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There is growing evidence that X-chromosome inactivation is driven by phase-
separated supramolecular assemblies. However, among the many proteins
recruited to the inactive X chromosome by Xist long non-coding RNA, so far
only a minority (CIZ1, CELF1, SPEN, TDP-43, MATR3, PTBP1, PCGF5) have been
shown to form Xist-seeded protein assemblies, and of these most have not been
analyzed in detail. With focus on CIZ1, here we describe 1) the contribution of
intrinsically disordered regions in RNA-dependent protein assembly formation at
the inactive X chromosome, and 2) enrichment, distribution, and function of
proteins within Xist-seeded assemblies.
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Introduction

Transcriptional silencing of one copy of the X chromosome (X chromosome
inactivation, XCI) occurs during early embryogenesis in female mammals (Lyon, 1961),
and is the most extensively studied model of stably repressed chromatin formation. The
initiating molecule is the 17-kb long noncoding RNA (lncRNA) X-inactive specific transcript
(Xist) (Brockdorff et al., 1992; Brown et al., 1992), whose expression is restricted to one of the
X chromosomes in female cells by the cis-acting activity of the antisense Tsix lncRNA (Lee
et al., 1999), which suppresses Xist. The X chromosome that continues to express Xist
generates approximately 100 molecules per cell, which initiate recruitment of chromatin
modifying proteins across the inactive X chromosome (Xi), through interactions mediated
by a series of repeat elements. Since its discovery more than 30 years ago, detailed analysis
has revealed important insights into how this drives silencing of most of the genes on the Xi
(Markaki et al., 2021; Rodermund et al., 2021), and has been reviewed extensively elsewhere
including (Sahakyan et al., 2018; Brockdorff, 2019; Monfort and Wutz, 2020; Strehle and
Guttman, 2020; Loda et al., 2022).

Recent studies have highlighted phase separation as part of the process underpinning Xi
chromatin condensation and gene silencing (Cerase review), though its putative influence is
far from established (Collombet et al., 2023). Phase separation is a process in which
molecules spontaneously separate into a molecule-rich phase, which coexists in a cell
with molecule-lean phase. The physical properties of size, shape, composition and behaviour
of Xist nuclear foci is similar to other phase separated molecular condensates. Some Xist
binding proteins (CELF1, SPEN, MATR3, TDP-43, PTBP1, PCGF5, and also CIZ1) have
been shown to form Xist-seeded protein assemblies (Ridings-Figueroa et al., 2017; Pandya-
Jones et al., 2020; Markaki et al., 2021; Rodermund et al., 2021; Jachowicz et al., 2022; Sofi
et al., 2022), but the molecular mechanisms by which they arise remain largely unknown. In
this review we discuss the role of intrinsically disordered prion-like domains (PLDs) in
building RNA-protein assemblies at the Xi (Table 1), with focus on CIZ1 and its relationship
with the repeat E element of Xist.
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Intrinsically disordered domains of CIZ1

CIZ1 is a ubiquitous nuclear protein that was identified through
a yeast two-hybrid screen as an interaction partner of the cell cycle
regulator p21/Cip1/CDKN1A, and later as a functional interactor of
cyclin A-CDK2 (Mitsui et al., 1999; Coverley et al., 2005). It is linked
with initiation of DNA replication (Copeland et al., 2010; Copeland
et al., 2015), and because it remains in the nucleus after removal of
chromatin is classified as a nuclear matrix protein (Ainscough et al.,
2007). Its interaction with Xist emerged more recently, and has been
shown to require the repeat E region of Xist (Chu et al., 2015;
Ridings-Figueroa et al., 2017; Sunwoo et al., 2017; Dixon-McDougall
and Brown, 2022). The biological significance of CIZ1’s function is
apparent in a CIZ1 null murine model which develops female
specific lymphoproliferative disorder (Brockdorff, 2019), and in
the many human cancers of both sexes in which CIZ1 is
dysregulated.

Though not required to establish XCI in the embryo, or to
maintain global Xi silencing once established, in somatic cells
(fibroblasts, B and T lymphocytes) CIZ1 is required to trap Xist
transcripts at their source (Ridings-Figueroa et al., 2017). It is
possible that it plays a similar role at other less visible loci
because CIZ1 loss leads to failure to maintain tight control over
genes under the regulation of the polycomb complex across the
nucleus (Stewart et al., 2019). At the Xi, CIZ1 normally forms
strongly enriched RNA-protein assemblies in a manner
dependent on its two intrinsically disordered prion-like domains
(PLD1 and PLD2) (Sofi et al., 2022). Both are alternatively-spliced,
and excluded from some forms of CIZ1 in developmental and
disease states (Warder and Keherly, 2003; Coverley et al., 2005;
Dahmcke et al., 2008). Intrinsically disordered regions (IDRs) are
amino-acid sequences with low sequence complexity and no fixed
conformation (Alberti, 2017). CIZ1’s PLD1 is made up of nine
blocks of 2-6 residue long polar uncharged glutamine repeats,
interspersed with non-polar leucine or isoleucine residues. While
PLD2 harbors no such repeats, it is made up of 15 (38.4%) glutamine
residues interspersed with other polar amino acids. Approximately
5% of PLD2 residues are acidic, compared to 13% of non-PLD CIZ1,
rendering it less negatively charged. Together, PLD1 and
PLD2 support formation of concentration- and time-dependent
CIZ1 assemblies possibly through multivalent weak interactions
(electrostatic, cation-π, π-π stacking interactions), including
dipole-dipole interaction of glutamine residues with aromatic
groups. Collectively these interactions may favor CIZ1 self-

assembly, as has been proposed for other poly Q proteins
(Brangwynne et al., 2015; Protter et al., 2018).

Purified PLD-containing CIZ1 fragments can alone form
assemblies in vitro, but these are much larger (6 μm) in size than
those observed inside the cell nucleus and resemble branched
filaments rather than globular condensates. Moreover the same
fragments are not sufficient to form assemblies at Xi in cultured
cells, which requires additional functional domains (Sofi et al.,
2022). Similar behavior has been observed for Whi3 RNA
binding protein (Zhang et al., 2015), though the cellular
mechanisms that control its assembly size and shape also remain
poorly understood. For both proteins extrapolation from in vitro
protein characterization to a cellular context is complicated by the
buffering capacity of RNA (and other cellular factors), and the
potential of specific RNA molecules to bridge protein interactions.
In the case of CIZ1, this may influence both the extent of its self-
interaction and also determine where in the nucleus assemblies are
supported. Despite these uncertainties, analysis in vitro showed
convincingly the contributions of the IDRs PLD1 and PLD2 to
the formation of self-assemblies (Figure 1).

The majority (63%) of proteins contain IDRs (Tsang et al.,
2020), which participate in nearly half of the total RNA-protein
interactions in cells (Castello et al., 2016), and in some cases IDRs
have been shown to modulate chromatin repression and gene
silencing (Jachowicz et al., 2022). IDRs can bind RNA, DNA,
proteins, and as purified proteins also phase separate in vitro
(Protter et al., 2018, Brodsky et al., 2020). While IDRs in some
DNA-binding proteins bind specific sequences in vivo (Brodsky
et al., 2020; Wang et al., 2023), the IDRs of RNA binding proteins,
including CIZ1, appear to bind RNAs promiscuously, in some cases
without any apparent sequence specificity (Protter et al., 2018; Sofi
et al., 2022; Cubuk et al., 2023). The lack of RNA sequence specificity
is attributed to their conformational flexibility (Varadi et al., 2015;
Ottoz and Berchowitz, 2020) and overall charge, with positively
charged IDRs binding to negatively charged RNAs (Protter et al.,
2018). An unresolved question is whether IDRs contribute to
functional RNA specificity inside cells. Some studies have
suggested that repeat regions within some IDRs fold into
secondary structures (α-helix, loops or random coil), which
specifically interact with folded RNAs driving structural
specificity (Protter et al., 2018; Zeke et al., 2022), possibly
regulated by post-translational modifications (Ottoz and
Berchowitz, 2020). Other studies propose that some structurally
malleable RNAs have chaperone activity which could impose order

TABLE 1 Repeat E proteins known to form assemblies. Protein disorder predicted by PONDR (Mészáros et al., 2019) and MobDB-lite (Romero et al., 1997).
n.p. means disorder for this protein is not predicted. PONDR score is indicative of the degree of disorder among residues or regions in a protein, not in an entire
protein. PONDR scores greater than 0.5 suggest disorder. We express PONDR output as overall percent disorder in proteins. MobiDB lite does not give any score
but generates overall percent disorder.

Name Uniprot PONDR disorder MobiDB-LITE disorder

CIZ1 Q8VEH2 69.38% 50.4%

SPEN Q96T58 74.13% 57.3%

PTBP1 P26599 37.52% n.p.

CELF1 Q92879 50.21% 6.8%

MATR3 P43243 54.90% 36.5%
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upon IDRs, potentially augmenting the specificity of proteins
towards RNA (Ottoz and Berchowitz, 2020; Luo et al., 2023). In
the case of CIZ1’s IDRs no biophysical information on their
relationship with RNA has yet been uncovered, but their
contribution to stable interaction with RNA has been assessed
(Sofi et al., 2022).

Relationship between CIZ1 and Xist
molecules

Xist lncRNA interacts with numerous proteins, some of which
become enriched at Xi (Chu et al., 2015; McHugh et al., 2015;
Moindrot et al., 2015; Monfort et al., 2015), and much effort is
concentrated on understanding the molecular basis of their
enrichment. Xist contains six differently sized repeat regions
(A-F) implicated in recruitment of different Xist binding proteins
(McHugh et al., 2015; Brockdorff, 2018; Brockdorff et al., 2020;
Monfort and Wutz, 2020; Boeren and Gribnau, 2021; Raposo et al.,
2021). Repeat E is comprised of two sets of tandem repeats
(35 copies of a 16–27 bp C/U/G-rich element at the 5′ end, and
25 copies of a 6–19 bp C/U-rich element at the 3’ end) (Pandya-
Jones et al., 2020; Brockdorff et al., 2020). It is largely unstructured
and thought to act as a protein binding platform in cells (Smola et al.,

2016). Its deletion from Xist blocks recruitment of CIZ1 to Xi in
somatic cells, and CIZ1 binds directly to Xist repeat E in vitro, with a
degree of sequence preference imparted by its PLDs (Ridings-
Figueroa et al., 2017; Sunwoo et al., 2017; Sofi et al., 2022). In
vitro experiments that compare affinity for repeat E over repeat A,
absence of PLD1 dampened the former more than the latter, while
absence of PLD2 relieved apparent suppression of interaction with
repeat A, rendering the affinity for both RNA elements similar (Sofi
et al., 2022). This highlights a complex relationship with respect to
specificity, and implies that PLD2 may enhance the affinity of
PLD1 for repeat E by dampening affinity for other (unknown)
RNAs. Moreover, removal of either of the IDRs (PLD1/PLD2) from
CIZ1 causes failure to concentrate Xist transcripts at Xi in
differentiated fibroblasts (Sofi et al., 2022), which further suggests
that the interplay between them is important to specify interaction
with Xist and thus the location at which CIZ1 assemblies form in
vivo. In contrast, Xist dispersal is not observed upon deletion of the
IDR in SPEN (Jachowicz et al., 2022). A structural examination of
the relationship between PLD1 and PLD2, in complex with
structurally flexible Xist, is now needed in order to understand
how they cooperate to drive CIZ1 assembly formation at Xi.

There is consensus now that approximately 100 Xist RNA
molecules are present in female cells, and are confined to
~50 Xist foci, each containing a pair of Xist molecules (Markaki

FIGURE 1
Formation of CIZ1 assemblies drive acquisition of modifications in CIZ1-null cells. (A) Image showing ectopic GFP-CIZ1 which drives acquisition of
repressive histone post-translational modifications in CIZ1-null primary embryonic fibroblast cells (Sofi et al., 2022). Scale bar is 10 μm. (B) Summary of
CIZ1 protein domains. PLD1 and PLD2 are red, Zf1-3 (zinc finger domains 1, 2 and 3 are blue; acidic domain (AcD) is yellow; and Matrin 3 domain (MH3) is
orange. (C) Model summarising the emerging interpretation of information on CIZ1 in Xist seeded assemblies at Xi.
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et al., 2021; Rodermund et al., 2021). Surprisingly, the number of
Xist foci increased in differentiating embryonic stem cells (ESCs)
when repeat E was deleted, which implicates repeat E in the integrity
or stability of Xist pairs (Pandya-Jones et al., 2020). In experiments
where CIZ1 is depleted, Xist pairs remain largely intact arguing
against a role for CIZ1 (Rodermund et al., 2021), even though it is
itself a homodimeric entity (Turvey et al., 2023). In fact, the bridging
entity remains enigmatic and could depend on RNA-RNA
interactions (Van Treeck et al., 2018) as on its own, repeat
E forms micrometer sized droplets (Pandya-Jones et al., 2020;
Ma et al., 2021).

Recently expression of Halo-tagged transgenes in XistMS2−GFP cells
followed by imaging with 3D-SIM, revealed 1:1 binding stoichiometry
between CIZ1 and Xist, and similar stoichiometry for other repeat E
binding proteins (CELF1, PTBP1, MATR3, TDP-43) (Pandya-Jones
et al., 2020;Markaki et al., 2021). However, unlike these other factors the
strong enrichment of endogenous CIZ1 around the Xi, detected by
immunofluorecence microscopy, appears to be inconsistent with 1:
1 stoichiometry across the whole assembly. As mixed RNA can drive
enlargement of CIZ1 networks in vitro and CIZ1 also has a propensity
for self-interaction (Sofi et al., 2022) we hypothesise that, while Xist
might specify where CIZ1 assemblies form in the nucleus, their
enlargement in somatic cells is amplified independently of Xist. This
idea is supported by a recent study which shows that SPEN, which
directly binds Xist repeat A, amplifies its abundance by forming
assemblies with other SPEN molecules driven by multivalent
interactions between their IDRs (Jachowicz et al., 2022).

Spatial distribution of CIZ1 within Xist-
nucleated assemblies

Although CIZ1 is normally recruited during the initiation phase of
XCI it is not required at this critical point in development, and CIZ1-
null mice develop normally (Ridings-Figueroa et al., 2017). A reliance
on CIZ1 for Xist retention becomes evident in the later maintenance
phase of XCI (Stewart et al., 2019), which is consistent with a delayed
requirement for the repeat E element (Pandya-Jones et al., 2020).
Despite this, focus has fallen on the precise order in which
CIZ1 and other repeat E binding proteins are recruited to the pre-
Xi during the initiation phase (Pandya-Jones et al., 2020; Markaki et al.,
2021). It has been postulated that CIZ1 forms a stable ‘core’ of the
supramolecular protein complexes (SMACs) that are nucleated by Xist,
because its dwell time at Xi, determined by fluorescence recovery after
photobleaching (FRAP) is by far the highest among the known Xist
repeat E proteins (Table 2) (Markaki et al., 2021). In the same study
CIZ1 concentration in Xist-SMACs did not fluctuate and remained

constant, unlike SPEN and CELF1 whose concentration gradually
increased (Pandya-Jones et al., 2020; Markaki et al., 2021). However,
questions remain about the nature and purpose of a putative ‘core’
structure. CIZ1’s repeat E-driven recruitment does not appear to
increase the local concentration of other repeat E-dependent protein
factors, as no CIZ1-dependent enrichment was found in ES cells, even
though it interacts with MATR3 and PTBP1 in co-
immunoprecipitation experiments (Strehle and Guttman, 2020).
Similarly in our unpublished observations CIZ1 does not enrich
SAF-A, PTBP1 or MATR3 in female fibroblasts, rather we noticed
an under representation of these proteins at sites of de novo
CIZ1 assemblies. Furthermore, CELF1, PTBP1, TDP-43 and
MATR3 interact with each other to form a heteromeric protein
assembly on repeat E and this assembly does not contain CIZ1
(Pandya-Jones et al., 2020), which suggests that distinct protein
assemblies could form on repeat E, possibly in dynamic equilibrium
with each other. Therefore, from the available data it is not clear that
CIZ1 forms a core, at least not one with a positive influence on other
factors. Conversely, limited data suggest that CIZ1 may form a
protective ‘shell’ or molecular shield (Mészáros et al., 2019) around
the Xi that excludes or includes soluble factors. When CIZ1-Xi
assemblies are destabilized by the over-expression of interfering
fragments (Turvey et al., 2023), or absent as in CIZ1-null cells
(Stewart et al., 2019), underlying chromatin becomes depleted of
PRC1-dependent ubiquitination of H2AK119. This might be driven
by inappropriate exposure of chromatin to deubiquitylating enzymes
(DUBs) is suggested because DUB inhibition abrogates the loss of
H2AK119ub in both experimental contexts (Turvey et al., 2023). These
data are beginning to argue that the CIZ1 in Xist-nucleated assemblies
becomes essential only in the later stages of XCI because its primary role
is to protect the status of chromatin that was established earlier.
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TABLE 2 Dwell time of repeat E proteins at the Xi and in the nucleoplasm
(Markaki et al., 2021).

Protein Nuclear (min/secs) Xi (min)

CIZ1 16.5 19.1

CELF1 56 1.7

PTBP1 1.4 1.8

SPEN 1.1 2.4
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