment, ‘Pd-1 signaling’ and ‘chemokine receptors
bind chemokines’ were upregulated in Reactome pathway and
‘Type II Interferon Signaling’ was upregulated WikiPathways
(Figures 6E, F). The analysis of genomic features was also

conducted to evaluate the characteristic of tumor
microenvironment. The gene mutation pattern of high-risk group
and low-risk group was shown in Figure 7A. The differentially
mutated diver genes between high-risk group and low-risk group

FIGURE 7
The genomic analysis of high-risk group and low-risk group. (A) The waterfall plot displays the somatic and methylated landscape between two
groups. (B) The forest plot of differentially mutated diver genes of thyroid cancer. (C, D) The violin plot of tumor mutation burden, stemness score and
homologous recombination defect.
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FIGURE 9
The flow cytometry validation of immune infiltration. (A, B) The histograms representing qRT-PCR of hub genes SNAI1 and STC1 in 6 PTC samples.
(C) The infiltration of M2 macrophages (CD45+CD68+CD206+) between 2 groups. (D) The infiltration of CD4+ T cells (CD45+CD3+CD4+) between
2 groups.

FIGURE 8
The correction between immune infiltration and risk score. (A) The estimation of stromal score, immune score and tumor purity by ESTIMATE. (B)
The detailed immune cells infiltration analysis by CIBERSORT between high-risk group and low-risk group.
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were illustrated in a forest plot, including BRAF, HRAS, EIF1AX and
NRAS (Figure 7B). The high-risk group was significantly enriched in
the mutation of HRAS and EIF1AX. In accordance with the results
above, the high-risk group hold a higher tumor mutation burden
(Figure 7C). In addition, high-risk group showed higher stemness
scores but no difference in homologous recombination defect
estimation (Figure 7D). Based on these genomic features, the
therapeutic evaluation of targeted therapy in advanced thyroid
cancer showed that the Motesanib, Lapatinib and Sunitinib might
exert a possible therapeutic effect in the high-risk group
(Supplementary Figure S3) (Fu et al., 2023). These results
suggested that the risk score model had a strong connection to
tumor immune microenvironment in PTC and affects the genomic
status and mutation load.

3.6 The immune landscape of high-risk
groups in PTC

As our understanding of the tumor immune microenvironment
deepens, the level of immune cell infiltration is thought to be closely
related to tumor progression. With a microenvironment rich in
immune cells, it is believed that immune system plays a key role in
cancer prevention as well as in its initiation and progression in
thyroid cancer (Menicali et al., 2020). The connection between our
risk score and infiltration of immune cells was explored. The stromal
and immune score and tumor purity was computed by ESTIMATE
algorithm (Figure 8A). It was shown that in the high-risk group the
samples were infiltrated by higher tumor cells and lower stromal
cells and immune entities. The more detailed immune cell
infiltration evaluation was done by CIBERSORT. We found a
higher infiltration level of memory B cells, monocytes and
macrophages especially M2 type macrophages in the high-risk
group. The risk score was also negatively correlated with the
abundance of naïve B cells, activated CD4+ T cells, Treg cells and
resting dendritic cells (Figure 8B). To further validate database based
immune infiltration evaluation, we picked 3 pairs of PTC patients
with a different expression of the hub genes of the risk score,
SNAI1 and STC1 (Figures 9A, B). Six samples were divided into
two groups with the expression level of the hub genes. Patient
sample 1, 3, 5 in high group with higher expression of SNAI1 and
STC1, while patient sample 2, 4, 6 in low group. We measured the
infiltration level of M2 macrophages (CD45+CD68+CD206+) and
CD4+ T cells (CD45+CD3+CD4+) by flow cytometry between two
groups. In accordance with the estimated results, the samples with a
high expression of the hub genes showed a higher infiltration of
M2 macrophages and lower level of CD4+ T cells (Figures 9C, D). It
is suggested that the risk score is correlated with an immuno-
suppressive microenvironment in PTC.

4 Discussion

In our study, we constructed a novel 4-gene risk model
associated with disulfidptosis based on a combination of the
DRGs and scRNA sequencing data of papillary thyroid
carcinoma. As a newly discovered type of programmed cell
death, disulfidptosis is considered to be closely related to the

occurrence and development of tumors as ferroptosis and
cuproptosis death which were fully explored in the past (Feng
et al., 2023; Hadian and Stockwell, 2023; Zhang et al., 2023). In-
depth exploration of these cell death processes will help us to
deepen our understanding of the mechanisms behind tumor
development and provide evidence for investigating new
treatments. Compared with other solid tumors, the
exploration of the mechanisms behind thyroid tumors and its
microenvironment is still in the initial stage, and the
understanding of tumor ecosystem is also relatively lacking
(Yin et al., 2020). With the application of scRNA seq
techniques in thyroid cancer, we have gained a deeper
understanding of the tumor microenvironment at the cellular
level (Pu et al., 2021). Previous studies have demonstrated that
signatures generated from scRNA transcriptome could estimate
cell type abundance in bulk transcriptome (Newman et al., 2019;
Zhao et al., 2024). The signatures based on disulfidptosis were
reported closely related to clinical prognosis and immune
microenvironment characteristics in hepatocellular cancer
(Wang et al., 2023), bladder cancer (Zhao et al., 2023), lung
adenocarcinoma (Qi et al., 2023) and breast cancer (Xia et al.,
2023). Therefore, this study combines disulfidptosis related genes
with scRNA sequencing data of thyroid papillary carcinoma,
hoping to fertilize the understanding of thyroid cancer
exploration.

By scoring DRGs evaluation in various cell components of
thyroid cancer, we found that endothelial cells had the best
association with disulfidptosis. Endothelial cells are mainly
involved in abnormal angiogenesis in tumor development, and
they are thought to be closely related to changes in tumor
metabolic pathways during recruitment (Harjes et al., 2012).
Disulfide accumulation due to abnormal glucose metabolism is
the cause of disulfidptosis, so we indicate that disulfidptosis
related endothelial cells is an important part of the special
metabolic environment in thyroid tumor. Our prognostic
model was based on this result. Meanwhile, endothelial cell
metabolism is an emerging target for anti-angiogenic therapy
in tumor angiogenesis and choroidal neovascularization
(Rohlenova et al., 2020). Since the application of anti-
angiogenic drug Lenvatinib in refractory advanced thyroid
cancer has been well reported (Schlumberger et al., 2015), the
risk model assessment of disulfidptosis related endothelial cells in
thyroid cancer may provide potentially sensitive patient profiles
for the therapy.

We established the prognostic model by LASSO Cox regression,
and finally obtained the risk score based on SNAI1, STC1,
PKHD1L1 and ANKRD37 genes. According to further
experimental validation in clinical samples, SNAI1 and
STC1 showed significant differences in expression among
different patients. SNAI1, snail family transcriptional repressor 1,
it is involved in regulating EMT processes in pancreatic tumor cells
(Zhang et al., 2022), SNAI1 is thought to induce tumor stemness and
resistance to radiation in colon cancer (Zhu et al., 2018) and unstable
expression of SNAI1 leads to distant metastasis in lung cancer
(Wang et al., 2019). In pan-cancer studies, high expression of
SNAI1 is mainly involved in the enhancement of stemness and
migration of tumor cells, which significantly increases the malignant
biological manifestation of tumors. STC1, Stanniocalcin 1, it has
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been found to promote metastasis, lipid metabolism and cisplatin
chemoresistance in ovarian cancer (Lin et al., 2022), STC1 is mainly
involved in STAT3-mediated proliferation in breast cancer (Avalle
et al., 2022) and STC1 expression is thought to play an important
role in driving tumor immune resistance (Lin et al., 2021).
SNAI1 and STC1 contribute to accelerating tumor progression in
tumor growth, chemotherapy resistance, and immune environment
suppression. While these two genes are still less studied in thyroid
cancer (Hardy et al., 2007; Hayase et al., 2015), our study suggests
that exploring their function in thyroid cancer is a potential
direction for advancing thyroid cancer therapy.

Our study also explored the detailed characteristics of the risk
scores, which we found to be strongly associated with the immune
microenvironment of thyroid cancer. Although the infiltration of
immune cells was reduced in the high-risk group, the infiltration of
tumor-promoting immune components such as M2 macrophages
was significantly increased, consistent with previous findings on the
immune microenvironment of advanced thyroid cancer (Menicali
et al., 2020). Immunotherapy may offer a new hope in patients with
advanced thyroid cancer due to resistance to RAI therapy,
inapplicability of chemotherapy drugs and poor response to
targeted drugs (Haddad et al., 2018). However, the exploration of
the immune microenvironment of thyroid cancer still remains a
long way off.
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