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1 Introduction

Endothelial cells (EC), lining the vasculature, serve essential functions fundamental for
normal physiology of every organ and the organism as a whole. EC are the first line of
exposure to toxic xenobiotics as well as endogenously generated molecules causing cell
damage and aging. Cell senescence, the irreversible arrest of cell proliferation caused by
organelle damage, is an underpinning of aging responsible for tissue changes leading to age-
related diseases (Fossel et al., 2022). Cell senescence is characterized by senescence-
associated gene expression, and pro-inflammatory senescence-associated secretory
phenotype (SASP), which negatively affects the function of non-senescent cells
(Gorgoulis et al., 2019; Yousefzadeh et al., 2021; Fossel et al., 2022). The role of EC
senescence in aging and disease has remained insufficiently understood. Even in mice it has
not been established how EC senescence underlies the pathophysiology of aging by affecting
other components of the vascular system, the perivascular/smooth muscle cells, as well as the
parenchyma. In distinct organs, EC are exposed to different microenvironmental pressures
and may have different rates of replication and self-renewal. In organs undergoing constant
remodeling, such as adipose tissues (AT) and skeletal muscle, high proliferative pressure on
EC is expected to result in telomere attrition occurring sooner than in other organs.
However, reactive oxygen species and other metabolism byproducts may also expedite
senescence of EC irrespective of their proliferation in other organs, such as the brain. The
resulting dysfunction of EC leads to conduit vessel disease and obstruction to flow, as well as
rarefaction of the microvasculature. This may set the stage for cardiovascular diseases and
neurodegeneration (Xu et al., 2022). Understanding the changes taking place in EC
undergoing senescence in the brain and other organs is essential for the development of
new approaches to intervene in metabolic and degenerative diseases.

A key protein protecting cells from senescence is Telomerase, an enzyme coded for by the
TERT gene. TERT is required for telomere maintenance, protection from genotoxic stress,
and mitochondrial function (Sahin and Depinho, 2010). TERT is active in stem cells but is
turned off in somatic cells, which permits telomere erosion and cell aging. Telomere-
independent functions of TERT have also surfaced and remain incompletely understood
(Stewart et al., 2002; Romaniuk et al., 2019). In addition to global effects on nuclear
transcriptome and physiology (Park et al., 2009), recent reports have revealed an important
function of TERT in the mitochondria (Ale-Agha et al., 2021; Ait-Aissa et al., 2022).
Evidence is accumulating that re-activation of telomerase can have beneficial anti-aging
effects (Nazari-Shafti and Cooke, 2015). In mice, TERT gene therapy delays aging and
increases longevity (Bernardes de Jesus et al., 2012; Jaijyan et al., 2022). In a clinically relevant
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FIGURE 1
TERT knockout in mouse endothelial cells (EC). (A), Breeding scheme to generate mice with mG+ and TERT-EC-KO (fl/fl) or WT (+/+) Tie2+ cells
(EC) and other cells mT+. EC senescence and dysfunction caused by TERT loss was assessed in 8-month-old female mice fed chow (C) or HCD (H). Cells
isolated from subcutaneous AT (SAT), intraperitoneal visceral AT (VAT), quadricep and gastrocnemius skeletal muscle (M) were subjected to FACS sorting
to isolate mG+ cells for mRNA extraction. (B), Gene expression distribution. X axis: mouse groups (also shown on the right). Parameters of box plots
are indicated, includingmaximum, upper quartile, mid-value, lower quartile andminimum. (C), Principal component analysis result (mouse groups shown
on the right). (D), IPA analysis focusing on senescence-related pathways identifies genes upregulated in mG+ cells from SAT of TERT-EC-KO mice fed
chow compared tomG+ cells from SAT ofWTmice fed chow. (E), IPA analysis focusing on EC dysfunction-related pathways identifies genes upregulated
in mG+ cells from SAT of TERT-EC-KO mice fed chow compared to mG+ cells from SAT of WT mice fed chow.
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study, induction of TERT decreased DNA damage activation and
inflammatory signaling in human colon organoids from patients
with inflammatory bowel disease (Chakravarti et al., 2021).
Moreover, TERT gene therapy enhances learning pathway
networks in human neurons (Shim et al., 2021).

The lack of studies on organ specificity of EC senescence
mechanisms and repercussions is in part due to laboratory mice
being inappropriate as a model to study replicative senescence
(Eckel-Mahan et al., 2020). Laboratory mice are not an ideal
model to access consequences of replicative senescence. Humans
are born with telomeres in a 10–15 kb range and TERT is inactivated
in humans postnatally. In contrast, mice of the commonly used
C57BL/6 background are born with telomeres of over 50 kb and
continue to express TERT in somatic cells (Kipling and Cooke,
1990). Thus, laboratory mice are more resistant to replicative
senescence and stem cell depletion. Indeed, disruption of
telomere function in EC has been shown to induce premature
senescence (Barinda et al., 2020; Bloom et al., 2023). As we have
previously reported, knockout (KO) of TERT in perivascular cells of
Pdgfra+ or Pdgfrb+ lineage accelerates the onset of cell senescence in
adipose tissue (AT) of mice fed high-calorie diet (HCD), which
predisposes them to type-2 diabetes (Gao et al., 2020). Here, we have
generated mice with TERT gene knock-out (KO) specifically in EC.
We performed genomic analysis of EC from AT and skeletal muscle
by both total RNA and single cell (sc) RNA sequencing (RNAseq).
We also challenged the mice with HCD to determine its effect on EC
senescence and function. Preliminary analysis of data deposited
online is presented. Our results suggest that TERT has genome-wide
telomere-independent effects on cell transcriptome and physiology
(Fossel et al., 2022).

2 Materials and methods

We crossedmice expressing Cre under the control of EC-specific
Tie2e promoter (Kano et al., 2003) with TERTfl/fl mice also carrying
the mTmG reporter (Muzumdar et al., 2007) to generate mice with
TERT gene knock-out (KO) specifically in EC (Figure 1A). Tie2e-
cre; TERTfl/fl; mTmG (TERT-EC-KO) and control Tie2e-cre;
TERT+/+; mTmG (WT) mice were fed HCD (D12451, 45 kcal%
Fat, Research Diets) from 1 to 8 months of age. Cells isolated from
subcutaneous AT (SAT), intraperitoneal visceral AT (VAT), as well
as combined quadricep and gastrocnemius skeletal muscles (M),
were subjected to FACS sorting to isolate mG+ (GFP+) cells (EC) for
mRNA extraction by using protocols we described previously (Gao
et al., 2018; Gao et al., 2021; Daquinag et al., 2022; Gao et al., 2022).
Data quality control confirmed 2.3 × 107 or more reads for all
samples. At least 91.5% of reads for all samples were mapped to the
mouse genome sequence database. To compare gene expression
levels in the tissues, the distribution of gene expression levels and
expected number of fragments per kilobase of transcript sequence
per millions base pairs sequenced (FPKM) was assessed. Gene
expression distribution was found comparable among all samples
(Figure 1B). RNA-seq confirmed TERT gene expression loss in mG+
cells of TERT-EC-KO mice. In another experiment, we fed cohorts
of TERT-EC-KO and control WT male mice with high-calorie diet
from 2 to 7 months of age. Cells were then isolated from SAT and
visceral VAT and subjected to single cell RNA sequencing (scRNA-

seq) using methodology that we previously described (Gao et al.,
2020). Single cell capture and library construction were performed
with the Chromium Single Cell 3ʹ Reagent Kit v3.1. Barcoded single-
cell gel beads were loaded onto Chromium Next GEM ChipG (PN-
1000120). After running on 10X Chromium Single Cell Controller,
gel beads-in-emulsion (GEMs) were generated. The barcoded and
full-length cDNAs were produced after incubation of the GEMs and
amplified via PCR. Library was qualified by Agilent Bioanalyzer
2,100 and quantified by real-time PCR on QuantStudio3.
Sequencing was done with Illumina NextSeq 550 System using
High Output Kit v2.5 (50,000 reads per cell). The Cell Ranger™
Single Cell Software Suite v.3.1.0 was used to perform bioinformatic
analysis. The reads were aligned to the mouse transcriptome
reference (mm10, Ensembl 93) with STAR (Dobin et al., 2013).
Raw read count tables were analyzed using the Seurat (v3.1.1)
pipeline (Butler et al., 2018) on R platform (3.5.2).
FindVariableGenes was used to calculate the principal
components. Cell clusters were identified using the Shared
Nearest Neighbor (SNN) algorithm with a resolution parameter
0.8. UMAP clusters of cells were identified based on the first
10 principal components and feature plots were displayed with
the log (raw read count +1) of gene/cell on UMAP.

3 Data analysis

Total RNA-seq was performed on mRNA from mG+ cells (EC)
of TERT-EC-KO and control WT mice. Principal component
analysis (PCA) was used to evaluate inter-sample differences. As
expected, this revealed close similarity of gene expression in AT of
WT and TERT-EC-KO mice and in skeletal muscle of WT and
TERT-EC-KO mice (Figure 1C). HCD feeding resulted in a marked
change of gene expression (Figure 1C). Notably, gene expression in
SAT from TERT-EC-KO mice fed chow, compared to WT mice fed
chow, was found to be more similar to that in SAT of mice fed HCD
(Figure 1C).

We then performed Ingenuity Pathway Analysis (QIAGEN IPA)
on FACS-sorted AT and muscle EC. Analysis of genes upregulated
in mG+ cells of TERT-EC-KO mice demonstrated that a number of
key genes implicated in cell senescence were induced in SAT
(Figure 1D). This included CDKN1A, CDKN1B, CDKN2A,
CDKN2B, TP53, as well as SASP genes IL6 and CXCL8.
Induction of pathways mediating senescence was also observed in
VAT and skeletal muscle of TERT-EC-KO mice (data not shown).
IPA analysis also revealed upregulation of genes specifically
implicated in EC dysfunction, including APOE, AGT, ANO1,
MYC5AC, and NOTCH1 (Figure 1E). This was also apparent for
VAT, and less so for skeletal muscle, of TERT-EC-KO mice (data
not shown). IPA analysis of SAT from mice fed HCD revealed a
markedly higher level of upregulation of senescence effectors,
including CHEK1, p19Arf, and CDKN2A (Supplementary Figure
S1A) in additional to upregulation of endothelial dysfunction
pathways (Supplementary Figure S1B).

Finally, we assessed scRNAseq data from AT of TERT-EC-KO
andWTmice fed HCD. This analysis identified two sub-populations
of EC, as well as smooth muscle cells (SMC), adipose stromal cells
(ASC), as well as the distinct types of blood cells (Figures 2A, B).
UMAP cluster analysis revealed that SAT of TERT-EC-KOmice had
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a markedly increased presence of certain T-cell subtypes, while the
presence of one B-cell subtype was reduced (Supplementary Figure
S2). IPA analysis of EC revealed higher expression of senescence-

associated genes in EC of TERT-EC-KO AT (Figure 2C). These
included ATM, CHEK1, CHEK2, TP53, CDKN2A, as well as SASP
genes IL6 and CXCL8.

FIGURE 2
Single cell transcriptomics of adipose cells fromEC Tert KOmice. TERT-EC-KO andWT 7-month-oldmalemicewere fedHCD for 5 months prior to
cells isolation from SAT and VAT and RNAseq. (A), Integrated heatmap of combined RNAseq data with genes (left) identifying cell clusters designated on
top. ACS, adipose stromal cells; RBC, red blood cells; SMC, smooth muscle cells. (B), Regression UMAP clusters of combined KO and WT cells from SAT
and VAT generated based on the first 10 principal components displayed with the log (raw read count +1) of gene/cell. (C), Pathways upregulated in
SAT EC of EC-TERT KO mice fed chow identified in scRNAseq data by IPA analysis focusing on senescence-related pathways.
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The data, being consistent between total RNAseq and scRNAseq
experiments, demonstrate that the TERT-EC-KO mice are an
appropriate model of EC senescence. These mice can be used to
further characterize consequences of endothelial senescence and
develop models of aging/disease by subjecting these models to
vascular injury insults.
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