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Introduction: Gliomas, the most prevalent tumors of the central nervous system,
are known for their aggressive nature and poor prognosis. The heterogeneity
among gliomas leads to varying responses to the same treatments, even among
similar glioma types. In our study, we efferocytosis-related subtypes and explored
their characteristics in terms of immune landscape, intercellular communication,
and metabolic processes, ultimately elucidating their potential clinical implications.

Methods and Results: We first identified efferocytosis-related subtypes in Bulk
RNA-seq using the NMF algorithm. We then preliminarily demonstrated the
correlation of these subtypes with efferocytosis by examining enrichment scores
of cell death pathways, macrophage infiltration, and the expression of immune
ligands. Our analysis of single-cell RNA-seq data further supported the association
of these subtypes with efferocytosis. Through enrichment analysis, we found that
efferocytosis-related subtypes differ from other types of gliomas in terms of
immune landscape, intercellular communication, and substance metabolism.
Moreover, we found that the efferocytosis-related classification is a prognostic
factor with robust predictive performance by calculating the AUC values. We also
found that efferocytosis-related subtypes, when compared with other gliomas in
drug sensitivity, survival, and TIDE scores, show a clear link to the effectiveness of
chemotherapy, radiotherapy, and immunotherapy in glioma patients.

Discussion: We identified efferocytosis-related subtypes in gliomas by analyzing
the expression of 137 efferocytosis-associated genes, exploring their
characteristics in immune landscape, intercellular communication, metabolic
processes, and genomic variations. Moreover, we discovered that the
classification of efferocytosis-related subtypes has a strong prognostic
predictive power and holds potential significance in guiding clinical treatment.
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Introduction

Gliomas, the most predominant subtype of brain neoplasms,
constitute 23.3% of all central nervous system (CNS) tumors and
account for a substantial 78.3% of malignant CNS tumors (Molinaro
et al., 2019; Sung et al., 2021). Among all primary malignant tumors,
glioblastoma (GBM) exhibits the highest incidence, accounting for
approximately 48.6% of all gliomas (Sung et al., 2021). Given the
high-degree malignancy and aggressive invasiveness of glioblastoma,
the prognosis for patients with glioblastoma is poor. Even when
treated with the STUPP protocols and tumor-treating fields (TTF)
therapy, the median survival time (mOS) for patients remains a mere
15–18months (Stupp et al., 2005; Kotecha et al., 2023). The prognosis for
patients with LGG (Low-Grade Glioma) is generally more favorable. The
mOS for patients with grade II and grade III gliomas is 11 years and
3 years, respectively (Smoll et al., 2012). Currently, therapeutic approaches
for gliomas consist mainly of surgical resection, combined with
chemoradiotherapy, targeted therapy and TTF. The discovery of
immune-related targets and the observed effectiveness of
immunotherapy hold promising potential for the treatment of gliomas
(Yang et al., 2022). However, identical therapeutic approaches result in
variable treatment responses even among similarly categorized gliomas. A
retrospective study showed that bevacizumab can improve the prognosis
of patients with proneural subtype GBM or IDH wild-type GBM,
compared with those with other subtypes (Sandmann et al., 2015).
Additionally, clinical research indicates that the therapeutic efficacy of
pembrolizumab, an anti-programmed cell death protein 1 (PD1)
antibody, is confined to glioma patients with specific types of DNA
mismatch repair deficiencies (Yang et al., 2022). Therefore, with the
continuous advancement in oncological therapies, identifying appropriate
biomarkers to guide personalized treatment for glioma patients remains a
critical endeavor. Signatures based on transcriptomic data have been
developed and are used clinically, including the PAM50 classification for
breast cancer, and the Phillips and Verhaak classifications for glioma
(Phillips et al., 2006; Parker et al., 2009; Verhaak et al., 2010). Thus,
utilizing transcriptomic data to identify specific biomarkers or subtypes is
a feasible approach to guide treatment strategies.

During the progression of cancer, tumor cells can undergo various
forms of cell death, such as apoptosis, necroptosis, ferroptosis, and
pyroptosis, due tomutations, hypoxia, and treatments like radiotherapy
and chemotherapy (Chen et al., 2021). During apoptosis, cells release
the “find me” signal, such as C-X3-C motif chemokine ligand 1
(CX3CL1), to recruit macrophages. These macrophages then adhere
to ‘eat me’ signals on the apoptotic cells, including phosphatidylserine
and calreticulin, either directly or indirectly through mediators like
Protein S and growth arrest-specific protein (GAS6) (Boada-Romero
et al., 2020). This process is referred to as efferocytosis. Meanwhile,
normal cells suppress phagocytosis by macrophages through the
expression of ‘don’t eat me’ signals, such as CD47 and MHC-I.

The process of efferocytosis can help to create an immune-
suppresive microenvironment, thus assisting tumor immune escape
(Thorsson et al., 2018). The efferocytosis of apoptotic cells drives
macrophage M2 polarization and generates anti-inflammatory
mediators, thereby contributing to this immuno-suppressive
environment. Additionally, the products of non-infected apoptotic
cells are transported to recycling endosomes instead of MHC class
II-loading compartment, thus preventing the presentation of antigens
derived from apoptotic cells. In glioblastoma, blocking the MerTk

receptor, which binds to apoptotic cells via protein S/GAS6, can
induce a pro-inflammatory immune microenvironment and reduce
the infiltration of M2 macrophages within the tumor (Wu et al., 2018).
Additionally, combining anti-T-cell immunoglobulin mucin 3 (TIM3)
antibody, radiotherapy, and anti-PD-1 therapy has been shown to
enhance antitumor responses in mice (Kim et al., 2017). Therefore,
identifying gliomas with a high level of efferocytosis may aid in selecting
patients who could benefit from efferocytosis-targeted
immunotherapies, potentially improving their prognosis.

The aim of this study is to identify efferocytosis-related subtypes in
gliomas through transcriptomic data analysis and elucidate their
distinctive features in terms of immune landscape, intercellular
communication, substance metabolism and genomic variation.
Furthermore, our research also analyzes the correlation between the
efferocytosis-related classification and patient prognosis, as well as the
efficacy of radiotherapy and immunotherapy, aiming to provide novel
insights for guiding personalized treatment and prognostic prediction.
An overview of our study’s workflow can be found in Figure 1.

Materials and methods

Data collection and processing

The Cancer Genome Atlas (TCGA) and the Chinese Glioma
Genome Atlas (CGGA) provided comprehensive datasets that include
copy number variation (CNV), transcriptome sequencing, somatic
mutations and clinical information (Zhao et al., 2021). We retrieved a
dataset from Synapse, comprising bulk and single-cell transcriptomic
data from eight paired glioma patient samples (accessible at Synapse:
syn22257780) (Johnson et al., 2021). The immune-related data used in
this study, including immune molecules and TCR Shannon, were
obtained from the Supplementary Material of the publication ‘The
Immune Landscape of Cancer (available at https://doi.org/10.1016/j.
immuni.2018.03.023) (Thorsson et al., 2018). The Gene-Expression
Omnibus (GEO) database also provided microarray gene expression
data and clinical records for three glioma datasets (Rembrandt,
Gravendeel, and Kamoun cohorts). Patients with a survival duration
of less than 30 days were intentionally excluded from the analysis. To
evaluate relative gene expression in gliomas, we converted raw count
transcriptome data into transcripts per million (TPM) values.

Identification of the efferocytosis-related
subtype in glioma

137 efferocytosis-related genes (ERGs) were extracted fromprevious
reviews (Supplementary Table S1) (Boada-Romero et al., 2020; Doran
and Yurdagul, 2020). Subtypes were identified using unsupervised non-
negative matrix factorization (NMF) algorithm in TCGA dataset
(Gaujoux and Seoighe, 2010). The optimal number of clusters was
determined by the first value that the cophenetic coefficients start
decreasing according to the ‘NMF’ R package. Survival differences
among patients with different glioma subtypes were analyzed using
Cox regression analysis and visualized through Kaplan-Meier (KM)
survival curves. The Timer2.0 web server (accessible at http://timer.
cistrome.org/) was used to evaluate the degree ofmacrophage infiltration
differences between different glioma subtypes (Li et al., 2020).
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Selection of method for classifying samples
in external datasets

We divided the TCGA dataset into training and test sets at a 70:
30 ratio using the ‘caret’ package. The training set was then trained
using a suite of methods including PAM, Random Forest, SVM,
Boruta, XGBoost, Lasso regression, and univariate Cox analysis.
Subsequently, we predicted the test set to compute the area under the
curve (AUC) values.

Processing and analysis of single-cell RNA
sequencing data

The SCTransform function in the ‘Seurat’ package was used to
normalize counts for each glioma sample. Then the ‘Harmony’
package was applied to integrate the different samples following
principal component analysis (PCA). For dimensional reduction
and visualization, we utilized Uniform Manifold Approximation
and Projection (UMAP). The primary cell types of the single-cell
transcriptomic dataset were annotated following the original
authors’ classification (Johnson et al., 2021). The ‘CellChat’
package was used to analyze intercellular communication in
C1 and C2 (Jin et al., 2021). We applied Gene Set Enrichment
Analysis (GSEA) to evaluate pathway enrichment differences
between the C1 and C2 subtypes within the same cell type.

Functional enrichment analysis

To identify differentially expressed genes (DEGs) between C1 and
C2, the R package ‘Deseq2′ was used (log2FC > 1 and p <0.05). The
‘ClusterProfiler’ package was used to annotate the function of DEGs
using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analyses (Yu et al., 2012). We also applied GSEA to
explore regulatory differences in GO gene sets and KEGG pathways

between C1 and C2. The ClueGO plugin in Cytoscape was utilized to
simplify and visualize the pathways enriched in the C1 subtype as
determined by GSEA (Bindea et al., 2009).

Evaluation of the immune landscape

The ESTIMATE score, stromal score, and immune score of each
glioma sample were calculated using the ‘Estimate’ package (Yoshihara
et al., 2013). We obtained a list of 75 immunomodulatory genes
previously summarized in the literature (Thorsson et al., 2018). The
results from the Tumor Immune Estimation Resource (TIMER) and
CIBERSORT-ABSwere used to assess the infiltration of various types of
immune cells in gliomas. The Exclusion and Dysfunction scores of
TCGA dataset were downloaded from the Tumor Immune
Dysfunction and Exclusion (TIDE) website (accessible at http://tide.
dfci.harvard.edu) (Jiang et al., 2018).

Assessment of intercellular communication

Drawing on established methods for constructing immune
networks, we developed immune regulation networks for C1 and
C2 subtypes as follows. We began by selecting 41 ligands and
receptors from a list of 75 immunomodulatory genes. Human
protein-protein interaction data were then retrieved via CellChat to
identify all genes that could interact with these 41 ligands and receptors
as candidates. Next, we classified the expression levels of these genes
within the TCGA dataset into high, medium, or low categories. Genes
were entered into the immune network if at least 66% of samples
showed mid or high expression levels. We then calculated a
concordance index for each interacting pair as
[(‘high’,’high’)+(‘low’,’low’)]/[(‘low’,’high’)+(‘high’,’low’)], with edges
having a concordance index >1 being included in the network.
Isolated nodes were ultimately removed to refine the network.
Cytoscape was utilized to visualize the immune network. To identify

FIGURE 1
Flow chart showing the study procedure.
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hub immune molecules in the C1 immune network, we applied the
Maximal Clique Centrality (MCC) andDegree algorithms. Intercellular
communication at the single-cell level between C1 and C2 subtypes was
analyzed using the ’’compareInteractions’’ and ’’netVisual_
diffInteraction’’ functions from the ‘CellChat’ package.

Analysis of metabolism-related pathways

Seven pivotal metabolic pathways were curated from the literature
and an additional four pathways related to energy metabolism were
retrieved from the Molecular Signatures Database (MsigDB) to
evaluate the energy metabolism of different subtypes (Peng et al.,
2018; Yu et al., 2021). Gene Set Variation Analysis (GSVA) was then
conducted to assess the enrichment of these 11 pathways across the
subtypes (Hanzelmann et al., 2013).

Genome analysis of different efferocytosis-
related subtypes

Copy number segment (CNV) data downloaded from TCGA
were utilized to identify CNV regions in gliomas via the GISTIC
2.0 pipeline. Mutation variation data for glioma was analyzed and
visualized using the R package ‘maftools’. The predicted
microsatellite instability (MSI) scores were calculated in the
website http://tide.dfci.harvard.edu.

Association between efferocytosis-related
subtype and sensitivity to antineoplastic
drugs

The imputed sensitivity score of 545 antineoplastic drugs from
Cancer Therapeutics Response Portal (CTRP) for each glioma
sample was calculated using the ‘OncoPredict’ package (Maeser
et al., 2021). Additionally, we compared the imputed sensitivity
score of eight chemotherapy regimens recommended in glioma
treatment guidelines, which include six drugs, between the
C1 and C2 clusters (Nabors et al., 2020). Correlations between
the efferocytosis-related subtype and the imputed sensitivity score
were analyzed via point-biserial correlation analysis.

Association between different subtypes and
immune checkpoint blockade (ICB) therapy

The TIDE score was calculated to estimate the response of
patients to ICB therapy (accessible at http://tide.dfci.harvard.edu)
(Jiang et al., 2018). Patients with a TIDE score greater than 0 are
classified as non-responders to ICB therapy, whereas those with a
score below 0 are considered likely to respond.

Establishing and validating a nomogram

First, univariate Cox regression analysis was applied to determine
the prognostic clinicopathological features of gliomas. Then,multivariate

Cox regression was used to identify independent prognostic factors from
these identified clinicopathological features. Independent prognostic
factors were used to create a nomogram with the ‘rms’ R package.
The predictive accuracy of the nomogram and other clinical features in
the CGGA325, andCGGA693 datasets was assessed by the Area Under
the Curve (AUC) using the ‘timeROC’ package.

Statistical analysis

Data analysis and visualization were carried out using R software,
version 4.0.4. The Wilcoxon rank-sum and Kruskal–Wallis rank sum
tests were used to compare the continuous variables not fitting a normal
distribution, including the TMB, CNV burden, MSI, immune score, and
stromal score.We utilized the Chi-square test to compare the proportions
of responders and non-responders to ICB therapy between the C1 and
C2 clusters.

Results

Identification of efferocytosis-related
subtype

After analyzing the cophenetic coefficient plot, we determined
that K = 2 represented the optimal cluster number (Figures 2A–C).
The glioma patients were divided into two efferocytosis patterns,
termed Cluster 1 (C1) and Cluster 2 (C2). C1 and C2 gliomas were
well separated in the three-dimensional PCA plot, indicating the
feasibility of the clustering strategies (Figure 2D). The KM survival
plot showed that the median survival time was shorter for C1 than
for C2, indicating that the C1 subtype is associated with a poorer
prognosis (Figure 2E). We further explored the association with
efferocytosis in C1 and C2 cluster by performing GSEA for cell
death pathways, analyzing macrophage infiltration, and
measuring the expression levels of immune-related ligands.
GSEA revealed that upregulation of 4 cell death-related
pathways (apoptosis, pyroptosis, ferroptosis, and necroptosis)
in the C1 cluster, suggesting that various forms of cell death
may be occurring within gliomas of this cluster (Figure 2F).
Macrophage immune infiltration analysis revealed that the
C1 cluster exhibits a higher level of macrophage infiltration
compared to the C2 subtype, encompassing all macrophage
states including M0, M1, and M2 (Figure 2G). However,
contradictory findings on monocyte infiltration were observed
across various computational methods. The results from xCell and
CIBERSORT-ABS suggest increased infiltration in the C1 cluster;
however, CIBERSORT-RELATIVE detected no significant
differences between the clusters. On the other hand,
QUANTISEQ identified a higher degree of monocyte
infiltration in the C2 cluster. Figures 2H,I shows an elevation
in the expression levels of both stimulatory and inhibitory
immune ligands in C1. Our analysis indicates that C1 is
characterized by the activation of cell death pathways, marked
by a significant increase in macrophage infiltration, a rise in the
expression of immunosuppressive ligands and a worse prognosis.
Based on these findings, we consider C1 as the glioma subtype
associated with the process of efferocytosis.
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Partitioning around medoid (PAM) method
as the optimal method for predicting patient
subtypes

We trained models using a dataset constructed from the expression
matrix of efferocytosis-related genes, subsequently using thesemodels to

predict subtypes in a test set. After evaluating the AUC values of various
methods, we discovered the PAMmethod’s exceptional performance in
predicting glioma subtypes, achieving an AUC of 0.973, significantly
outperforming other methods (Figure 3A). Consequently, we employed
the PAM method for subtype classification in other datasets, ensuring
the accuracy and reliability of our predictions.

FIGURE 2
Identification of an efferocytosis-related glioma subtype in the TCGA cohort. (A, B) The cophenetic and dispersion coefficients of the NMF
algorithm. (C)Connectivity matrix for glioma patients in the TCGA cohort by NFMwhen K = 2. (D) Three-dimensional PCA plot showing the distribution of
C1 and C2. (E) Kaplan–Meier curve for patients in C1 and C2. (F) GSEA of 4 cell death pathway (apoptosis, ferroptosis, necroptosis, and pyroptosis). (G)
Macrophage infiltration in C1 and C2. (H, I) The expression of inhibitory and stimulatory immune ligands in C1 and C2. *p <0.05, **p <0.01,
***p <0.001 and ****p <0.001, ns, no significance.
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Single-cell transcriptomic analysis reveals a
stronger association between C1 and
efferocytosis

We utilized the PAM method to predict subtypes for eight
samples in the Synapse dataset, classifying five as C1 subtype and
the remaining three as C2 subtype. Subsequent dimension
reduction and analysis of single-cell transcriptomes were
performed. The UMAP plot clearly delineated the diverse
cellular landscapes of C1 and C2 subtypes (Figures 3B,C).
Single-cell GSEA enrichment analysis revealed an upregulation

in apoptotic pathways in tumor and granulocyte, as well as
ferroptosis pathways in macrophages and neutrophils within the
C1 subtype, suggesting various types of cell death occurring
(Figures 3D–F). However, we did not observe a significant
upregulation in pyroptosis and necroptosis pathways was not
observed. CellChat analysis indicated that efferocytosis-related
protein interactions were predominantly found in the C1
(Figure 3G). In comparing the macrophages/microglia between
C1 and C2 subtypes, we observed a significant increase in the
expression of inhibitory immune ligands in the macrophages/
microglia of the C1 subtype, along with a rising trend in the

FIGURE 3
Single-Cell transcriptomic analysis of C1 and C2. (A) A bar plot comparing the AUC values of seven distinct predictive methods applied to a test set
for patient classifying. (B, C) UMAP plot showing the distribution of cells inC1 and C2. (D, E, F) GSEA of cell death pathway (apoptosis, ferroptosis,
necroptosis, and pyroptosis) for tumor cells, macrophages/microglia and granulocyte. (G) Efferocytosis-related intercellular communication in C1 and
C2. (H) The expression of inhibitory and stimulatory immune ligands, and marker of M1 and M2 in macrophages/microglia of C1 and C2.
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markers of M2-type macrophages. These findings suggest that the
macrophages/microglia in the C1 subtype tend to exhibit
characteristics of M2-type macrophages (Figure 3H). From a
single-cell perspective, this finding further emphasizes the
C1 subtype’s strong association with the efferocytosis process.

Functional differences between C1 and C2

According to the ‘Deseq2′ analysis, C1 exhibited upregulation of
2,796 genes and downregulation of 1,295 genes compared to C2. GO
enrichment analysis showed that the DEGs were most enriched in the
gene sets associated with intercellular communication (orange labels),

transmembrane transport (yellow labels), immune biological process
(red labels), and matrix (green labels) (Figure 4A). Immune-related
pathways were largely associated with adaptive immunity and T cell
activity. Similarly, The results of KEGG enrichment analysis revealed
the enrichment of DEGs in pathways related to immunity (red labels),
intercellular communication (orange labels), andmatrix (green labels)
(Figure 4B). Additionally, we found that DEGs were also enriched in
pathways related to inflammatory diseases (blue labels) and infectious
diseases (purple labels), suggesting that similar biological processes
associated with inflammatory and infectious diseases are also
occurring in the C1 subtype. To explore the upregulated biological
pathways in the C1, we conducted a GSEA. In the KEGG pathway
analysis, the C1 subtype predominantly showed upregulation in

FIGURE 4
Functional differences between C1 and C2. (A, B) GO and KEGG enrichment analysis based on DEGs. (C, D, E, F) The simplified top 50 pathways
ranked by Normalized Enrichment Score (NES) of the KEGG gene set. (E, F) the simplified top 50 pathways ranked by NES of the GO gene set. Category:
orange - intercellular communication; yellow - transmembrane transport; red - immune biological process; green -matrix; blue - inflammatory diseases;
purple - infectious diseases.
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immunobiological processes, intercellular communication, innate
immunity, inflammatory diseases, and infectious diseases, similar
to the pathways earlier (Figures 4C,D). In our GO pathway
analysis, we observed upregulation in immune activation-related
pathways, including adaptive and innate immunity, as well as
pathways involving CD4+ T cell activation, T cell proliferation, and
chemotaxis of monocytes and neutrophils (Figures 4E,F). Notably,
there was an upregulation in pathways that negatively regulate
immune responses in the C1. This means that both activation and

downregulation of the immune response are occurring
simultaneously in the C1 subtype.

Comparing the immune landscapes of
C1 and C2 subtypes

Previous results suggest significant immunobiological
distinctions between the C1 and C2. To further explore these

FIGURE 5
Differences in the immune landscape between C1 and C2. (A–D)Comparison of the stromal score, immune score, Estimate score, and tumor purity
between C1 and C2. (E, F) The infiltration of immune cells in C1 and C2 calculated by TIMER and CIBERSORT-ABS. (G) The expression of
75 immunomodulatory genes in C1 and C2. (H–J)Comparsion of the TCR shannon (H), Exclusion score (I) and Dysfunction score (J) between C1 and C2.
*p <0.05, **p <0.01, ***p <0.001 and ****p <0.001. ns, no significance.
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differences in the immune landscape, we first applied the
ESTIMATE algorithm. The results indicated higher immune
scores, stromal scores, and overall Estimate scores in the C1,
coupled with a lower tumor purity, suggesting a richer

composition of immune and stromal cells in C1 (Figures 5A–D).
Subsequent assessments using TIMER and CIBERSORT-ABS
revealed variations in immune cell composition. The TIMER
analysis revealed elevated infiltration of macrophages, CD8+

FIGURE 6
Differences in intercellular communication and substance metabolism between C1 and C2 subtypes. (A) Immune network of C1 and C2. (B) The
3 hub genes identified by MCC and Degree method. (C) The interactions strength of C1 and C2 at the single-cell level. (D) Differences in communication
strength between different cell types in C1 and C2, with red indicating increased interaction and blue indicating decreased interaction. (E, F) Comparison
of GSVA enrichment scores for seven metabolism-related pathways and four energy metabolism pathways between C1 and C2. (G, H) GSEA of
glycolysis pathway for tumor cells and macrophages/microglia. *p <0.05, **p <0.01, ***p <0.001 and ****p <0.001. ns, no significance.
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T cells, B cells, dendritic cells, and neutrophils in C1, with the
exception of CD4+ T cells (Figure 5E). CIBERSORT indicated an
elevation in antigen-presenting cells (APCs), immunosuppressive
cells (like Regulatory T cells (Tregs) and M2 macrophages), and
immune-promoting cells (such as CD8+ T cells and
M1 macrophages), but showed a reduction in NK cell infiltration
(Figure 5F). Both algorithms largely aligned, except for CD4+ T cells,
where TIMER indicated less infiltration in C1 compared to
CIBERSORT. Analysis of immune molecular expression
demonstrated that most immune molecules in C1, both
stimulatory and inhibitory, were expressed at higher levels than
in C2 (Figure 5G). Despite the upregulation of immune activation
pathways, increased infiltration of pro-inflammatory immune cells,
and elevated levels of some stimulatory immune molecules in C1,
the prognosis for patients in this cluster remains relatively poor. To
investigate this, we compared TCR shannon (reflecting TCR
diversity), Exclusion scores, and Dysfunction scores between
C1 and C2 (Figures 5H–J). The findings revealed higher TCR
shannon and Dysfunction scores in C1, but lower Exclusion
scores, suggesting that T cells in C1 gliomas, while diverse and
capable of recognizing various tumor antigens, have an impaired
ability to eradicate tumor cells.

Intercellular communication analysis across
subtypes

Pathway enrichment analysis strongly indicated differences in
intercellular communication between C1 and C2, prompting us to
compare their intercellular communication. In analyzing the immune
molecular networks of these subtypes, we noted that C1 presented a
larger network, suggesting more frequent interactions among its
immune molecules and enhanced cellular communication
(Figure 6A). By applying MCC and Degree algorithms to analyze
hub genes and their intersections, we identified CCL5, TGFB1, and
IL4 as key regulators within the C1’s immune network (Figure 6B).
Single-cell level assessments confirmed the greater strength of
intercellular interactions in C1 compared to C2 (Figure 6C).
Figure 6D further elucidates the enhanced interactions between
various cell types, notably between tumor cells and macrophages,
showing increased activity from tumor cells and reduced influence of
macrophages in C1. In comparing the cell communication pathways
between subtypes, we observedmarked differences: C1 predominantly
participates in 27 signaling pathways, while C2 is involved in
35 different pathways (Supplementary Figure S1).

Differences in metabolic pathways between
C1 and C2 subtypes

In our previous analysis, we found differences in substance
transport pathways between C1 and C2 subtypes and speculated
that macrophage phagocytosis of apoptotic cells alters the tumor
metabolism, thereby affecting patient prognosis. Furthermore, the
literature about efferocytosis repeatedly emphasizes the link between
efferocytosis and metabolic reprogramming, impacting the tumor
microenvironment (Boada-Romero et al., 2020; Doran and
Yurdagul, 2020; Tajbakhsh et al., 2021). For instance, it is noted that

phagocytic cells, after engulfing dead cells, can enhance glycolysis and
release lactate; they can also facilitate the conversion of cholesterol to
oxysterols, promoting the resolution of inflammation (Morioka et al.,
2018; Viaud et al., 2018). Therefore, we continued to study the changes
in metabolic pathways between the C1 and C2 subtypes, providing
a basis for the application of targeted metabolic drugs to the
C1 subtype. Our findings indicated that C1 had higher
enrichment scores in most substance metabolism pathways but
had lower scores in the energy integration metabolism pathway
compared to C2 (Figure 6E). Considering energy metabolism’s
crucial role in cancer development, four additional energy-related
pathways from Molecular Signatures Database (MsigDB) were
analyzed to assess the bioenergetic profiles of the glioma
subtypes (Bi et al., 2020; Yu et al., 2021). We observed an
upregulation in glycolysis, the pentose phosphate pathway, and
fatty acid oxidation pathways in C1, while glutamine metabolism
was comparatively downregulated (Figure 6F). Studies shown that
reversing glycolysis can induce apoptosis and sensitivity to reactive
oxygen species, which is a promising direction for treating gliomas
(Caniglia et al., 2021). Moreover, it has been shown in previous
research that inhibiting glycolysis in macrophages can suppress
efferocytosis, suggesting that targeting glycolysis may represent a
novel therapeutic approach (Morioka et al., 2018). We utilized
GSEA at the single-cell level to investigate glycolytic pathway changes
in tumor cells and macrophages/microglia. The results indicated an
upregulation of glycolysis in both of them, which may offer fresh
insights into efferocytosis-targeted therapy (Figures 6G,H).

Genome-wide characteristics of different
glioma subtypes

Prior research indicates that immune cells can induce genomic
instability in the tumor genome through immunoediting
(O’Donnell et al., 2019). Given potential immune
microenvironment differences between C1 and C2, we
investigated genomic variations between these clusters. We
observed that the TMB, CNV burden and MSI were all
markedly higher in C1 than C2, indicating greater genomic
instability in the C1 (Figures 7A–C). Further comparison of
somatic mutation genes between C1 and C2 revealed a higher
mutation frequency of PTEN, EGFR, and TTN in C1, while IDH,
CIC, and FUBP1 mutations were more frequent in C2 (Figure 7F).
The oncoplot illustrates the top 20 genes with the highest
mutational frequency in C1 and C2 (Figures 7D,E).
Additionally, our findings indicate that within ten pathways
associated with tumorigenesis, mutations in the RTK-RAS,
PI3K, Hippo, Cell cycle, and WNT pathways are more
prevalent in C1 (Figure 7G). We also examined CNVs and
found that amplifications in chromosome segment 7p11.2 and
deletions in 9p21.3 occurred with the highest frequency in C1.
C2 exhibited the highest frequency of deletions in chromosome
segments 9p21.3, 12q14.1, and 19q13.42 (Figures 7H,I).
Subsequent differential analysis revealed that 423 genes were
significantly amplified, and 281 genes were deleted in
C1 compared to C2 (Figure 7J). Among these CNVs, EGFR and
CDNK2A were the most significantly amplified and deleted,
respectively. Our analysis revealed distinct genomic
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characteristics between C1 and C2 subtypes, suggesting a potential
link to efferocytosis.

Correlation between the clusters and
sensitivity to antineoplastic drugs

The imputed sensitivity score of 545 antineoplastic drugs against
623 samples in the TCGA cohorts was calculated using the

‘OncoPredict’ package. Correlation analysis showed that 46 drugs
were associated with glioma subtypes (Figure 8A). C1 was relatively
resistant to 18 of these drugs and relatively sensitive to the other 28.
The 18 drugs to which C1 was relatively resistant targeted a wide
range of non-specific molecular entities. Additionally, C1 was
relatively sensitive to drugs that targeted BRAF mutation (PLX-
4720, dabrafenib and GDC-0879), the PI3K pathway (TGX-221, IC-
87114 and AZD6482), HMG-CoA reductase (lovastatin and
fluvastatin), and HSP90 (tanespimycin and tanespimycin). By

FIGURE 7
The genome characteristics of C1 and C2. (A–C) The TMB (A), CNV burden (B), and MSI (C) levels of C1 and C2. (D, E) Oncoplot showing the top
20 mutations with the highest frequency in C1 and C2. (F) Differential analysis of mutation frequency between C1 and C2. (G) Comparison of gene
mutations in oncogenic pathways. (H–I) The distribution of CNV in C1 and C2. (J) Differences in CNV between C1 and C2. *p <0.05, **p <0.01,
***p <0.001 and ****p <0.001. ns, no significance.
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calculating the drug sensitivity score of the eight regimens included
in guideline for gliomas, we found that C1 was more sensitive to
procarbazine, vincristine, etoposide, and the combination of
carboplatin and etoposide, but resistant to temozolomide,
carboplatin, vorinostat, and the combination of vorinostat and
carboplatin (Figure 8B).

The relationship between radiotherapy and
patient prognosis in different subtypes

Due to the limited number of certain subtypes in specific groups,
which prevented meaningful survival analysis, we combined data
sets from TCGA, CGGA 693, and CGGA 325 for our analysis. KM

FIGURE 8
Association between the efferocytosis-related classification and the efficacy of chemoradiotherapy and ICB therapy. (A) Correlation between the
efferocytosis-related classification and the imputed sensitivity score of 46 drugs. (B) The imputed sensitivity score of drugs included in the guidelines for
glioma treatment in C1 and C2. (C–D) The KM curves for C1 (C) and C2 (D)who received and did not receive radiotherapy. (E) Forest plot showing the risk
coefficients for radiotherapy in patients of C1, C1+age≤50, C1+males, C1+MGMT promoter methylationpatients, C2+age>50 and C2+grade IV
gliomas group. (F) The TIDE scores of patients with C1 and C2. (F) The proportion of responders among patients with C1 and C2. (G) Compassion of TNB
levels between C1 and C2. *p <0.05, **p <0.01, ***p <0.001 and ****p <0.001. ns, no significance.
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survival analysis suggests that the C2 subgroup’s exposure to
radiotherapy is associated with a shortened median survival
(Figure 8D), while no such relationship was found for the
C1 subgroup (Figure 8C). To further explore the link between
radiotherapy and survival times in the C1 and C2 subgroups, we
stratified glioma patients by clinicopathological characteristics. Our
findings reveal that in the C1, older patients or those with grade IV
gliomas experienced a prolongation in median survival following
radiotherapy (Figure 8E). Conversely, C2 patients under 50 years
old, males, or those with MGMT promoter methylation were found
to have a shortened median survival post-radiotherapy (Figure 8E).

Relationship between efferocytosis-related
subtype and the response to ICB

Using the TIDE website, we calculated the TIDE score for each
sample. Compared to C2, C1 had a higher TIDE score, suggesting it
had a poorer response to ICB (Figure 8F). Those with a TIDE score
below 0 were categorized as ICB responders, and the proportion of
responders was lower in the C1 than in the C2 (Figure 8G). As TMB
is used as a biomarker for ICB therapy in some cancers, gliomas with
a high TMB have been shown to have a poor response to ICB
therapy (Samstein et al., 2019). Our findings of higher TMB levels in
C1 support this prediction. Furthermore, our research has shown
that C1 exhibits a higher tumor neoantigen burden (TNB),
suggesting that a lower quantity of tumor neoantigens may not
be the primary reason for the poorer immune response in the C1
(Figure 8H).

Prognostic prediction accuracy of
efferocytosis-related subtype classification

The worse prognosis of C1 compared to C2 suggests that
efferocytosis-related subtype classification may have potential for
prognostic prediction. We applied the PAM method to classify
samples from five datasets (CGGA 325, CGGA 693, Rembrandt,
Gravendeel, and Kamoun cohorts) and subsequently conducted
survival analyses. The results consistently showed a poorer
prognosis for C1 across all datasets (Supplementary Figure S2).
In the TCGA, CGGA 693, and CGGA 325 cohorts, where clinical
data are more comprehensive, the efferocytosis-related subtype
classifications demonstrated good predictive accuracy, with AUC
values of 0.758, 0.733, and 0.784, respectively (Figures 9A–C). The
AUC values for other clinicopathological features in prognostic
prediction are also illustrated in the figures for comparison.
Although this classification is not the most predictive among all
clinicopathological features, it still offers significant supplementary
insight for assessing patient prognosis.

Establishment and validation of a nomogram
model

To better predict patient outcomes, we constructed a prognostic
model by integrating efferocytosis-related classifications with
clinical-pathological characteristics. Initially, we performed a

univariate Cox regression analysis on all variables. The results of
univariate Cox regression revealed that prognostic factors for
gliomas include cluster, age, grade, classification, MGMT
promoter status, chromosome 1p/19q codeletion status, and IDH
mutation status (Table 1). Then a multivariate Cox regression
analysis identified cluster, age, grade, IDH mutation status, and
chromosome 1p/19q codeletion as distinct and independent
prognostic factors for gliomas. (Table 1). Afterwards, we train a
nomogram model utilizing the factors considered as independent
prognostic factors (Figure 9D). This nomogram model was then
applied to predict the prognosis of samples in the CGGA 693 and
CGGA 325 datasets, calculating the AUC values at 1, 3, and 5-year
intervals. The AUC values of the nomogram were 0.811, 0.843, and
0.833 for the CGGA_693 cohort and 0.773, 0.866, and 0.898 for the
CGGA_325 cohort, respectively (Figures 9E,H). Furthermore, the
calibration curve exhibited a high degree of overlap between
predicted and actual survival probabilities (Figures 9F,I). In
comparison, the nomogram’s AUC values with those of other
characteristics for 1, 3, and 5-year prognostic predictions, as
shown in the line charts, indicate that the nomogram model has
a significantly stronger prognostic prediction capability than other
features (Figures 9G,J). The above results demonstrate that the
nomogram exhibits robust prognostic capabilities.

Discussion

Recent studies have elucidated the role of efferocytosis in
tumorigenesis and progression, especially in shaping the immune
microenvironment (Zhou et al., 2020; Tajbakhsh et al., 2021). For
instance, the overexpression of TAM receptors, efferocytosis-related
proteins, has been shown to play a pivotal role in macrophage
polarization. (Nguyen et al., 2014). Moreover, the use of
immunotherapy to block efferocytosis has demonstrated excellent
anti-tumor efficacy. Blocking the MerTK receptor in combination
with radiotherapy promotes tumor regression and prolongs survival
in mice (Wu et al., 2018). Drugs targeting TIM3 are presently under
assessment in phase 1 clinical trials (Wu et al., 2018). Due to tumor
heterogeneity, immunotherapy may not be suitable for all patients
with gliomas. Consequently, numerous studies are currently
underway to identify new biomarkers that can keep pace with
the rapidly evolving treatment modalities (Arrieta et al., 2023).
Our research is also dedicatedly focused on this objective.

Our research aggregated 137 efferocytosi-related genes and
analyzed their expression within the TCGA dataset using the
NMF algorithm, leading to the identification of two distinct
subtypes. Further investigation into enrichment analysis,
macrophage infiltration, and immune ligand expression revealed
that the C1 subtype is characterized by enhanced cell death
pathways, increased macrophage presence, and elevated
immunosuppressive ligands, implicating its strong link with
efferocytosis. In our analysis, we observed that different
algorithms yielded varying proportions for monocyte infiltration.
The reason for this may be due to CIBERSORT-RELATIVE and
QUANTISEQ calculated the relative infiltration of immune cells,
while CIBERSORT-ABS and xCell calculated the absolute
quantification of immune cells; therefore, this might account for
the contradictory results obtained using different algorithms (Sturm

Frontiers in Cell and Developmental Biology frontiersin.org13

Gao et al. 10.3389/fcell.2023.1295891

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1295891


et al., 2019). Additionally, we observed that in the C1 subtype, there
is also an increase in the expression of stimulatory immune ligands.
We hypothesize two potential reasons for these findings. The
occurrence of inflammation could induced by factors like

hypoxia or oxidative stress in tumors (Hanahan and Weinberg,
2011). We speculate that in the C1 subtype, this tumor-induced
inflammation may initiate cell death and damage, triggering the
efferocytosis process and leading to elevated levels of inhibitory

FIGURE 9
Establishment and verification of a nomogram. (A–C) The ROC plot showing the predictive accuracy of efferocytosis-related classification and
clinicopathological characteristics in the TCGA, CGGA 693, and CGGA 325 datasets. (D) Establishment of the nomogram model. (E, H) The ROC plot
showing the predictive accuracy of efferocytosis-related classification the CGGA 693, and CGGA 325 datasets within 1-, 3-, and 5-year. (F, I) Calibration
curve showing the concordance of predicted 1-, 3-, and 5-year survival probability and actual probability for the CGGA 693, and CGGA 325 datasets.
(G, J) Line chart showing the AUC value of the nomogram, efferocytosis-related classification and clinicopathological characteristics in the TCGA, CGGA
693, and CGGA 325 datasets.
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immune ligands. The results of our enrichment analysis indicate a
concurrent upregulation of immune stimulatory and suppressive
pathways in C1, potentially support our hypothesis. Another
hypothesis we are considering is that the increased expression of
stimulatory ligands may be due to other forms of cell death. Our
GSEA enrichment analysis suggests that tumor cells undergo death
not only through apoptosis, a relatively gentle process, but also
through other forms of cell death, which can provoke a stronger
immune response. Necroptosis is known to elicit marked
inflammatory responses and adaptive immunity (Lomphithak
et al., 2021). And cells release the pro-inflammatory mediators,
IL-1β and IL18, when undergoing pyroptosis (Xia et al., 2019).
Therefore, the dual upregulation of immune ligands in the C1 could
be partially explained by these complex interactions during tumor
development.

To investigate the relationship between C1 and efferocytosis at a
single-cell level, we classified samples with paired scRNA-seq data
into C1 and C2 using the PAM method. We discovered an
upregulation in the apoptotic pathways of tumor cells and
neutrophils in C1, as well as an increase in the ferroptosis
pathways of macrophages/microglia and neutrophils, confirming
the presence of multiple forms of cell death in C1. However, our
analysis did not reveal any upregulation in pyroptosis and
necroptosis pathways across different cell types, a phenomenon
that needs further investigation to understand its specific causes.
Through CellChat analysis, we discovered that interactions between
efferocytosis-related proteins occurred exclusively in the C1 subtype.
Additionally, macrophages in C1 exhibited a bias towards the
M2 state. Integrating bulk RNA-seq with scRNA-seq analysis, we
infer a more robust relationship between C1 and efferocytosis than
C2. Five protein-protein interactions within C1 were identified via
CellChat analysis. ICAM1 acts as an efferocytosis receptor, while the
GAS6 interaction with the TAM receptor facilitates macrophage
binding to apoptotic cells (Geng et al., 2017; Wiesolek et al., 2020).
THBS1 is linked to efferocytosis in lung injury and IL10 production
(Zhao et al., 2014). In atherosclerosis, LRP expression reduces
efferocytosis (Doddapattar et al., 2022). These findings may

inspire new approaches to glioma immunotherapy by targeting
efferocytosis.

To explore the potential mechanisms underlying prognostic
differences between the C1 and C2, we undertook a functional
enrichment analysis, which revealed differences in intercellular
communication, transmembrane transport, immune processes
and matrix composition. The pathways of intercellular
communication were mainly enriched in cytokine-cytokine
receptor interactions and cell adhesion. Based on our previous
analysis, C1 is accompanied by an increase in both
immunosuppressive and stimulatory ligands, partially explaining
the upregulation of cytokine-cytokine receptor interaction
pathways. Moreover, the ‘eat me’ signals produced by apoptotic
cells, promoting the binding of tumor cells and macrophages, which
could partly explain the upregulation of the cell adhesion pathway in
C1 (Tajbakhsh et al., 2021). Additionally, the degradation of
apoptotic cells by macrophages results in the production of
abundant metabolic substances, such as amino acids, lipids, and
nucleotides (Han and Ravichandran, 2011). The cellular transport of
these metabolites might elucidate the differential activation of
transmembrane transport pathways between the two subtypes.
Moreover, the transportation of these substances can affect
tumor progression and thus potentially impact tumor
microenvironment. For example, glycolysis is enhanced in
macrophages following the phagocytosis of apoptosis cells,
resulting in the production of lactate (Morioka et al., 2018).
Studies have shown that the lactate efflux creates a slightly acidic
microenvironment and promotes tumor progression via various
forms, such as migration, invasion, and angiogenesis (Certo et al.,
2021). Thus, efferocytosis might influence patient prognosis by
altering the transport of metabolites, thereby changing the tumor
microenvironment. The immune-related pathways elevated in
C1 predominantly involve the activation and downregulation of
immune response, in addition to the stimulation, proliferation, and
differentiation of T cells. Recent studies have demonstrated that
efferocytosis plays a pivotal role in modulating the differentiation of
T cells, potentially impacting immune responses. After macrophages

TABLE 1 The result of univariate and multivariate Cox analyses in the TCGA dataset.

Variables Univariate analysis Multivariate analysis

HR (95% CI) p-value HR (95% CI) p-value

Age (Continuous) 1.070 (1.059–1.081) <0.001 1.045 (1.032–1.058) <0.001

Gender (Female vs Male) 1.108 (0.837–1.466) 0.471 - -

WHO grade

II 1.000 - 1 -

III 3.313 (2.230–4.922) <0.001 1.848 (1.212–2.818) 0.00431

IV 21.717 (14.037–33.598) <0.001 3.245 (1.864–5.648) <0.001

2021 WHO classification

O, IDH mutant and 1p/19q codeletion 1.000 - 1 -

A, IDH mutant 1.699 (1.019–2.833) <0.001 1 -

GBM, IDH wild type 14.228 (8.787–23.040) <0.001 1 -

IDH mutation (Wild type vs Mutant) 9.936 (7.338–13.451) <0.001 1.877 (1.143–3.084) 0.0129

Chromosome 1p/19q status (Non-codel vs Codel) 4.249 (2.677–6.746) <0.001 1.990 (1.171–3.382) 0.0110

MGMTp status (Unmethylated vs Methylated) 3.245 (2.443–4.311) <0.001 1.259 (0.902–1.757) 0.17634

Cluster (C1 vs C2) 5.583 (4.147–7.516) <0.001 1.841 (1.244–2.724) 0.00228
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phagocytose apoptotic cells, the released anti-inflammatory
mediators can promote Treg differentiation (Blander, 2017). In
turn, Tregs can enhance efferocytosis, facilitating anti-
inflammatory tissue repair (Proto et al., 2018). Moreover, steroids
synthesized by macrophages during efferocytosis can induce
differentiation of both Tregs and Th2 cells (Proto et al., 2018).
Our analysis of pathway enrichment has further developed our
initial hypothesis regarding the simultaneous increase in stimulatory
and inhibitory immune molecules in C1. We assume that
C1 undergo various forms of cellular damage and death,
triggering an immune response. The products and cytokines of
apoptotic tumor cells attract monocytes to the tumor. After
macrophages phagocytose apoptotic tumor cells, they not only
alter the tumor microenvironment’s metabolism through
digestion and substance transport but also present antigens to
T cells, thereby stimulating T cell activation and proliferation.
However, these macrophages also release immunosuppressive
ligands after ingesting apoptotic cells, leading to Th2 and Treg
differentiation and suppressing the immune response. This may
finally result in a complicated immune microenvironment with
simultaneous upregulation of inflammatory and anti-
inflammatory pathways. Based on the results of bioinformatics
analysis, we have made the above assumptions, which still
require further experimental validation.

To better understand the two subtypes, we conducted a
further assessment of the differences in the tumor
microenvironments of C1 and C2. The result of ESTIMATE
indicates a higher infiltration of immune and stromal cells and
lower tumor purity in C1 compared to C2. The increased
infiltration of stromal and immune cells may be due to the
“find me” signals from apoptotic cells and the chemokines
released by macrophage (Wei et al., 2020). Immune cells
infiltration analysis indicated an increase in both
immunosuppressive and immune-stimulatory cells in C1. The
rise in immunosuppressive cells may account for the poorer
prognosis observed in C1 patients. However, the elevated
numbers of anti-tumor cells, including M1 macrophages and
CD8+ T cells, did not improve patient survival. Though
C1 exhibited increased infiltration of CD8+ T cells, serveral
studies indicate their dysfunction, leading to an inadequate
production of cytotoxic factors during tumor development and
progression. (Wei et al., 2020). Our analysis of T cells supports
this view. We observed that C1 has higher TCR Shannon and
Dysfunction scores and lower Exclusion scores compared to C2.
This suggests that T cells recognize tumor antigens and infiltrate
the tumor, but their ability to kill tumor cells is impaired. As for
M1 macrophages, a study showed that M1 macrophages promote
tumorigenesis by creating a mutagenic microenvironment
(Salmaninejad et al., 2019). Moreover, a research suggests that
TNF-α, which is released by M1 type macrophages, plays a role in
facilitating tumor progression (Gong et al., 2022). This may partly
explain the worse prognosis for the C1 subtype, which is
associated with a higher infiltration of M1 macrophages.
Further immune landscape analysis support our initial
hypothesis: the C1 subtype exists within a complex immune
microenvironment characterized by simultaneous immune
suppression and activation. Additionally, we discovered
dysfunction in T cells within C1, which might explain why

increased CD8+ T cell infiltration in gliomas does not translate
into better patient prognosis.

Intercellular communication analysis revealed a larger and more
active immune network in C1 compared to C2. Our study identified
CCL5, TGFB1, and IL4 as hub genes within the C1 immune
network. Macrophages release TGF-β after phagocytosing
apoptotic cells, promoting tissue repair, while IL4 is essential for
their phagocytic function (Fadok et al., 1998; Bosurgi et al., 2017).
The relationship between CCL5 and efferocytosis remains unclear
and warrants further investigation. Exploring how these hub genes
interact with efferocytosis and pursuing the development of drugs to
suppress this mechanism might offer a new avenue for research and
therapy. Additionally, our single-cell level CellChat analysis of
C1 and C2 also showed enhanced intercellular communication,
consistent with our enrichment analysis results.

Our analysis revealed a distinct metabolic alteration in
C1 compared to C2, characterized by a downregulation of energy
metabolism pathways and an upregulation of other substance
metabolism pathways. This finding implies that C1 may have
undergone metabolic reprogramming, reducing its energy
requirements and enhancing other forms of metabolism to
produce materials necessary for cell proliferation (Bi et al., 2020).
Moreover, discovered that the C1 predominantly relies on glycolysis,
the pentose phosphate pathway, and fatty acid oxidation for energy
metabolism, while reducing its dependency on glutamine/glutamate.
Additionally, at the single-cell level, we observed an upregulation of
the glycolysis pathway in both tumor cells and macrophages/
microglia within C1. Furthermore, a study has shown that
inhibiting glycolysis in phagocytic cells can suppress efferocytosis
(Morioka et al., 2018). Research also indicates that blocking the
lactate released by efferocytotic cells induces IL10 expression in bone
marrow-derived macrophages, leading to anti-inflammatory effects
(Morioka et al., 2018). Therefore, employing glycolysis-reversing
drugs treating C1 patient could not only suppress efferocytosis
within the tumor but also reduce the tumor cells’ energy supply,
making it a promising therapeutic approach (Caniglia et al., 2021).

On a genomic level, our findings indicate that C1 exhibits
elevated TMB, CNV burden, and MSI, suggesting a pronounced
genomic instability within this subtype. Cells with genomic
instability are more prone to either evolution or death (Sulkowski
et al., 2020). We speculate that in the C1 subtype, the death of
genomically unstable tumor cells might be a contributing factor
triggering efferocytosis. And a study has shown that under
immunological pressure, tumor cells can undergo immune
editing, leading to genomic alterations (O’Donnell et al., 2019).
Changes in the immune microenvironment induced by efferocytosis
might play a role in affecting the genomic instability within the C1.
Moreover, we observed a higher mutation frequency of EGFR,
PTEN, and TTN in C1, along with chromosomal amplification at
7p11.2 and deletion at 9p21.3, which involve genes EGFR and
CDKN2A respectively. Compared to C2, C1 exhibited higher
mutation frequencies in pathways including WNT, RTK-RAS,
PI3K, Hippo, and the Cell Cycle. The relationship between these
genetic aberrations and efferocytosis remains unreported,
highlighting an area ripe for further exploration.

Next, we explored the clinical application of the efferocytosis-
related subtype classification. OncoPredict results indicated that
C1 patients were more sensitive to procanazine, vincristine,

Frontiers in Cell and Developmental Biology frontiersin.org16

Gao et al. 10.3389/fcell.2023.1295891

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1295891


etoposide, and carboplatin, and the carboplatin-etoposide
combination. While C2 patients showed greater sensitivity to
temozolomide, carboplatin, vorinostat, and the carboplatin-
vorinostat combination. Therefore, among the eight regimens
recommended in the guideline, Procarbazine + CCNU +
Vincristine (PCV) regimens and etoposide may be most
suitable for C1 patients, while temozolomide, carboplatin,
vorinostat, and the vorinostat-carboplatin combination might
be more beneficial for C2 patients. Moreover, the efferocytosis-
related subtype classification correlated with the imputed
sensitivity score of certain antineoplastic drugs. Compared to
C2 patients, antineoplastic drugs targeting BRAF mutations, the
PI3K pathways, and HSP90 seemed more effective in C1 patients.
This effectiveness may be attributed to the higher frequency of
mutations in the PI3K pathway involvement in C1, thereby
supporting the accuracy of this predictive method.

Our study also revealed differences in the efficacy of radiotherapy
between C1 and C2 patients. We observed that C1 patients did not
show a significant difference in survival time with or without
radiotherapy. In contrast, C2 patients who underwent radiotherapy
had a shorter median survival time compared to those who did not
receive it. This may be due to C2 patients’ relative sensitivity to
temozolomide and the adverse side effects of radiotherapy. Moreover,
research indicates that tissue damage from radiation therapy may
promote tumor progression during tissue repair (Nolan et al., 2022).
Particularly in the case of C2 tumors, which have a lower level of
efferocytosis, the damage from radiotherapy might trigger
efferocytosis, releasing tissue repair factors that may further
facilitate tumor growth and spread. However, this finding was not
observed in patients with different clinicopathological characteristics.
C2 patients under 50 years old, males, or those withMGMT promoter
methylation, had a shortened median survival post-radiotherapy.
Conversely, C1 patients over 50 or those with grade IV gliomas
benefited from radiotherapy. Considering the high sensitivity of
patients with MGMT promoter methylation to temozolomide, we
speculate that in C2, the tumor growth could be control by
temozolomide. The addition of radiotherapy might lead to adverse
side effects, potentially worsening the prognosis for these C2 patients.
However, the underlying mechanism accounting for the differences in
radiotherapy efficacy for other subgroups based on different clinical
characteristics remains unclear. Further research is needed to explore
the results.

Moreover, the efferocytosis-related classification was associated
with the response to ICB. C1 patients exhibited a poorer response to
ICB. Our findings regarding the immune landscape indicate T-cell
dysfunction in the C1. This dysfunction may likely contribute to the
poor response of C1 patients to ICB treatment. Consequently,
C1 patients might require the combination treatment discussed
earlier, integrating radiotherapy with drugs blocking TIM3 and
PD-1, to stimulate the tumor’s internal immune response,
activate T-cells, and kill tumor cells (Kim et al., 2017). Such a
combination therapy holds promise as a potential strategy for
C1 patients.

Given the poorer prognosis of C1 patients compared to those in
C2, we speculate that this classification could be a robust prognostic
indicator. By classifying samples from five datasets using PAM, we
consistently observed that the prognosis for C1 was worse than for
C2, confirming the classification’s predictive capability across

external datasets. When comparing this classification’s prognostic
accuracy against clinical features of glioma in the TCGA, CGGA
693, and CGGA 325 datasets, it demonstrated good performance.
However, in some datasets, its predictive accuracy was not as high as
glioma grade or WHO classification, yet it may still serves as a
valuable supplementary prognostic factor. We then developed a
more powerful nomogram model based on the independent
prognostic factors identified in the TCGA dataset, aiming to
enhance the accuracy of patient prognosis prediction. The
nomogram demonstrated robust predictive ability in the CGGA
693 and CGGA 325 datasets. We hope that this nomogram will
provide a better understanding of the prognosis for glioma patients.

There are several limitations to our study. First, some results
were obtained via a previously published algorithm. Although these
algorithms applied are widely recognized, further experimental
verification is required to support the results. Second, this was a
retrospective study based on data available in a public databases.
Thus, a prospective study is needed to validate the findings. Finally,
our understanding of the relationship between efferocytosis-related
subtypes and the immune landscape, intercellular communication,
substance metabolism and genomics is currently hypothetical.
Future work will require extensive experimentation to explore the
regulatory mechanisms of efferocytosis within these subtypes and
their impact on the tumor microenvironment. Identifying related
targets and developing drugs to improve prognosis for these patients
is our next goal.

Conclusion

In this study, we defined two subtypes of glioma based on the
expression of 137 efferocytosis-related genes. We explored the
differences between these two subtypes in terms of immune
landscape, intercellular communication, substance metabolism,
and genomic variations, and hypothesized their connections with
efferocytosis. Furthermore, we discovered that the classification of
efferocytosis-related subtypes not only serves as a robust prognostic
indicator but also correlates with the efficacy of radiotherapy,
chemotherapy, and ICB treatments. While our research may not
be fully comprehensive, we hope the findings of our study can assist
clinical decision-making for patients with glioma and provide novel
insights for research, contributing to the development of
personalized therapy.
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