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Aminoglycosides are commonly used for the treatment of life-threatening
bacterial infections, however, aminoglycosides may cause irreversible hearing
loss with a long-term clinical therapy. The mechanism and prevention of the
ototoxicity of aminoglycosides are still limited although amounts of studies
explored widely. Specifically, advancements in programmed cell death (PCD)
provide more new perspectives. This review summarizes the general signal
pathways in programmed cell death, including apoptosis, autophagy, and
ferroptosis, as well as the mechanisms of aminoglycoside-induced ototoxicity.
Additionally, novel interventions, especially gene therapy strategies, are also
investigated for the prevention or treatment of aminoglycoside-induced
hearing loss with prospective clinical applications.
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1 Introduction

Hearing loss (HL) is the most common sensory impairment in human beings. Almost
466 million people worldwide currently suffer from HL, and this figure is estimated over
900 million by 2050 (Olusanya et al., 2019). Aging, noise, infections, genetic defects, and
long-term use of ototoxic drugs are the main causes of HL. Up to now, more than
150 ototoxic drugs have been documented, resulting in functional impairment and/or
cellular degeneration in the inner ear (Tanaka et al., 2019). Aminoglycosides are one of the
most common anti-inflammatory therapies used for Gram-negative bacteria in clinical
practice, they are often selected as the first-line agents to treat suspected or confirmed severe
acute infections (Pogue et al., 2020), cystic fibrosis (Smyth and Bhatt, 2014), and multidrug-
resistant tuberculosis (Dillard et al., 2021) owing to their low cost and high efficacy. Despite
various types of aminoglycosides are widely used in the clinic, including streptomycin,
gentamicin, amikacin, neomycin, and kanamycin, there is a high risk of ototoxicity
contributing to the degeneration of auditory cells in the inner ear. A growing body of
evidence indicates that the loss of sensory hair cell (HC)s is the main cochlear pathology
underlying drug-induced hearing loss, and hair cells are special non-regenerative cells in the
inner ear (Shu et al., 2019), converting sound-induced vibrations into electrochemical
signals. Damage or loss of hair cells leads to permanent hearing impairment (Fettiplace and
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Hackney, 2006). Aminoglycoside-induced hearing loss is typically
cumulatively dose-dependent. Clinical studies have shown that
20%–47% of patients suffered from hearing loss due to the side
effects of aminoglycoside-induced ototoxicity. In general,
aminoglycosides primarily induce high-frequency hearing loss
above 8,000 Hz, and gradually affect hearing loss at low-
frequency with the time past (Wu et al., 2001; Crundwell et al.,
2016; Sacks et al., 2018). Although numerous experiments have been
done to mitigate the ototoxicity of aminoglycosides, no drug has
been licensed for patients to prevent ototoxicity.

Programmed cell death (PCD), an active and orderly cell death
mode, is a universal phenomenon in the development of organisms
(Nagata and Tanaka, 2017). Abnormal regulation of PCD is closely
related to a series of human diseases, such as immune diseases
(Günther et al., 2013), neuropsychiatric disorders (Margolis et al.,
1994), and cancer (Carneiro and El-Deiry, 2020). Previous studies
have reported that ototoxic drugs can cause programmed death of
auditory hair cells, resulting in hair cell loss and hearing damage
(Wu et al., 2020). For a better understanding of the mechanism of
aminoglycoside-induced ototoxicity, it is necessary to investigate the
different forms of hair cell programmed death, which may
eventually provide new ideas for the prevention and treatment of
drug-induced hearing loss. In this review, we collected the latest
insights into protecting hair cells from the ototoxic effect of
aminoglycosides by regulating PCD pathways.

2 The mechanisms of aminoglycoside
ototoxicity

Over the past few decades, great progress has been made in
elucidating the mechanisms of ototoxicity induced by
aminoglycosides. Biological analysis has shown that the
formation of oxidative free radicals and subsequent triggering of
PCD plays a crucial role in hair cell death. Understanding the way
aminoglycosides enter into hair cells and the role of free radicals, as
well as how PCD contributes to irreversible HL is helpful to develop
new therapeutic methods to protect hearing.

2.1 Trafficking of aminoglycosides into the
sensory hair cells

To date, aminoglycosides are clinically available therapies
for systematic or local administration to the inner ear. The
endothelial cells of cochlear blood vessels are coupled
together by tight junctions to form the primary
blood–labyrinth barrier (BLB), separating the cochlear cells
and fluids from the bloodstream (Nyberg et al., 2019).
Aminoglycoside transmission in the inner ear, it is much
easier to traverse into the BLB of the stria vascularis in
comparison to the spiral ligament of the adjacent
perilymphatic position (Dai and Steyger, 2008). Up to now,
the mechanisms of the aminoglycosides passing through the
BLB, i.e., endothelial cells, the vascular texture, and the marginal
cells to the endolymph are still unclear (Koo et al., 2015). Kim
et al. showed that megalin was a candidate carrier of the
aminoglycosides in the stria vascularis in a study of an in

vivo real-time tracking procedure, showing how the
aminoglycosides transported across the blood–labyrinth
barrier, and blockade of megalin by inhibitor cilastatin could
prevent drug accumulation in the inner ear (Kim and Ricci,
2022) (Table 1). There are several pathways for aminoglycosides
to permeate HCs from the endolymph. Ion channels transport,
especially mechanoelectrical transducer (MET), plays a vital role
in the uptake of aminoglycosides to HCs (Vu et al., 2013; Nilius
and Szallasi, 2014). The MET channel is a nonspecific cation
channel at the tip of hair cells stereociliary with high calcium
permeability. Its narrowest portion is at least 1.25–1.5 nm in
diameter, sufficient to allow aminoglycosides to enter hair cell
cytoplasm (Farris et al., 2004; Alharazneh et al., 2011). Blocking
MET channels (e.g., with ORC-13661, d-Tubocurarine, or UoS-
7692) prevents aminoglycosides entry into hair cells and confers
hair cell protection from aminoglycosides (Kirkwood et al.,
2017; Kitcher et al., 2019; Kenyon et al., 2021). It is worth
mentioning that long-term blocking of the MET channel
would affect hair cell function and worsen hearing
impairment. In addition to MET channels, other ion channels
are also associated with the uptake of aminoglycosides into the
HCs; for example, transient receptor potential (TRP) channels,
which are highly expressed in hair cells and play a key role in
aminoglycosides entering into hair cells (Myrdal and Steyger,
2005; Lee et al., 2013). The TRPA1 channel is a member of the
TRP family, which is a non-selective cation channel activated by
certain pungent compounds and lipid peroxidation (Balestrini
et al., 2021). In the mammalian cochlea, blocked the MET
channel, and activated TRPA1 channels promote the uptake
of aminoglycoside. Therefore, it has been proposed that
excessive oxidative stress activates TRPA1 channels to
enhance the uptake of aminoglycosides by damaged hair cells
(Stepanyan et al., 2011).

Endocytosis is another route by which aminoglycosides
enter the apical membrane of hair cells, although there is no
direct evidence that endocytosis is involved in aminoglycoside-
induced cytotoxicity (Hashino and Shero, 1995). It is worth
mentioning that Breglio et al. revealed that HSP70-dependent
paracrine protection of hair cells is mediated by exosomes which
are generated by the direct outward budding of the plasma
membrane during endocytosis (Breglio et al., 2020). Targeting
endocytosis is regarded as a strategy to prevent ototoxicity is
still challenging, because it is not the primary mechanism of
aminoglycoside-induced ototoxicity (Figure 1).

2.2 Free radical accumulation and
programmed cell death

Aminoglycosides rapidly accumulate in the cytoplasm,
mitochondria, and endoplasmic reticulum (ER) after entering the
cell via the above channels. Aminoglycosides inhibit protein
synthesis and increase mRNA misreading by interacting with
ribosomes, leading to the accumulation of misfolded proteins and
causing various cellular stresses. Excessive reactive oxygen species
(ROS), produced by cellular metabolism or contact with foreign
substances, have been detected in cochlear tissue immediately after
cellular stresses (Navarro-Yepes et al., 2014). ROS is an important
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group of free radicals, which can cause direct damage or act as key
mediator signaling molecules, resulting in a series of biological
effects, including caspase3 activation, which promotes hair cell
programmed death (O’Sullivan et al., 2017). Various forms of
PCD lead to different degrees of biological changes in hair cells.
When autophagy occurs, bilayer organelles called autophagosomes
bring cytoplasmic products to the lysosomes for degradation. In
contrast to autophagy, cells undergoing ferroptosis exhibit increased
lipid peroxidation, shrunken mitochondria, and increased
mitochondria membrane density (O’Sullivan et al., 2017). It is
generally accepted that the most common form of programmed
death induced by aminoglycosides in hair cells is apoptosis, which is
characterized by cell shrinkage and chromatin agglutination. In
preclinical models, antioxidants were used to reduce
aminoglycoside-induced ROS production, suppress programmed
cell death, and increase cell viability. Antioxidants applied in the
study of ototoxicity of aminoglycosides, including D-methionine
(Fox et al., 2016), Vitamin C (Gong et al., 2022), N-acetylcysteine
(Aladag et al., 2016), quercetin (Hirose et al., 2016), galanin (Kim
et al., 2016), fursultiamine (Kim et al., 2021), and salicylates
(Sha et al., 2006).

3 Apoptosis pathways in
aminoglycoside-induced ototoxicity

Apoptosis is a tightly controlled process by multiple genes. These
genes are very conserved among species, such as the Bcl-2 family,
caspase family, and tumor suppressor gene P53 (Igney and Krammer,
2002; Szegezdi et al., 2006). External and internal stimuli, in
combination with extrinsic and intrinsic apoptosis apoptosis-related
genes, can induce cell apoptosis. Bodmer et al. revealed that gentamicin
does not cause apoptosis through the Fas receptor, which is the best-
characterized member of the extrinsic pathway family and a receptor
signal that must be activated during the extrinsic process of apoptosis.
This suggests that hair cell apoptosis triggered by aminoglycosides may
be initiated primarily through an intrinsic pathway in response to stress
signals and excessive ROS (Bodmer et al., 2003) (Figure 2).

3.1 Apoptosis mediated by caspase

Caspase activation is well known as a common intrinsic pathway
for drug-induced hair cell apoptosis. Functionally, caspases involved

TABLE 1 Potential drug targets for the treatment of Aminoglycoside ototoxicity.

Regulatory pathway Mechanism Compound References

Targeting Alternative Entry Routes Inhibit aminoglycosides entry into the endolymph Cilastatin Kim and Ricci (2022)

MET channel blocker ORC-13661 Kitcher et al. (2019)

d-Tubocurarine Kirkwood et al. (2017)

UoS-7692 Kenyon et al. (2021)

Targeting Oxidative Stress Pathway Antioxidant d-Methionine Fox et al. (2016)

Vitamins C Gong et al. (2022)

N-acetylcysteine (NAC) Aladag et al. (2016)

Quercetin Hirose et al. (2016)

Galangin Kim et al. (2016)

Fursultiamine Kim et al. (2021)

Salicylate Sha et al. (2006)

Targeting Apoptosis Pathway Caspase inhibitor z-VAD-FMK Matsui et al. (2003)

z-LEHD-FMK Okuda et al. (2005)

JNK inhibitor D-JNKI-1 Eshraghi et al. (2007)

Estradio Nakamagoe et al. (2010)

Nrf2 agonist Ebselen Kil et al. (2017)

Apigenin Jia et al. (2022)

Heme oxygenase-1 Yang et al. (2022)

YAP agonist XMU-MP-1 (XMU) Wang et al. (2022)

Targeting Autophagy Pathway MTOR inhibitor Temsirolimus (CCI-779) Ye et al. (2019)

Targeting Ferroptosis Pathway Iron chelator 2,3-Dihydroxybenzoate Song and Schacht (1996)

Deferoxamine Song and Schacht (1996)

Selective ferroptosis inhibitor Liproxstatin-1 Zheng et al. (2020)
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in apoptosis have been subclassified into initiator (caspases 8, 9, and
10) and effector (caspases 3, 6, and 7) caspases, the initiator caspases
are activated by proapoptotic signals and subsequently coordinate
their activities to activate effector caspases (Brenner and Mak, 2009;
McIlwain et al., 2013). Caspase-9 is considered the major initiator
caspase that participates in aminoglycoside-induced hair cell death,

which activates downstream caspase-3 and demolishes key
structural proteins, ultimately leading to apoptotic of hair cells
(McIlwain et al., 2013). It has been reported that caspase-9 and
caspase-3 expression was elevated in both HEI-OC1 cells and
cochlear exposed to aminoglycosides, and the use of caspase-9
specific inhibitor (z-LEHD-FMK) or general caspase inhibitor

FIGURE 1
The main trafficking routes of aminoglycosides. In systemic administration, aminoglycosides are trafficked from cochlear capillaries into the
endolymph, and then aminoglycosides enter the hair cells from the endolymph by two common mechanisms including ion channels and endocytosis.

FIGURE 2
Key pathways for hair cell death induced by aminoglycosides. (A–C)Major pathways of aminoglycoside-induced hair cell apoptosis, autophagy, and
ferroptosis.
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(z-VAD-FMK) was found to effectively reduce the expression of
caspase and prevent HC death (Matsui et al., 2003; Okuda et al.,
2005). Notably, caspase 8 was found to cooperate with RIP kinase to
regulate a type of regulatory cell death—necroptosis. It was found to
be involved in the ototoxicity of aminoglycosides in vivo (Ruhl et al.,
2019), but, the mechanism of programmed necrosis in
aminoglycoside-induced ototoxicity is poorly understood.

3.2 The c-jun NH2-terminal kinases (JNKs)

As a redox-sensitive factor, the c-jun NH2-terminal kinases
(JNKs), an essential member of the mitogen-activated protein kinase
superfamily, play a vital role in the cellular antioxidant self-defense
system (Shen and Liu, 2006). Upon aminoglycoside insult, the JNK
pathway is activated by phosphorylation and increases the
expression of downstream target genes, including itself, to
promote hair cell apoptosis (Ylikoski et al., 2002). At the
molecular level, cyclin-dependent kinases (CDKs) regulate
aminoglycoside-induced hair cell apoptosis by interfering with
the JNKs pathway, inhibition of CDK2 activity by pharmaceutical
or CDK2 knockout affects JNK signaling and improves resistance to
the ototoxicity of gentamicin (Tao and Segil, 2022). Furthermore,
small molecule drugs such as a peptide inhibitor (i.e., D-JNKI-1)
(Eshraghi et al., 2007) and estradiol (Nakamagoe et al., 2010) were
discovered to attenuate hair cell loss following aminoglycoside
administration by interfering JNK pathway.

3.3 The role of nuclear factor erythroid 2-
related factor 2 (Nrf2) in apoptosis

Nuclear factor erythroid 2-related factor 2 is a transcription
factor encoded by the NFE2L2 gene (Sykiotis and Bohmann, 2010),
it is localized in hair cells and supporting cells in the human Corti’s
organ (Hosokawa et al., 2018). Nrf2 is an important antioxidant
regulator in a series of chronic toxic lesions caused by oxidative
stress. In recent years, studies on the relationship between
Nrf2 transcription factors and hearing impairment have given
people a new understanding of hair cell damage and provided
new strategic targets for the development and reuse of new drugs
(Cuadrado et al., 2019).

Nrf2 is regulated by upstream pathways, Baird et al. revealed that
Sestrin-2 (Sesn2), a member of the antioxidant family, is involved in
protecting hair cells against gentamicin by activating Nrf2 (Baird
and Dinkova-Kostova, 2011). Appreciation that Nrf2 pathway
activation provides hair cells protection from ototoxic drugs, the
protective effect on hair cells seems to be heading in a new trend,
that is, by stimulating the expression of Nrf2 and preventing hair
cells from being damaged. Ebselen is a potent glutathione peroxidase
(GPx) mimic and inducer with antioxidant and anti-inflammatory
effects. It has been found to attenuate aminoglycoside-induced
ototoxicity by activating the Nrf2 signaling pathway, increasing
glutathione, and dramatically stimulating GPx1 transcription (Gu
et al., 2021). Encouragingly, the safety and efficacy of ebselen for the
prevention of noise-induced hearing loss are undergoing phase
2 clinical trials (Kil et al., 2017). Moreover, other drugs have also
been found to protect hair cells from aminoglycosides by intervening

in the NRF2 pathway, such as apigenin (Jia et al., 2022) and Heme
oxygenase-1 (Yang et al., 2022).

3.4 Other apoptosis signals

Other pathways have been investigated for cellular apoptosis.
The Bcl-2 protein family could be the main regulator that triggers
caspase activation. From a functional point of view, Bcl-2-related
proteins can inhibit or accelerate cell apoptosis, while the
interaction between the two opposite proteins is a key factor
in determining cell death (Willis et al., 2003). Studies have shown
that overexpression of the anti-apoptotic Bcl-2 gene may have a
certain inhibitory effect on hair cell apoptosis induced by
aminoglycosides (Liu et al., 2007). Another apoptosis signal,
transcription factor forkhead box O3 transcription factor
(Foxo3), can regulate the expression of stress response
proteins in the body and participate in the apoptosis of
various tissues (Dansen and Burgering, 2008; Gargini et al.,
2015). The role of the Foxo3 gene and Bcl-2 family genes in
apoptosis was further confirmed by the discovery that Wnt/β-
catenin signaling regulates Foxo3 and Bcl-2 expression, controls
the content of ROS, inhibits apoptosis and protects HCs
immune from neomycin injury (Liu et al., 2016).
Interestingly, the Hippo/Yes-associated protein (YAP)
signaling pathway, which plays a key role in the development
and progression of cancer (Harvey and Tapon, 2007), may be
involved in hair cell damage induced by aminoglycosides. Wang
et al. regulated the Hippo/YAP signaling pathway in vitro
against neomycin-induced HC loss by inhibiting cell
apoptosis and decreasing ROS accumulation by using the
YAP agonist XMU-MP-1 (XMU) successfully (Wang et al.,
2022). Inhibition or activation of numerous signaling
pathways should be considered when regulating apoptosis to
better protect hair cells from ototoxic damage.

4 Autophagy pathways in
aminoglycoside-induced ototoxicity

Substantial findings suggest that cellular death mediated via
autophagy is essential in hearing loss. Autophagy is considered
an orderly degradation and recycling mechanism, which
decomposes unnecessary or dysfunctional cellular
components to maintain the homeostasis of the body
(Eskelinen, 2019). In the early stage of the disease, autophagy
activation may facilitate the disease process delay, nevertheless,
cells may over-activate autophagy leading to cell death as the
prominent pathogenic factors appear (Wu et al., 2020). Thus, in
the growth and maintenance of multicellular organisms,
autophagy always keeps a delicate balance, and loss or
overactivation of autophagy regulation could result in the
occurrence of sickness (Levine and Kroemer, 2008; Narendra
et al., 2009). Previous experiments proved that autophagy
induction increases the survival of retinal ganglion cells
(RGCs) (Rodríguez-Muela et al., 2012). However, the effect of
the activation of autophagy on the ototoxicity of
aminoglycosides remains controversial.
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4.1 Autophagy activation protects hair cells
from aminoglycoside-induced ototoxicity

Combined injection of kanamycin and furosemide can cause
capillary detachment and reduce the autophagic flux for lysosome
production, leading to the degeneration of hair cells and spiral
ganglion neurons. After autophagy dysfunction was partially
ameliorated with an MTOR inhibitor temsirolimus (CCI-779),
lysosome defects were significantly relieved, oxidative stress levels
were reduced, and the density of surviving spiral ganglion neurons
and hair cells was significantly increased (Ye et al., 2019). He et al.
stimulated the autophagy activity with rapamycin, a commonly used
autophagy activator, and significantly reduced the ROS levels,
apoptosis, and cell death after neomycin or gentamicin injury,
and the viability of cochlear explants and HEI-OC1 cells was
enhanced. In contrast, exposure to aminoglycosides resulted in
reduced autophagy activity, increased ROS levels, apoptosis, and
cell death following treatment with the autophagy inhibitor 3-
methyladenine (3-MA) or knockdown of autophagy-related
(ATG) proteins (He et al., 2017).

PINK1 is a serine/threonine kinase located in the mitochondria,
while Parkin is an E3 ubiquitin ligase present in the cytoplasm.
PINK1 recruits parkin to depolarized mitochondria, ubiquitinates
the mitochondrial substrates, and drives autophagy (Lazarou et al.,
2012; Goiran et al., 2018; Pickles et al., 2018). Yang et al. treated HEI-
OC1 cells and mouse cochlear hair cells with 400 µM gentamicin
and found that gentamicin exposure promoted the
PINK1 degradation and parkin recruitment, enhancing
autophagy activity. They interfered with PINK1 expression of
HEI-OC1 by using specific PINK-siRNA and demonstrated that
activation of PINK1 prevented gentamicin-induced damage by
promoting spontaneous autophagic and inhibiting the increase of
p53 in HEI-OC1 cells (Yang et al., 2018). The transcription of
PINK1 is mainly regulated by ATF3 (activating transcription factor
3), XBP1 (X-box binding protein 1), and FOXO3 (forkhead box O3)
(Bueno et al., 2018). By inducing ATF3 expression in HEI-OC1 cells
and cochlear hair cells, neomycin repressed Pink1 transcription and
decreased autophagic activity (Zhang et al., 2023). Accumulating
evidence suggests that gene modulation or pharmacological
intervention of autophagy may have therapeutic potential for
aminoglycoside-induced hearing loss (Figure 2).

4.2 New perspective on the role of
autophagy in ototoxicity of aminoglycosides

Some scholars have proposed that appropriate ROS after
neomycin injury can promote autophagy, restore damaged
cellular components, and maintain the stability of the internal
environment. However, the role of autophagy in aminoglycoside
ototoxicity is controversial, in a large, unbiased screen, Ryan and
others found that autophagy is involved in the ototoxic injury of hair
cells in a complex manner, they predicted that many complexes
protect hair cells from aminoglycoside damage could inhibit
autophagy, in contrast, some complexes could promote
autophagy to reducing ototoxicity (Draf et al., 2021). Recently,
Bruijn et al. reported that aminoglycosides could trigger the
interaction of RIPOR2 in murine hair cells with GABARAP, an

autophagy pathway that plays an important role in clearing and
restoring dysfunctional cellular components (de Bruijn et al., 2020).
Surprisingly, the reduction of RIPOR2 and GABARAP proteins
completely inhibited aminoglycoside administration-induced hair
cell death and subsequent hearing loss. In addition, disrupting the
autophagy pathway by canceling PINK1 or Parkin expression could
also protect hair cells from aminoglycoside-induced ototoxicity (Li
et al., 2022). It would be interesting to explore the role of autophagy
in aminoglycoside-induced ototoxicity, as both high and low levels
of autophagy can cause damage to the hair cells, and the degree of
autophagy requires exquisite control. As a possibility, the effects of
autophagy on hair cell function and survival are multi-pathway
regulated, and the level of autophagy needs to be precisely adjusted
to protect hair cells from aminoglycosides.

5 Ferroptosis pathways in
aminoglycoside-induced ototoxicity

Ferroptosis is a new type of iron-dependent programmed cell
death, which is different from apoptosis, necrosis, and autophagy
(Dixon et al., 2012; Galluzzi et al., 2018; Shen et al., 2018). Three
essential hallmarks define ferroptosis: oxidation of
polyunsaturated fatty acid-containing phospholipids, loss of
lipid peroxide repair, and reduction in the accumulation of
redox-active iron (Friedmann Angeli et al., 2014; Xie et al.,
2016; Wu et al., 2021).

Iron has a great influence on themetabolism of cells and plays an
important role in tissue damage, as it participates in the generation
of highly reactive oxygen species. Two iron chelators, deferoxamine,
and 2,3-dihydroxybenzoate could compete with gentamicin for
“free” iron ions and reduce ototoxic damage to hair cells (Song
and Schacht, 1996). Considered that “free” iron ions are crucial
members in the occurrence of ferroptosis. Therefore, established
iron chelates may be selected as promising therapeutic agents,
reducing aminoglycoside-induced ototoxicity by inhibiting
ferroptosis.

Increasing attention has been attracted to further research
investigating the pathophysiological role of ferroptosis in the field
of drug-induced hearing loss (Figure 2). Ferroptosis may coordinate
with other types of cell death involved in drug-induced hair cell
ototoxic damage, and recent studies have provided that activation of
the autophagy pathway promotes ferroptosis by degrading ferritin
(Hou et al., 2016). Mei et al. found that HEI-OC1 cells treated with
cisplatin not only markedly augmented iron accumulation but
reduced the activity of glutathione peroxidase 4 (GPX4), an
intracellular antioxidant enzyme that inhibits the production of
lipid peroxidation (Mei et al., 2020). Notably, treatment with the
specific ferroptosis inhibitor ferrostatin-1 could effectively reduce
cisplatin-induced ototoxicity by inhibiting lipid peroxide free
radicals and improving the mitochondrial function of hair cells
(Hu et al., 2020; Mei et al., 2020). Like cisplatin, ferroptosis could be
induced in HEI-OC1 cells and neonatal mouse cochlear explants
following aminoglycoside exposure. Pretreatment with selective
ferroptosis inhibitor liproxstatin-1 (Lip-1) significantly alleviated
the production of ROS and the destruction of
mitochondrial membrane potential (ΔΨm) in the HEI-OC1 cells
(Zheng et al., 2020).
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Ferroptosis is a newly discovered hair cell programmed death
associated with aminoglycoside-induced ototoxicity, and inhibition
of ferroptosis successfully prevented hearing loss induced by
cisplatin and aminoglycosides in vitro model. However, the role
of ferroptosis in aminoglycoside-induced ototoxicity has not been
studied in mammals in vivo, and the mechanisms of ferroptosis in
regulating ototoxic hair cell death are unclear. We need more studies
to understand the impact of ferroptosis on ototoxicity. Additionally,
we need to extend this research to animals to promote ferroptosis
inhibitors as possible ear protection drugs for patients.

6 Gene therapy regulates programmed
cell death induced by aminoglycosides

The past few decades witnessed the development of gene
therapy, which focuses on providing effective gene interventions
in different periods to treat or prevent diseases (Omichi et al., 2019;
Zhang et al., 2020). Gene therapy candidates are probably the most
complex drugs invented by mankind to date and may become one of
the important means to treat intractable diseases (Maeder et al.,
2019; Santiago-Fernández et al., 2019; Wu et al., 2019; Stadtmauer
et al., 2020). Applying this technology to the clinic is still
challenging, but the trends are encouraging in the future.

6.1 Overexpression of apoptotic genes

At present, it is possible to construct regulatory elements
upstream of the target gene by artificial modification, so that the
gene can be transcribed and translated under artificially controlled
conditions to achieve the products of gene overexpression.

Several neurotrophic factors, especially brain-derived
neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) promote
the growth, survival, and interconnectivity of hair cells (Ramekers
et al., 2012). In animals exposed to kanamycin, infusion of NT-3 or
BDNF into the perilymphatic space of the cochlea was found to
prevent the loss of auditory hair cells (Ruan et al., 1999). Therefore,
neurotrophin gene transfer into the inner ear may be a practical
means to rescue ototoxin-exposed cochlear hair cells. Indeed,
adenovirus-mediated neurotrophic factor overexpression in the
inner ear demonstrated that hair cells and spiral ganglion
neurons are protected from degeneration and death caused by
aminoglycoside-induced ototoxicity (Kawamoto et al., 2003; Wise
et al., 2010; Leake et al., 2020). Not only neurotrophins but also
several apoptosis-related genes have been amplified by
overexpression in vivo to observe if they can mitigate drug-
induced ototoxicity. In the auditory system, overexpression of
Bcl-2, an essential gene involved in hair cell apoptosis mentioned
above, has been shown to protect against aminoglycoside-induce
ototoxicity in vitro and in vivo mouse models (Pfannenstiel et al.,
2009). Utilized adenovirus-mediated gene therapy overexpressing
human catalase in the inner ear and demonstrated that
overexpression of antioxidant genes could significantly protect
the HC from ototoxic damage (Kawamoto et al., 2004). In
preclinical studies, an increasing number of genes are amplified
in mice by overexpression to prevent the occurrence and
development of diseases. In the future, virus-mediated gene

overexpression is expected to solve the disease problem in
clinical practice.

6.2 Knockdown of apoptotic genes

CRISPR/Cas9 is a novel gene editing technology. Its simplicity,
ease of use, and powerful gene editing capabilities have rapidly
attracted substantial attention from scientists in different fields
(Deltcheva et al., 2011; Cong et al., 2013). This system has been
applied to the mouse model of human congenital deafness in
preclinical studies multiple times and successfully corrected the
gene mutation in the inner ear of mice to rescue their hearing
(Gao et al., 2018; Xue et al., 2022). It is heartening to see the
remarkable success in the prevention and treatment of acquired
sensorineural hearing loss using CRISPR/Cas9 gene editing
technology recently.

Inhibitor of apoptosis protein (IAP) prevents apoptosis by
blocking canonical caspase-mediated apoptosis and JNK signaling
pathways (Deveraux et al., 1999). In many cases, IAP family proteins
can cross species barriers to inhibit apoptosis, this means that
although the details of their regulation may differ, these proteins
target a common mechanism of programmed cell death (Deveraux
and Reed, 1999). X-linked inhibitor of apoptosis protein (XIAP) is
one of the most effective IAP, it does not prevent caspase activation
but inhibits them after they are activated, this post-activation
inhibition occurs because XIAP binds to neo-epitopes that are
exposed when caspases are activated by cleavage (Unsain et al.,
2013). Sun et al. confirmed that XIAP was involved in HCs
apoptosis. Injecting neomycin into high-expressing XIAP mice,
they found that overexpression of XIAP effectively prevented the
loss of HCs, especially in the apical turn (Sun et al., 2014). Whereas,
XIAP in hair cells after exposure to aminoglycosides may be
degraded by upstream pathways regulation. HtrA2 (High-
temperature demand A2)/Omi is a nuclear-encoded protein
found in the inner mitochondrial membrane space. In response
to apoptotic stimuli, HtrA2 is released into the cytoplasm, cleaving
XIAP, Apollon/BRUCE, and other proteins to promote apoptosis
and maintain homeostasis (Goo et al., 2014). Our team tried to
inhibit XIAP degradation to resist apoptosis by knocking down
Htra2 with the application of the CRISPR-Cas9 system. We targeted
editing of the Htra2 gene and demonstrated that knockout of the
Htra2 gene by the adeno-associated virus (AAV)-mediated CRISPR/
Cas9 system could effectively prevent aminoglycoside-induced
ototoxic deafness in mice. The protection against neomycin
exposure in vivo after pretreatment with the AAV-CRISPR/
Cas9 system can last for a long time, even up to 8 weeks after
the injection system. We also evaluated the safety of AAV-CRISPR/
Cas9 systems, during the observation period of the study, no obvious
off-target conditions were found, and there was no effect on the
hearing of wild-type mice, indicating that the treatment system was
safe (Gu et al., 2021). The CRISPR/CasRx system, a member of the
CRISPR system type VI, provides an efficient and specific new
method for RNA manipulation in both prokaryotes and eukaryotes
(Shmakov et al., 2015; Abudayyeh et al., 2016; Smargon et al., 2017).
After using the AAV-CasRx-gRNA system, we found that knocking
out the Htra2 gene transcript could effectively reduce the loss of
cochlear hair cells after neomycin exposure and attenuate hearing
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loss in mice. In addition, knockdown of the Htra2 gene significantly
reduced the mRNA expression of Casp3 and Casp9 in cochlear hair
cells after neomycin treatment (Guo et al., 2022). These results
demonstrated that hair cell ototoxic damage can be effectively
prevented by the specific knockout of a target gene at the DNA/
RNA level. Recent clinical studies have shown that RNA interference
therapy is an available option to target and suppress genes associated
with cancer, and accelerate the development of cancer treatments in
a novel way (Kara et al., 2022). What’s more, studies have been
detecting the RNA interference (RNAi) as a way of selectively
suppressing mutant alleles in animal models with genetic hearing
loss (Shibata et al., 2016). Therefore, it is of great interest to
investigate the treatment of RNA interference as a promising
strategy for preventing drug-induced hearing loss in the future.

In most studies of protective therapy, drugs are administered
intraperitoneally, subcutaneously, or intravenously. After entering the
body, many small-molecule therapeutic drugs cannot play a role due to
short plasma half-life or unable to reach inner ear cells through the
blood–labyrinth barrier. Compared with drug administration, local
injection of gene therapy agents into the inner ear owns several
outstanding advantages (i) the therapeutic effect of gene therapy
could achieve a long-term disease prevention and treatment, (ii)
personalized gene therapy could achieve the curative effect based on
the individual genetic status and treatment condition, (iii) gene therapy
has the potential to correct defective genes for the treatment of diseases
fundamentally. Further evaluation is necessary for the safety and
application of gene therapy, we believe that shortly, gene therapy
can be used as an accurate treatment for hearing loss, restoring
hearing function and preventing the development of hearing loss in
a way that conventional medicine cannot.

7 Conclusion

Ototoxic drugs enter hair cells via the endolymph and
accumulate in organelles to produce excessive ROS. The
accumulation of ROS will lead to the activation of the relevant
target genes and subsequent cell death. As mentioned above, many
methods have been tried to reduce the accumulation of drugs in the
cochlea and affect the ototoxicity process to mitigate the loss of hair
cells. This review focuses on drug and gene therapies to reduce the
ototoxicity of aminoglycosides by regulating programmed cell death,
including apoptosis, autophagy, and ferroptosis. In recent decades,
the increasing understanding of apoptosis, autophagy, and
ferroptosis has led to the development of clinical treatments for
hearing loss. The occurrence and development of ototoxicity may
involve multiple forms of hair cell death and related signaling
pathways, audiologists have been trying to understand how these
pathways map and integrate. To better protect hair cells from

ototoxic drugs, we need to understand the pathogenesis of
hearing loss, multi-target, and multi-pathway therapies should be
considered according to the characteristics of programmed cell
death. CRISPR/Cas9 gene editing technology, which allows
precise editing of target genes, has set off a new wave of research
and made remarkable achievements in the treatment of drug-
induced deafness. In the future, the problem of drug ototoxicity
will gradually dissipate with the continuous exploration of
researchers.
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