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Membrane contact sites (MCSs) are adjacent locations between themembranes of
two different organelles and play important roles in various physiological
processes, including cellular calcium and lipid signaling. In cancer research,
MCSs have been proposed to regulate tumor metabolism and fate,
contributing to tumor progression, and this function could be exploited for
tumor therapy. However, there is little evidence on how MCSs are involved in
cancer progression. In this review, we use extended synaptotagmins (E-Syts) as an
entry point to describe how MCSs affect cancer progression and may be used as
new diagnostic biomarkers. We then introduced the role of E-Syt and its related
pathways in calcium and lipid signaling, aiming to explain how MCSs affect tumor
proliferation, progression, metastasis, apoptosis, drug resistance, and treatment
through calcium and lipid signaling. Generally, this review will facilitate the
understanding of the complex contact biology of cancer cells.
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1 Introduction

Cancer is the second most important cause of death worldwide and is likely to overtake
ischemic heart disease as the leading cause by 2060 (Mattiuzzi and Lippi, 2019). For many
tumors, effective therapy is lacking, and novel treatment approaches are urgently needed.
MCSs are an underinvestigated research topic with the potential to identify new targets for
anticancer therapy. Therefore, this review seeks to compile the current knowledge and
explain potential future applications of MCSs.

The endoplasmic reticulum (ER) is a complex cellular network. The ER is involved in
endocytosis, exocytosis and, indeed, all membrane functions via vesicle transport. However,
these sites of vesicle transport exhibit only membrane contact without membrane fusion (Lee
et al., 2020). These contact sites are called MCSs, and they allow the direct exchange of
macromolecules. They also maintain stability between organelles and even intracellular
homeostasis, making them possibly exploitable for cancer treatment (Prinz et al., 2020).
However, the mechanism of MCSs in tumor metabolism is still unclear. This paper provides
theoretical support for the mechanisms by which MCSs and their related proteins affect cell
stability and tumor development.

MCSs mainly encompass endoplasmic reticulum-mitochondria (ER-M), endoplasmic
reticulum-plasma membrane (ER-PM), and endoplasmic reticulum-Golgi complex (ER-G)
interactions. Among these contacts, ER-PM contacts have been widely studied and are
ubiquitous in eukaryotic cells (Okeke et al., 2016). ER-PM contact sites were initially detected
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in muscle cells by electron microscopy in the 1950s (Porter and
Palade, 1957). The main locations of these MCSs are shown in
Figure 1.

Although ER-PM contacts have been recognized for a long time,
the molecular mechanisms that drive these contacts remain
unknown. Based on electron micrographs, the distance between
the ER and PM at contact sites was calculated to be 10–30 nm,
indicating the presence of a tether determining the unique distance
and function, which corresponds to an MCS (Orci et al., 2009;
Fernández-Busnadiego et al., 2015). Recently, extended
synaptotagmins (E-Syts) have been shown to be active in
regulating substance exchange at ER-PM contact sites (Quon and
Beh, 2015; Quon et al., 2018). E-Syts are endoplasmic reticulum
anchoring proteins that mediate connections between the ER and
PM. They also function as a link between the two membranes,
allowing substances to be transferred between them.

Synaptophysin (Syt) proteins and E-Syt proteins are related to
synaptic structure and function, but they have some similarities and
differences in localization and function. Syt proteins are localized
mainly at the synaptic terminals of neurons and participate in the
maturation and maintenance of neuronal synapses (Kochubey et al.,
2016; Nazir et al., 2018). E-Syt proteins are localized mainly on the
membrane of synaptic vesicles and exist as a part of the synaptic
vesicle membrane (Davies et al., 2023). E-Syt is typically present in
most synaptic structures, with only a few synapse types and
variations that may lack or have low expression levels of E-Syt
proteins (Davies et al., 2023). This difference may be related to the
specific functions and characteristics of synapses. The main function
of E-Syt is to maintain the structural integrity of synapses (Min et al.,
2007). E-Syt proteins can also be used as synaptic markers to help
researchers identify and locate synaptic structures. Overall, Syt and
E-Syt play different roles in synaptic function and structure. Syt is
mainly related to the process of synaptic vesicle release, while E-Syt
anchors the ER to other membrane structures and is mainly related
to the maintenance and labeling of synaptic structures (Ge et al.,
2022).

The cytoplasmic domains of E-Syts include the synaptic
mitochondrial lipid-binding protein (SMP) domain, five
C2 domains in E-Syt1, and three C2 domains in E-Syt2/3
(Maeda et al., 2013). The N-terminus and C-terminus of E-Syt
are both in the cytoplasm, and a transmembrane hairpin
structure anchors them to the endoplasmic reticulum. The
C2 domain mediates lipid-calcium binding. The N-terminal
C2 domain binds calcium ions and is involved in calcium-
dependent lipid binding and membrane contact. The second
C2 domain does not contain calcium. The third C2 domain is
important for the translocation of E-Syt proteins to the cell
membrane in response to increasing cytosolic calcium levels
and mediates their interactions with membranes rich in
phosphatidylinositol 4,5-diphosphate [PI(4,5)P2] (Fernández-
Busnadiego et al., 2015). The SMP domain is a barrel-shaped
internal glycerophospholipid binding domain. It has the ability to
bind to a diverse variety of lipids (Fernández-Busnadiego et al.,
2015). Generally, E-Syt1 and E-Syt2 have been found to be
involved in lipid transport between lipid vesicles in the
cytoplasm and lipid vesicles on cell membranes, including
those of the endoplasmic reticulum, Golgi apparatus, and
mitochondria (Fernández-Busnadiego et al., 2015). The

function of E-Syt3 is less studied, but it is also related to lipid
transport (Thallmair et al., 2023).

MCSs have been identified to regulate cancer cell metabolism
through a variety of activities and interactions (Prinz, 2014; Ciscato
et al., 2020). In this study, E-Syt was taken as an example to explain
how MCSs and their related proteins affect cell biology through
calcium and lipid signaling, thus regulating tumor metabolism, and
discuss the possibility of E-Syts becoming new tumor biomarkers in
the future.

2 Functions of E-Syt in membrane
contact sites

2.1 Calcium homeostasis (Figure 2)

ER-PM contacts mediate coupling in muscle cells and calcium
entry into cells via pathways known as store-operated Ca2+ entry
(SOCE) pathways (Davies et al., 2023). The SOCE pathway is an
ancient and widespread calcium signaling pathway supporting
calcium homeostasis that includes the STIM1 protein and Orai
channels. STIM1 is a protein located on the endoplasmic reticulum
membrane that can sense the status of intracellular calcium ion
stores. When the calcium concentration decreases,
STIM1 aggregates into clusters and moves to the region near the
plasmamembrane. ORAI1 is a protein located on the cell membrane
that is a component of the SOCE channel and can allow extracellular
calcium ions to enter the cell (Carrasco and Meyer, 2011). STIM-
ORAI interactions occur at MCSs.

In MCSs, the C2 domain of E-Syts is influenced by the
calcium concentration. The C2 domain has calcium affinity
and typically contains multiple calcium binding sites that
attract calcium ions to interact with them (Min et al., 2007).
In addition, the C2 domain helps E-Syt proteins form MCSs.
During this process, the interaction between the C2 domain of an
E-Syt protein and PI(4,5)P2 on the PM connects and anchors the
ER to the PM (Giordano et al., 2013; Doghman-Bouguerra and
Lalli, 2019). When E-Syt1, E-Syt2 and E-Syt3 form heterodimers,

FIGURE 1
The main locations of MCSs. ER contacts with other
membranous organelles and plasma membrane. It is shown that
nearly all other membranous organelles, as well as the plasma
membrane, have contact with the ER.
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these heterodimers can endow PI(4,5)P2 with the ability to
regulate calcium ion influx, which activates SOCE (Kang et al.,
2019). During this process, E-Syt proteins can form membrane
contact sites on the cell membrane as they form heterodimers.
These sites help to decrease the distance between cell membranes,
such as the endoplasmic reticulum membrane, and promote an
increase in the local concentration of PI(4,5)P2 (Giordano et al.,
2013). The increase in the concentration of PI (Porter and Palade,
1957; Okeke et al., 2016) P2 can regulate the activation of the
SOCE pathway (Chang and Liou, 2016). This effect includes
regulating the localization and aggregation of STIM1 by
interacting with it, thereby affecting the activation of the
SOCE pathway. It should be noted that the association
between E-Syt proteins and the SOCE pathway is still a topic
of active research, and the specific role of E-Syt3 in the SOCE
pathway is still unclear. Studies have confirmed that knocking out
E-Syt1 and E-Syt2 can inhibit the SOCE pathway and reduce the
aggregation of STIM1 (Woo et al., 2020). However, interestingly,
ER-PM connections were reduced in both HeLa and Jurkat T cells
with ESYT1 and ESYT2 deletions, while SOCE was only damaged
in Jurkat T cells. This indicates that the membrane binding
function of E-Systs is different from its role in SOCE (Woo

et al., 2020). This whole process facilitates and regulates calcium
homeostasis in the ER (Kang et al., 2019). The SOCE signaling
pathway is also involved in tumor progression, as we explain
below. In Figure 2, we show the relationship between E-Syt in
MCSs and the SOCE pathway.

2.2 Lipid transfer and stability

Another important role of E-Syts in MCSs is to regulate
membrane lipid stability. The SMP of E-Syts is a domain
involved in lipid storage and transfer. In 2020, three types of
yeast endoplasmic reticulum membrane proteins were reported,
namely, tricalcein-1p (Tcb1p), Tcb2p, and Tcb3p (Prinz et al.,
2020). They participate in ER-PM connections and material
transport and are specifically enriched in the cortical
endoplasmic reticulum. These three proteins are homologs of
E-Syts, with similar structural domains and N-terminal
hydrophobic regions, and they are cytoplasmic synaptic proteins
(Orci et al., 2009).

As stated above, the SMP of E-Syts is a structural domain
involved in lipid storage and transport (Fernández-Busnadiego
et al., 2015). The SMP domain is a type of lipid binding module
and is often found in proteins at membrane contact sites,
indicating that E-Syts can transfer lipids between the ER
membrane and the PM (Reinisch and De Camilli, 2016). The
SMP domain of E-Syts has a structure that is similar to that of
tubular lipid binding protein (TULIP) superfamily (Schauder
et al., 2014; Reinisch and De Camilli, 2016). TULIPs are also
involved in lipid storage and transport. Additionally, the SMP
domain is structurally similar to TULIP domains and shares
common functions in lipid storage and transport (Lupas et al.,
2021). Moreover, lipid transport proteins (LTPs) contain
relatively small hydrophobic cavities that can accommodate a
single lipid molecule (Laquitaine et al., 2006). However, the SMP
dimer in E-Syts forms a hydrophobic groove that can
accommodate four phospholipid molecules (Wong and Levine,
2017). These observations indicate that SMP dimers may serve as
a bridge for lipid transfer. Finally, Bian et al. (2019) combined
DNA origami technology with FRET-based lipid transfer to
demonstrate that the SMP domain of E-Syt1 is responsible for
the transfer of lipids between two membranes.

Similarly, lipids also function as second messengers in
signaling pathways that control cell survival, proliferation,
migration, and apoptosis. The SMP domain of E-Syts can
participate in lipid storage and regulate lipid homeostasis,
which also helps us to understand the ability of E-Syts to
regulate the growth, metastasis, energy supply and apoptosis
of tumor cells in the MCS from another perspective.

2.3 Coupling with other lipid transfer
proteins

The lipid transport capacity of E-Syts is bilateral and driven
by the lipid concentration (Orci et al., 2009). When intracellular
cytoplasmic calcium levels rise, E-Syt may be engaged in lipid
transport/exchange between the ER and PM. Different ER-

FIGURE 2
The relationship between E-Syt in MCS and SOCE pathway. First,
the C2 domain of E-Syt is influenced by calcium concentration. Then
E-Syt1, E-Syt2, and E-Syt3 form heterodimers. The interaction
between the C2 domain of E-Syts and PI (Porter and Palade,
1957; Okeke et al., 2016) P2 on PM connects and anchors ER onto PM,
forming MCS. These MCS help to narrow the distance between cell
membranes such as the EER membrane, thereby promoting an
increase in the local concentration of PI (Porter and Palade, 1957;
Okeke et al., 2016) P2. The increased concentration of PI (Porter and
Palade, 1957; Okeke et al., 2016) P2 can regulate the activation of the
SOCE pathway. Then, STIM1 aggregates into clusters andmoves to the
area near the plasma membrane. This aggregation activates the Orai
channel on the cell membrane to drive extracellular calcium influx.
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associated lipid transfer proteins form the ER-PM interaction
sites (Moser von Filseck and Drin, 2016; Tong et al., 2018; Burke,
2019). Therefore, the functions of E-Syts could be connected to
those of other LTPs, such as Nir2. In fact, in ER-PM contacts,
there is substantial functional coupling between E-Syts and Nir2
(Chang et al., 2013). In the absence of E-Syts, an increasing
cytoplasmic calcium level causes more Nir2 to be recruited into
the PM. During PI(4,5)P2 hydrolysis, Nir2 transports PA (the
phosphorylated product of DAG) from the PM to the ER to
recycle PA for phosphatidylinositol (PI) resynthesis in the ER
(Chang and Liou, 2016; Kim et al., 2016).

Therefore, the function of E-Syts in MCSs is to connect and
anchor the ER to the PM and regulate calcium homeostasis through
the SOCE pathway. In addition, the SMP domain orchestrates lipid
storage and transfer, which can also affect tumor growth. In
addition, E-Syts and Nir2 coordinate lipid resynthesis and
transport in the endoplasmic reticulum to maintain membrane
lipid homeostasis.

3 Research on membrane contact sites
in tumors

Several activities and interactions of MCSs in cancer cell
metabolism have been identified and described thus far (Ciscato
et al., 2020). Many MCS-related proteins, such as E-Syts, CERT,
STIM1, VDAC, and Orai, have been shown to influence cancer
progression and may be used as diagnostic markers (Gil-Hernández
et al., 2020). The involvement of SOCE in regulating calcium
signaling in various tumor progression were shown in Table 1.

3.1 Calcium signaling and tumor biology

3.1.1 SOCE activation participates in tumor
progression

The impact of calcium signaling on tumor progression has
been explored in several studies (Marchi and Pinton, 2016; Bong

and Monteith, 2018). Calcium promotes the development of
malignant behaviors by regulating cellular activities such as
proliferation, migration, and apoptosis resistance (Morciano
et al., 2018). This effect might be caused by dysregulation of
pumps and channels and the resulting unequal calcium
concentrations (Makena and Rao, 2020). Interestingly, several
molecules associated with calcium exchange, including SOCE and
calcium permeable transient receptor potential (TRP) channels,
have been linked to cancer progression and metastasis (Chen
et al., 2013; Yang et al., 2013).

Recently STIM1 and Orai1 have been shown to be
upregulated in thyroid cancer patient tissue samples as well as
in thyroid cancer cell lines compared with primary thyroid cells
(Asghar et al., 2021). In addition, clinically, STIM1 has been
found to be overexpressed in breast cancer, (Yang et al., 2017),
colorectal cancer, (Wang et al., 2015), and lung cancer, (Zhan
et al., 2015), and is associated with factors indicating poor
prognosis, such as increased tumor size. Moreover, Orai1 has
also been found to be overexpressed in esophageal cancer (Zhu
et al., 2014; Wang et al., 2017). Then, SOCE chemical inhibitors
and siRNAs targeting Orai1 and 2 have been found to inhibit
calcium uptake and inhibit cell proliferation and migration
(Singh et al., 2020). The SOCE is decreaed in
STIM1 knockdown and Orai1 knockdown thyroid cancer cells.
This resulted in decrease in thyroid cancer cells proliferation. In
xenograft zebrafish model, the STIM1 knockdown decreased
human thyroid tumor growth and also activated apoptosis
(Asghar et al., 2021).

In conclusion, when E-Syt1 and E-Syt2/3 form heterodimers in
cancer cells, these heterodimers can activate the SOCE pathway
and lead to massive calcium influx. Dysregulated calcium signaling
plays an important role in the uncontrolled growth and
development of tumors (Tremblay and Moss, 2016). In contrast,
knockdown of E-Syt1 or E-Syt2 affect the localization and
aggregation of STIM1, thereby affecting the activation of the
SOCE pathway (Woo et al., 2020). Figure 1 shows the
involvement of SOCE in regulating calcium signaling in various
tumor progression.

TABLE 1 The involvement of SOCE in regulating calcium signaling in various tumor progression.

Tumor Mechanism

Overexpression of STIM1 and Orai1 in esophageal epithelial cells and control of cell
proliferation. Zhu et al. (2014)

Silencing STIM1 inhibits cell proliferation and migration, and increases apoptosis by
induing G0/G1 arrest. Liu et al. (2015)

Both ORAI1 and STIM1 play a role in promoting survival and apoptosis resistance in
pancreatic adenocarcinoma cell lines. SiRNA-mediated knockdown of ORAI1 and/or
STIM1 increases apoptosis induced by the chemotherapy drugs 5-fluorouracil (5-FU)
and gemcitabine. Singh et al. (2020)

One of the key regulators of epithelial-mesenchymal transition (EMT) is TGF-β.
Previous reports have shown that it can induce EMT in breast epithelial cells. Chen
et al. (2017b) Calcium channel and of calcium signaling activity in the proliferation of
pancreatic cancer cells are considered to be mediated by TGF-βdownstream effectors of
signal transduction. Chow et al. (2008)

In breast cancer, elevated ORAI1 expression is a feature of basal-like breast cancers,
while elevated ORAI3 expression is a feature of luminal breast cancers. Azimi et al.
(2019)

SOCE inhibition blocks the activation of the COX-2/PGE2 pathway. After SOCE
inhibition, the proliferation and migration of breast cancer cells were inhibited.
Alqinyah et al. (2023)

STIM1 and Orai1 have been shown to be upregulated in thyroid cancer patient tissue
samples as well as in thyroid cancer cell lines compared with primary thyroid cells.
Asghar et al. (2021)

The SOCE is decreaed in STIM1 knockdown and Orai1 knockdown thyroid cancer
cells. This resulted in decrease in thyroid cancer cells proliferation. In xenograft
zebrafish model, the STIM1 knockdown decreaed human thyroid tumor growth and
also activated apoptosis. Asghar et al. (2021)

Overexpression of STIM1 in A549 non-small cell lung cancer (NSCLC) cells increases
cell proliferation. Moreover, calcium signaling is the first step in cisplatin-induced
apoptosis in NSCLC cells. Aung et al. (2009)

SOCE inhibition reduces cisplatin-dependent cell death. SOCE inhibition reduces the
expression of biomarkers specific for cisplatin-induced apoptosis. Gualdani et al.
(2019)
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3.1.2 Calcium shifts cancer cell metabolism toward
glycolysis

There are two pathways of glucose metabolism: mitochondrial
oxidative phosphorylation and glycolysis. Glycolysis is inhibited in
normal mammalian cells under aerobic conditions. However, tumor
cells have the ability to switch between the two energy metabolism
pathways, a phenomenon called the Warburg effect (Liberti and
Locasale, 2016). Even in oxygen-rich conditions, glycolysis is
activated in tumor cells, converting glucose into lactic acid to
produce ATP, and this state is characterized by rapid proliferation
and resistance to cell death. Glycolysis has long been considered a
major metabolic process of energy production and anabolic growth in
cancer cells (Porporato et al., 2018). Calcium plays an important role
in this metabolic transition (Bondarenko et al., 2014; Bittremieux
et al., 2016). Plasma membrane Ca2+ ATPase (PMCA) is closely
involved in intracellular calcium concentration control. It reduces the
calcium concentration in the cytoplasm not only by direct efflux but
also by controlling inositol-1,4,5-triphosphate (IP3R) formation and
reducing calcium release from the endoplasmic reticulum (Padányi
et al., 2016). However, E-Syt senses a decrease in intracellular or
endoplasmic reticulum calcium ion concentration in MCSs, which in
turn anchors with PI (Porter and Palade, 1957; Okeke et al., 2016) P2.

(Cortés et al., 2019; Dietz et al., 2022). The local concentration of PI
(Porter and Palade, 1957; Okeke et al., 2016) P2 increases, and after
decomposition, more IP3 is generated (Ehrlich et al., 2011; Chang and
Liou, 2016). IP3 binds to receptors (IP3R) on the endoplasmic
reticulum and initiates the release of calcium ions. In addition, an
increase in local concentration of PI (Porter and Palade, 1957; Okeke
et al., 2016) P2 can also activate the SOCE pathway and promote
extracellular calcium influx (Chen YJ. et al., 2017). In other words,
E-Syt, MCSs, SOCE and PMCA jointly regulate the intracellular
calcium concentration. High calcium concentration further
regulates the Warburg effect in tumor cells, resulting in
proliferation and resistance to death (Riera Leal et al., 2020). This
process is explained in Figure 3.

In recent years, cisplatin has beenwidely used as an anticancer drug
in clinical practice that exerts effects by inhibiting the activity of key
enzymes in the glycolysis pathway in tumor cells. However, overcoming
cisplatin toxicity and resistance has historically been a challenge in
tumor therapy. Due to the Warburg effect in tumor cells, Wang et al.
(2019) designed some new platinum compounds and synthesized a
triphenylphosphonium-modified terpyridine platinum (II) complex
(TTP). By inhibiting thioredoxin reductase (TrxR) in mitochondria
and the cytoplasm, TTP damages mitochondrial morphology and
function and simultaneously inhibits mitochondrial oxidative
phosphorylation and glycolysis, thus reducing the overall metabolic
level in tumor cells. Finally, it can inhibit the proliferation of tumor cells
and overcome cellular drug resistance.

3.2 Lipid signaling and tumor biology

After recognizing that calcium signaling and SOCE can regulate
the proliferation and metastasis of cells, we note that lipid
signaling—another major role of E-Syts in MCSs and involved in
regulating the stability of membrane lipids—also plays an important
role in malignant cell proliferation.

However, it is worth mentioning that although E-Syts play an
important role in lipid transport and membrane lipid stability in
neuronal synapses, their main function is not directly related to the
biological behavior of lipids themselves (Wang et al., 2023). First,
because membrane lipid molecules are components of synaptic
vesicles, their transport and release are related to the activity of
E-Syts (Giordano et al., 2020). Then, E-Syts participate in the
perception of extracellular matrix and cellular signal transduction
(He et al., 2022). In lipid droplet biology, E-synaptic proteins may
affect biological behaviors related to lipid droplets by regulating
intracellular signaling pathways. In addition, the interaction
between Syt protein and collagen may have an impact on lipid
droplet biology. These interactions may regulate the relationship
between extracellular matrix tissue and lipid droplets, affecting their
formation and function (Kim et al., 2009; Cohen et al., 2018).
Moreover, E-Syts play important roles in the changes in lipid
storage in cancer cell lipid droplets (Blücher and Stadler, 2017;
Enríquez-Cortina et al., 2017; Diaz-Aragon et al., 2019).

3.2.1 Uneven distribution of membrane lipids in
tumors

Lipids, because of their hydrophobicity, are the physical basis of
all living organisms (Nicolson, 2014). Lipids play a crucial role in cell

FIGURE 3
Calcium shift cancer metabolism to glycolysis. It has been shown
that even in oxygen-rich conditions, tumor cells are also actived in
glycolysis to produce ATP. It becauses that tumor cells have the ability,
called Warburg effect, to switch between mitochondrial
oxidative phosphorylation and glycolysis. In this whole process, E-Syt,
MCSs, SOCE and PMCA jointly regulate the intracellular calcium
concentration. High calcium concentration further regulates the
Warburg effect in tumor cells, resulting in proliferation and resistance
to death.
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proliferation. As cells proliferate, resynthesized lipids provide
phospholipid components for proliferation and are used to form
new mitotic membranes and organelle membranes. They also play
important roles as signaling molecules in a variety of cellular
activities (Cruz et al., 2019). However, due to the reprogramming
of lipid metabolism, the newly formed membrane structures have
different degrees of curvature and fluidity (Zhang et al., 2020). In
normal cells, E-Syt proteins help to ensure lipid homeostasis
between cell membranes and lipid vesicles. They may maintain
lipid homeostasis through interactions of lipids with different cell
membranes. Studies have confirmed that knockdown of E-Syt
proteins can affect lipid transport functions, especially cellular
processes related to lipid transport and lipid homeostasis (Saheki
et al., 2016). However, studies have shown that some tumor cells
may express high levels of E-Syts, leading to uneven or abnormal
lipid distribution (Sun et al., 2009; Saheki et al., 2016). The main
impacts of lipid structure are as follows.

First, lipid structure affects the curvature and tension of the
tumor cell membrane. Phospholipids, such as phosphatidylcholine
(PC), have a cylindrical shape dictated by the head-to-tail ratio and
spontaneously form a bilayer in water (van Meer and de Kroon,
2011). Phosphatidic acid (PA), phosphatidylethanolamine (PE),
phosphatidylserine (PS), and cholesterol (CL) are considered
conical lipids because they have small heads and distorted
membranes with negative curvature (Nicolson and Ash, 2014).
However, lysophosphatidylcholine (LPC) has a large head-to-tail
ratio, forming an inverted conical shape and resulting in positive
curvature of the membrane. These lipids affect the curvature and
tension of the membrane, lowering the energy needed for fusion and
vesicle transport (Frohman, 2015). In addition, differences in
membrane curvature and tension are involved in the processes of
endocytosis/exocytosis, cell division and cell motility, which are
closely related to tumor migration and invasion (Tsujita et al., 2021).
For example, malignant cells have lower plasma membrane tension
than normal cells, helping tumor cells offset their positive
membrane curvature to facilitate their migration and invasion
(Simunovic et al., 2019; Yesylevskyy et al., 2019).

The other factor is membrane fluidity. Lipid saturation is related to
fluidity. Saturated lipids are beneficial for the orderly synthesis of
membranes. Unsaturated lipids reduce this lipid accumulation and
increasemembrane fluidity (Nicolson andAsh, 2014). Dysregulation of
membrane lipids results in higher or lower levels of membrane lipids in
cancer cells than in normal cells, resulting in changes in membrane
fluidity (Peetla et al., 2013). Cells with a low membrane lipid content
have membranes that are more easily deformed and enter blood vessels
more easily (Hendrich and Michalak, 2003). In addition, membrane
lipids play an important role in multidrug resistance (MDR). Cancer
cells have been shown to acquire MDR when the lipid components of
their membranes are altered (Hendrich and Michalak, 2003). In
multidrug-resistant cells, the membrane lipid content is higher, the
membrane is less fluid, and themembrane permeability is lower than in
normal cells, which leads to poor permeability of chemotherapy drugs
in these cells (Niero et al., 2014). It has been reported that the
development of nanostructured lipid carriers can overcome MDR
during breast cancer (Li et al., 2018) and metastatic colon cancer
(Karthika and Sureshkumar, 2019) treatment.

In summary, lipids transported through the SMP bridges of
E-Syt can affect the curvature, tension, and fluidity of the

membrane. Different membrane curvature and tension are
involved in the processes of endocytosis/exocytosis, cell
division, and cell motility, which are closely related to tumor
migration and invasion (Tsujita et al., 2021). Moreover, lipid
metabolic reprogramming is directly involved in the malignant
transformation and progression of cells (Preta, 2020). Therefore,
changes in membrane tension, fluidity and permeability in tumor
cells affect the entry of chemotherapy drugs into these cells,
resulting in drug resistance (Chabanel et al., 1985). Additionally,
identifying the changes in lipids in the new membranes of these
cells is anticipated to be greatly beneficial for the early diagnosis
of cancer. Numerous human organs have been included in recent
studies on the use of lipidomics in the diagnosis of cancers,
including lung, (Ros-Mazurczyk et al., 2017), breast, (Corona
et al., 2021), colon, (Sánchez-Martínez et al., 2015), gastric, (Wei
et al., 2021), endometrial, (Seth et al., 2012), pancreatic, (Bai
et al., 2021), ovarian, (Ji et al., 2020), liver, (Alannan et al., 2020),
kidney (Van Hemelrijck et al., 2012) and even glial (Garanti et al.,
2016) tumors. In addition, studies have shown that knockdown
methods and conditions may also have an impact on lipid
alterations (Woo et al., 2020). Studying the effects of E-Syt
protein knockdown is crucial for obtaining a deeper
understanding of the mechanisms of lipid transport, lipid
homeostasis, and cell membrane function, especially in lipid-
related diseases (Woo et al., 2020).

3.2.2 Energy supply in tumor cells
In addition, cancer cells require large amounts of ATP to

proliferate uncontrollably and invade surrounding tissues, thereby
degrading the extracellular matrix (ECM) and migrating along ECM
fibers (Snaebjornsson et al., 2020).

First, when lipid synthesis increases to a certain level in normal
cells, lipids bind to the endoplasmic reticulum transmembrane
protein INSIG, which blocks the processing of SREBP, a key
transcription factor for lipid synthesis. This prevents SREBP from
entering the nucleus for transcription, thus inhibiting lipid synthesis
(Shao and Espenshade, 2014).

In cancer cells, however, this negative feedback system is inhibited,
providing tumor cells with a steady supply of lipids (Lewis et al., 2015).
Guo et al. (2019) knocked down SCAP, which inhibited the growth and
adipogenic differentiation of liver cancer cells. Additionally, in prostate
cancer, SREBP-2 induces the proliferation, invasion and migration of
prostate cancer cells. Overexpression of SREBP-2 increases the number
of prostate cancer stem cells. Genetic silencing of SREBP-2 inhibits the
proliferation and metastasis of prostate cancer cells (Li et al., 2016).
Through this INSIG-SREBP-SCAP pathway in MCSs, endogenous lipid
synthesis is increased in tumor cells.

Second, mammalian cells can also obtain cholesterol by taking
up low-density lipoprotein (LDL). Low-density lipoprotein
receptors (LDLRs) are carried to the lysosome, where they are
degraded by lysosomal acid lipase (LAL), resulting in the release
of free cholesterol, which promotes cancer cell development. There
are many adipose cells in breast cancer tissue. Coculture with cancer
cells can activate lipolysis in adipose cells and release fatty acids into
the extracellular space (Zhang et al., 2019). Subsequent studies have
revealed that these fatty acids are in turn taken up by cancer cells,
resulting in increased proliferation and migration of cancer cells
(Rinninger et al., 2014).

Frontiers in Cell and Developmental Biology frontiersin.org06

Pan et al. 10.3389/fcell.2023.1291506

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1291506


3.2.3 Lipids and tumor metastasis
For cancer cells, metastasis is difficult. Tumor cells must be

detached from the primary tumor and enter blood vessels. This is a
process that kills most circulating tumor cells (CTCs) (Lianidou
et al., 2014). Eventually, CTCs may extravasate and find a suitable
site for growth in a different tissue, where they may become resistant
to most treatments until metastatic disease develops. It has been
reported that lipids play an important role in this process of tumor
metastasis, and this role may be related to membrane lipid
saturation and transporters, but the related mechanisms still need
to be elucidated in future studies. There was a study eliminated that
the expression of lipid transporters were close to predict the survival
rate of breast cancer (Zalba and Ten Hagen, 2017).

Jirasek et al. (2016) found a link between the aggressiveness of
prostate cancer and a compound produced by cholesterol
metabolism in cells. They later extended their findings to
pancreatic cancer and showed that drugs used to treat
atherosclerosis may have therapeutic promise in pancreatic and
other cancers. The researchers found accumulation of cholesterol
esters in human pancreatic cancer samples, suggesting a possible
link between cholesterol esterification and metastasis (Jirasek et al.,
2016). The presence of excess cholesterol results in the cholesterol
storage in lipid droplets within cancer cells in the form of cholesterol
esters. Inhibition of cholesterol ester formation may be a new
strategy for the treatment of metastatic pancreatic cancer.

Lipids in urinary exosomes can be used as markers for prostate
cancer. Recently, Skotland et al. (2017) studied the potential of lipids in
urinary exosomes as biomarkers for prostate cancer. A total of
107 lipids were quantified in urinary exosomes. Several differences
in lipids were discovered between urinary exosomes and exosomes
derived from cell lines. The findings highlighted the importance of
lipids in exosomes for biomarker research in vivo (Beloribi et al., 2012).

4 Calcium signaling in MCSs and tumor
therapy

Several compounds used in chemotherapy have been shown to
indirectly modulate interactions between the ER and mitochondria,
which are important parts of MCSs. These drugs act on certain
proteins in MCSs. For example, ML-9 (a selective myosin light chain
kinase inhibitor) inhibits STIM1-plasma membrane interactions,
preventing SOCE (Smyth et al., 2008). Treatment with ML-9 alone
can kill prostate cancer cells. The combination of ML-9 and other
anticancer drugs, such as docetaxel, can significantly promote cancer
cell death (Kondratskyi et al., 2014). In addition, it is well known that
specific features of the tumor microenvironment, such as hypoxia,
can interfere with the function of the ER in maintaining cell
homeostasis and ultimately lead to the accumulation of unfolded
proteins in the ER, a condition called ER stress (Lin et al., 2019). At
the same time, commonly used drugs containing metal compounds,
such as cisplatin and oxaliplatin, can also modify calcium signaling
and be used to treat tumors (Leo et al., 2020). If normal cells take up
a large amount of calcium, ER stress and mitochondrial stress are
induced, and a large amount of ROS is then produced to cause
apoptosis. However, tumor cells remodel calcium signaling to avoid
this increase in calcium and thus prevent the activation of this
apoptotic pathway. In addition to inducing DNA damage, one of the

effects of platinum drugs is to increase the influx of extracellular
calcium into cells, resulting in the accumulation of large amounts of
calcium in the ER and inducing ER stress (Kim and Kim, 2018).
Indeed, this mechanism can also explain and be used to inhibit
cisplatin-induced apoptosis and reduce cisplatin toxicity. Xu et al.
(2018) demonstrated that Bcl-2 blocks cisplatin-induced apoptosis
by modulating calcium signaling in various cancer cell lines. In other
words, MCSs play an important role in tumor progression and
metastasis, and the study of these domains provides new ideas for
reducing the toxicity of antitumor drugs.

5 Lipid signaling and tumor therapy

Similarly, lipid signaling not only affects tumor proliferation and
metabolism but also plays an important role in tumor therapy.
Recent research has shown that cellular lipid metabolic
reprogramming is directly involved in malignant progression and
the cellular response to therapy (Liu et al., 2021).

5.1 Alternative lipid metabolism in immune
cells can enhance the antitumor immune
response

CD8+ T cells play a key role in antitumor immunity. A team led
by Chenqi Xu and Boliang Li found that inhibition of cholesterol
esterification increased the antitumor activity of CD8+ T cells (Yang
et al., 2016). Inhibition of ACAT1 (a key cholesterol esterification
enzyme) can enhance CD8+ T-cell proliferation. Avasimibe, a small
molecule inhibitor of ACAT1, has been used to treat melanoma and
has shown promising antitumor effects. In addition, intervening in
lipid metabolism in immune cells can enhance anti-tumor immune
response (Liu et al., 2021). These results suggest that targeting lipid
metabolism in immune cells may be the key to improving antitumor
immunotherapy in the future.

5.2 Lipids in targeted therapy

Most cancer therapies have traditionally been designed to
interact with proteins and nucleic acids. However, regulation of
or interactions with lipids are emerging as new therapeutic
strategies. First, intervention of lipid metabolism of immune cells
can enhance anti-tumor immune response. Results from Liu et al.
show that reprogramming lipid metabolism can prevent senescence
of effector T cells and enhance immunotherapy of melanoma and
breast cancer (Liu et al., 2021). Then, reducing the level of
membrane lipids by chemotherapy, radiotherapy or
immunotherapy is the most advanced antitumor strategy based
on lipid interactions (Farabegoli et al., 2010; Hryniewicz-
Jankowska et al., 2014). Treatment with statins in combination
with first-line therapy improved the therapeutic efficacy and overall
survival in patients with liver cancer, acute myeloid leukemia, or
refractory multiple myeloma (Mullen et al., 2016). In fact, Aberrant
lipid metabolism has been recognized as a therapeutic target in liver
cancer (Pope et al., 2019), pancrearic cancer (Yin et al., 2022),
colorectal cancer (Chen et al., 2023) and lung cancer (Xiong et al.,

Frontiers in Cell and Developmental Biology frontiersin.org07

Pan et al. 10.3389/fcell.2023.1291506

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1291506


2021). Combinations of different types of cell membrane lipids will
be used more often as markers of prognosis and progression in the
coming years, as well as being used with other biomarkers as tools
for early prediction (Yan et al., 2016).

All of these observations suggest that lipid metabolism has
substantial application potential for tumor diagnosis and
treatment. However, there have been few investigations on the
application of lipidomics in tumor therapy due to the consistent
management of clinical studies and clinical observations of long-
term efficacy. The introduction to MCSs and related proteins in this
review provides a robust theoretical foundation for the study of lipid
metabolism and regulation, considerably increasing the utility of
lipidomics.

6 Conclusion

As the worldwide number of cancer cases increases, studies on
MCSs are increasing year by year, providing the theoretical basis for
the use of a large number of MCS-related proteins as new
biomarkers for cancer. However, the proteins involved in MCSs
and the mechanism of MCSs in tumor metabolism remain unclear.
In general, we believe that one of the most attractive prospects in the
field of contact science is the elucidation of the detailed mechanisms
underlying the interactions between the ER and other organelles
during cancer development and how they promote and/or inhibit
cancer progression. In this review, we provide a wealth of
information on the regulation of calcium and lipid signaling
homeostasis by E-Syts and then summarize the roles of calcium
and lipid signaling in tumors identified in previous research,
providing a robust theoretical basis for obtaining a more
complete understanding of MCS functions in the future.
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