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Introduction

Breast cancer (BC) is a heterogeneous disease characterized by several molecular
subtypes that differ in clinical behaviors and response to current therapies (Zardavas
et al., 2015). Approximately 75% of BCs are estrogen receptor alpha positive (ERα+)
and responsive to ovarian hormones (Chen et al., 2008). Hormone-activated ERα binds
regulatory sites on chromatin (Cicatiello et al., 2010), where it assembles in large functional
multiprotein complexes and exerts a direct control on target gene transcription, thus
promoting breast carcinogenesis.

Given the strong dependency of a large fraction of BCs to the estrogen–ERα axis,
endocrine therapy (ET) has been developed and implemented to suppress hormonal
signaling by blocking ERα activity. ET makes use of selective ERα modulators (selective
estrogen receptor modulators: SERMs, such as tamoxifen) or degraders (selective estrogen
receptor degraders or downregulators: SERDs, such as ICI/fulvestrant) and aromatase
inhibitors (AIs) (Patel and Bihani, 2018). Despite ET efficacy, one-third of patients
develop de novo or acquired resistance, resulting in relapse and metastatic disease.
Overall, only a minority (~10%) of ET-resistant BCs show loss of ERα expression, while
a sizable fraction retains the receptor. In the latter cases, resistance to therapy can occur in
different ways: genetic changes, generating constitutive ERα signaling, altered receptor
interactions with transcriptional coactivators/corepressors, or engagement of compensatory
crosstalk with other oncogenic signaling pathways (Hanker et al., 2020).

Considering receptor interactions, ERα molecular partners are endowed with different
functions (Nassa et al., 2019a) and comprise co-regulators (Ambrosino et al., 2010; Tarallo
et al., 2011; Cirillo et al., 2013) and epigenetic modulators (Nassa et al., 2019b) that drive gene
expression changes underlying BC development and progression. The histone H3 lysine
79 methyltransferase disruptor of telomeric silencing 1-like (DOT1L) is a recently identified
ERα interactor (Nassa et al., 2019b) of particular interest, as it modulates mono-, di-, and tri-
methylation of lysine 79 of histone H3 (H3K79), a key epigenetic modification controlling
chromatin remodeling. It is also involved in deregulation of gene transcription in several
cancer types (Salvati et al., 2019; Alexandrova et al., 2022a), and the therapeutic potential of
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DOT1L inhibition in BC has been demonstrated, together with its
functional interplay with other essential BC genes, such as MEN1,
revealing a new vulnerability of therapy-sensitive and -resistant
breast and ovarian cancers (Alexandrova et al., 2022b; Salvati
et al., 2022).

Together with histone modifications, DNA methylation
represents a key epigenetic mechanism for regulation of gene
expression in both normal and cancerous cells, including the
mammary epithelium, holding great promise for expanding the
range of therapeutic opportunities for personalized medicine.
Usually, gene promoter CpG islands acquire abnormal
hypermethylation or hypomethylation, resulting in transcriptional
silencing of or activation of genes, respectively. However,
methylation changes often do not reside on CpG islands but are
spread away into shores, shelves (2–4 Kb from island), and open sea
regions. Thus, DNA methylation is a potential candidate as a
diagnostic and/or prognostic marker in BC, endowing
conceivable implications for the clinical management of patients
affected by this disease (Stefansson and Esteller, 2013).

Moreover, the molecular mechanisms that control DNA
methylation in hormone-responsive BC, together with the impact
of these epigenetic changes on the clinical outcome and response to
pharmacological regimens, in particular ET, are still unclear and
need further characterization (Garcia-Martinez et al., 2021).
Interestingly, a strong correlation between DNA and histone
methylation has been proposed and debated, implying a close
functional relationship between these two epigenetic marks (Li
et al., 2021). It has become apparent that DNA methylation and
histone modification pathways can be dependent on one another
and that this crosstalk can be mediated by biochemical interaction.
Indeed, the molecular crosstalk between DNA and histone
methylation on the cellular epigenome has potential implications
in cancer development, progression, and response/resistance to
therapies (Li et al., 2021).

Therefore, since the estrogen receptor is the master regulator of
estrogen signaling in hormone-responsive BCs, where its expression is
also regulated by epigenetic mechanisms, including DNA methylation,
and that DOT1L associates with ERα in BC cell chromatin as a
component of a multiprotein regulatory complex, we investigated
the functional impact of ERα and DOT1L pharmacological
inhibition on global DNA methylation in the same hormone-
responsive BC cell model, generating a dataset of differentially
methylated CpGs and genomic regions useful in understanding the
contribution of this epigenetic pathway on the regulation of
transcriptional pathways associated with BC progression.

Methods

Cell culture and DNA extraction

The human luminal ERα-positive MCF-7 breast cancer cell line
(ATCC HTB-22) was purchased from the American Type Culture
Collection (ATCC). MCF-7 was cultured in Dulbecco’s modified
Eagle medium (Sigma-Aldrich) supplemented with 10% FBS
(HyClone, Milan, Italy) and 100 U/mL penicillin, 100 mg/mL
streptomycin, and 250 ng/mL amphotericin-B. MCF-7 cells were
routinely tested for Mycoplasma contamination by using a PCR

mycoplasma detection kit (ABM, Richmond, BC, Canada). Genomic
DNA was extracted from three independent biological replicates of
MCF-7 cells in exponentially growing condition, treated with 6.4 μM
of a selective DOT1L inhibitor, the EPZ004777, from here on EPZ
(S7353, Selleckchem), for 6 days or with 100 nM of the selective
estrogen receptor degrader, fulvestrant (ICI182, 780), namely, ICI,
for 3 days. To this aim, cell pellets were resuspended in two volumes
of lysis buffer (10 mM Tris EDTA pH 8.4, 100 mM NaCl)
supplemented with 3% sodium dodecyl sulfate and proteinase K
(Thermo Fischer Scientific) and incubated for 15 min at 60°C under
gentle shaking. Then, saturated NaCl was added, and the samples
were centrifuged for 15 min at 25,000 rpm at 4 °C. The supernatants
were then collected, diluted in two volumes of ethanol, and
centrifuged for 10 min at 25,000 rpm at 4 °C. The DNA pellets
were washed, dissolved in nuclease-free water, and quantified. Three
independent biological replicates of MCF-7 cells following 6 or
3 days of treatment with appropriate vehicle (DMSO) were used as
control and treated in parallel. DNA purity was determined by using
the NanoDrop spectrophotometer ND-2000 (Thermo Fischer
Scientific) through the evaluation of the absorbance ratio A260/
A280. DNA concentration was determined by using the Quant-iT
dsDNA High-Sensitivity Assay Kit and a Qubit Fluorometer (Life
Technologies) and its quality and integrity assessed using the Agilent
4200 TapeStation System (Agilent Technologies).

Reduced-representation bisulfite
sequencing (RRBS) library preparation and
sequencing

RRBS libraries were constructed according to themanufacturer’s
instructions. In detail, 2 μg of genomic DNA was used for each
library preparation. DNA was digested with the MspI enzyme
(CCGG site) at 37°C for 16 h for each sample. The digested
products were purified using the GeneJET PCR Purification Kit
(Thermo Fisher Scientific), and libraries were prepared using the
TruSeq Library Prep Kit (Illumina). The recovered DNA was treated
with the EZ DNA Methylation-Gold Kit (Zymo Research) for
bisulfite conversion. The converted DNA was amplified using
PfuTurboCxHotstart DNA Polymerase (Agilent Technologies).
Quantification of amplified fragments was assessed by the Agilent
4200 TapeStation (Agilent Technologies). Each DNA library was
analyzed by paired-end sequencing of reads (2 × 75 cycles) on the
Illumina NextSeq 500 sequencing system.

Bioinformatics and functional annotation
analyses

Quality assessment of the reads was performed using the FastQC
quality control tool version 0.11.9 (https://www.bioinformatics.
babraham.ac.uk/projects/fastqc/). Trim Galore software version 0.
6.5 was used to perform adapter- and quality trimming, setting
RRBS paired mode, in order to decrease methylation call errors
arising from poor-quality data (https://www.bioinformatics.
babraham.ac.uk/projects/trim_galore/). Alignment against the
reference genome (GRCh38/hg38) was performed using Bismark
version 0.22.3 (Krueger and Andrews, 2011) and Bowtie2
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(Langmead and Salzberg, 2012) using default parameters.
Methylation calls, sample correlation, and descriptive statistics on
samples and differentially methylated CpG sites were performed
using MethylKit version 1.17.5 (Akalin et al., 2012) using default
parameters. CpGs were considered differentially methylated with a
q-value≤ 0.05 and delta beta (|Db|) ≥ 0.10. Genomic regions with
differentially methylated CpG sites were identified using
DMRFinder (Gaspar and Hart, 2017) with default parameters.
Differentially methylated regions were defined with a |Db|≥0.
10 and an FDR≤ 0.05. Annotation of differentially methylated
CpGs and differentially methylated regions on the genome was
performed using the script annotatePeaks.pl of Homer software
version 4.11 (Heinz et al., 2010), while annotation of CpGs on CpG
islands, N- or S-shore, and N- or S-shelves was performed
intersecting the CpGs identified in each sample, against the CpG
island track downloaded from the Genome Browser. A circos plot
was generated using ClicO FS (Cheong et al., 2015). Integration of
differentially methylated CpGs with Nascent-Seq data, described by
Nassa et al. (E-MTAB- 6,871) (Nassa et al., 2019b), was performed
using R (version 4.2.2) scripts, considering the combination of
upregulated transcripts—hypomethylated promoter region and
downregulated transcripts—hypermethylated promoter region.

Functional annotation analysis

A functional annotation analysis was performed with ShinyGO
version 0.76.3 (Ge et al., 2020) setting the following parameters:

• Species: Human
• FDR cutoff: 0.05
• Pathway database: hallmark. MSigDB

Only hallmark categories showing a statistically significance
according to the parameters used were reported.

Code availability

The following software and versions were used for quality
control and data analysis:

1) For methylation calls, sample correlation, and descriptive
statistics on samples and differentially methylated CpGs were
performed, MethylKit version 1.17.5 was used: http://
bioconductor.org/packages/release/bioc/html/methylKit.html

2) For identification of genomic regions with differentially
methylated CpG sites, DMRFinder was used: https://github.
com/jsh58/DMRfinder

3) For the annotation of differentially methylated CpGs and
differentially methylated regions on the genome, Homer
software version 4.11 was used: http://homer.ucsd.edu/homer/

4) Functional analysis was performed by using ShinyGO version
0.76.3: http://bioinformatics.sdstate.edu/go/

5) Integration of data and statistical analyses were performed using
R4.2.2:www.r-project.org

6) The circos plot was generated using ClicO FS: http://clicofs.
codoncloud.com

Data analysis

Based on the aforementioned observations, we mapped the DNA
methylation changes following ERα andDOT1L inhibition. To this aim,
BC cells were treated with either EPZ (Daigle et al., 2011), a selective
DOT1L inhibitor, or ICI (Garcia-Martinez et al., 2021), a pure
antiestrogen commonly used for ET, and subjected to Reduced-
Representation Bisulfite sequencing (RRBS) and subsequent
bioinformatics and functional annotation analyses (Figure 1A). In
detail, three independent biological replicates of exponentially
growing ERα+ MCF-7 cells were treated with vehicle only
(controls), with 6.4 μM EPZ for 6 days or with 100 nM ICI for
3 days. These time-points were selected based upon the kinetics of
each drug’s response in these cells determined previously in these same
cells (Nassa et al., 2019b). DNA was then extracted and purified before
RRBS library preparation and sequencing. Bioinformatics analyses
resulted in the initial identification of ~5 million methylated CpGs/
sample on average with minimum 10X read depth, according to the
analytical steps detailed in the Methods section. Considering their
distribution, most of them are located within CpG islands or
harbored by N- or S-shore or -shelf regions and the remaining in
non-annotated genomic locations (“open sea”, Figure 1B). Differential
methylation analysis between treated and untreated samples was then
employed to identify hypo- and hyper-methylated CpGs. In this way,
we observed 5,690 hyper- and 2,280 hypo-methylated CpGs following
treatment with EPZ and 3,814 hyper- and 1963 hypo-methylated CpGs
following treatment with ICI (Figure 1C and Supplementary Material
S1, Supplementary Table S1 and Supplementary Material S2,
Supplementary Table S2). Since drug-responsive DNA methylation
sites are most frequently clustered into short regions, we applied a
bioinformatics approach to determine differentially methylated regions
(DMRs). This analysis revealed 268 hyper- and 36 hypo-methylated
and 136 hyper- and 38 hypo-methylated regions in response to EPZ and
ICI, respectively (Supplementary Material S3, Supplementary Table S3
and Supplementary Material S4, Supplementary Table S4, respectively).
When considering differentiallymethylated regions, an overlap of about
5% between the two drug treatments was observable, with the rest being
specific to each compound. As shown in Figure 1D, functional
annotation of the two differentially methylated CpG datasets,
performed considering the chromatin segmentation in the same BC
cell models (Taberlay et al., 2014), revealed their statistically significant
(p< 0.01) prevalent location in genetic regulatory elements, such as gene
promoters and enhancers and heterochromatic regions. The
significance of the association between the differentially methylated
CpGs and the different chromatin states was verified using the poverlap
tool (https://github.com/brentp/poverlap) by performing 1.
000 permutations. Considering the former result, we integrated the
information gained from differential methylation analyses with gene
expression data previously obtained by Nascent-Seq (Nassa et al.,
2019b) to obtain more insight into the biological significance of
these findings. By merging promoter methylation and
transcriptomics data, we observed 28 and 75 transcripts regulated by
EPZ and ICI, respectively, in combination with significant changes in
DNA methylation patterns. Functional analysis, conducted using the
gene set enrichment analysis (GSEA) tool, revealed their involvement in
early and late estrogen response gene pathways (Figure 1E), confirming
and integrating our previous results (Nassa et al., 2019b; Salvati et al.,
2019). The epigenetic datasets reported here are now useful to
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investigate, in greater detail, the biological significance and molecular
mechanisms underlying the epigenetic actions, in particular changes in
DNA methylation, of DOT1L and ERα in BC cells, in view of the
significant effects of pharmacological inhibition of the two factors on
the proliferation and survival of these cells.

Technical validation

To ensure the quality and robustness of the data presented here, our
datasets were generated from three independent biological replicates for
each experimental condition analyzed, by using cell cultures processed

independently from authenticated and mycoplasma-free exponentially
growing MCF7 cells. This cell line represents the most widely used
model of luminal A BC, and pivotal works using this cell line continue
unabated. MCF-7 cell lines have dramatically supported the course of
BC research and have contributed to clinically relevant discoveries able
to improve the outcome of patients affected by this disease (Lee et al.,
2015), indicating that the results shown here are unlikely to be
considered merely cell line-specific, as already reported (Tarallo
et al., 2011). Moreover, each RRBS biological replicate was
performed independently, and both controls and samples were
analyzed in parallel. Quality check of the biological replicates was
performed by computing the Pearson correlation coefficient (r)

FIGURE 1
Analysis of DNA methylation profiles following EPZ and ICI treatments. (A) Summary of the experimental workflow applied to generate DNA
methylation profile datasets. (B) Bar chart showing CpG distribution (shore: 0–2 Kb, shelves: 2–4 Kb, and open sea:>4 Kb upstream or downstream: S
from the CpG island) in the three distinct biological replicates of MCF-7 cells treatedwith EPZ, ICI, or vehicle (CTRL). (C)Circos plot depicting differentially
methylated CpGs obtained by RRBS between treated (EPZ: gray or ICI: light blue) and control samples in MCF-7 cells. (D) Bar chart showing the
distribution of differentially methylated CpGs (EPZ: gray and ICI: light blue) on the genome. * (p < 0.01) denotes a statistically significant association
between the differentially methylated CpGs and chromatin segmentation in the same BC cell models. (E) Bar chart showing statistically significant
hallmarks, according to the gene set enrichment analysis (GSEA), involving differentially regulated transcripts from Nassa et al. (2019b) and harboring
differentially methylated CPGs in the promoter region upon treatment with EPZ (gray) and ICI (light blue).
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among the analyzed samples, considering the number of detected CpGs
for each sample and the corresponding beta value (Figure 2A). This
analysis highlighted a strong correlation among the replicates (Pearson’s
r ≥ 0.9737), giving strength to the biological findings. Concerning
methylation percentages, typically a histogram representing it should

have two peaks on both ends since in any given cell, any given base is
eithermethylated or not. Therefore, looking at many cells should yield a
similar pattern, where it is possible to see lots of locations with high
methylation and lots of locations with low methylation (Akalin et al.,
2012). This also occurs in our datasets; in fact, the analysis of average

FIGURE 2
Quality controls of the experimental procedure. (A) Matrices showing Pearson’s correlation computed among the three biological replicates
considered for bioinformatics analysis. (B) Representative bar chart showing the percentage of methylation distribution for the biological replicates of
control (CTRL: black) and treated samples (EPZ: gray and ICI: light blue). (C) Representative bar chart showing read coverage per base information for the
biological replicates of control (CTRL: black) and treated samples (EPZ: gray and ICI: light blue).
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DNA methylation on detected CpGs showed a bimodal distribution,
with peaks at 0%–10% methylation and 95%–100% methylation
(Figure 2B) as expected. Then, to ensure that each sample was not
affected by PCR duplication, we plotted the read coverage per base
information (Figure 2C), which showed that this problem was avoided
in the generation of our datasets. Moreover, from a biological point of
view, we also confirmed and expanded our previous results concerning
DOT1L pharmacological blockade of ET-sensitive and -resistant BC cell
proliferation, revealing, also here, an impact comparable to that of ICI
on the estrogen receptor signaling partway via deregulation of early and
late estrogen response genes (Figure 1E). Among them are worth
mentioning RARA, which results in competitive binding activity at
nearby or overlapping cis-regulatory elements with ERα (Hua et al.,
2009) and the enhanced expression of which induces epithelial-to-
mesenchymal transition and disruption of mammary acinar structures
guiding malignant transformation during mammary tumorigenesis
(Doi et al., 2015); CALCAR that belongs to a gene signature
regulated by the estrogen, the expression of which changes in ET
resistance phenomena (Cheng et al., 2020); and TAM1, as its expression
induces changes in invasion, migration, epithelial–mesenchymal
transition, and cancer stem cell characteristics in BC cells (Xu et al.,
2016).

Conclusion

Considering the results obtained, we conclude that the data
reported in this data descriptor represent high-quality next-
generation sequencing methylation data that are biologically valid
and should be useful for future reuse in studies that seek to
understand the impact of histone and DNA methylation in BC. It
will also be an important resource for future comparative studies of BC
DNA methylation patterns involved in response and resistance to ET
where integration with epigenomics data could be needed.
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