
Energy metabolic reprogramming
regulates programmed cell death
of renal tubular epithelial cells and
might serve as a new therapeutic
target for acute kidney injury

Limei Zhao1, Yajie Hao1, Shuqin Tang1, Xiutao Han2, Rongshan Li3

and Xiaoshuang Zhou3*
1The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China, 2The Third Clinical
College, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, China, 3Department of Nephrology,
Shanxi Provincial People’s Hospital, The Fifth Clinical Medical College of Shanxi Medical University,
Taiyuan, Shanxi, China

Acute kidney injury (AKI) induces significant energy metabolic reprogramming in
renal tubular epithelial cells (TECs), thereby altering lipid, glucose, and amino acid
metabolism. The changes in lipid metabolism encompass not only the
downregulation of fatty acid oxidation (FAO) but also changes in cell
membrane lipids and triglycerides metabolism. Regarding glucose metabolism,
AKI leads to increased glycolysis, activation of the pentose phosphate pathway
(PPP), inhibition of gluconeogenesis, and upregulation of the polyol pathway.
Research indicates that inhibiting glycolysis, promoting the PPP, and blocking the
polyol pathway exhibit a protective effect on AKI-affected kidneys. Additionally,
changes in amino acid metabolism, including branched-chain amino acids,
glutamine, arginine, and tryptophan, play an important role in AKI progression.
These metabolic changes are closely related to the programmed cell death of
renal TECs, involving autophagy, apoptosis, necroptosis, pyroptosis, and
ferroptosis. Notably, abnormal intracellular lipid accumulation can impede
autophagic clearance, further exacerbating lipid accumulation and
compromising autophagic function, forming a vicious cycle. Recent studies
have demonstrated the potential of ameliorating AKI-induced kidney damage
through calorie and dietary restriction. Consequently, modifying the energy
metabolism of renal TECs and dietary patterns may be an effective strategy for
AKI treatment.
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1 Introduction

Acute kidney injury (AKI) is a pressing global health issue characterized by a swift
decline in renal function, leading to elevated mortality and prevalence rates (Liu et al., 2020).
AKI can be triggered by various factors such as trauma, sepsis, surgery, or drug toxicity, with
ischemia-reperfusion injury (IRI) being the primary cause. IRI disrupts the cellular redox
balance and triggers excessive generation of reactive oxygen species (ROS) in the kidneys
during reperfusion, leading to a series of events, including mitochondrial damage, energy
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consumption, apoptosis, and necrosis of renal tubular cells (Han
et al., 2017). Furthermore, incomplete recovery from AKI may lead
to renal fibrosis, increasing the risk of chronic kidney disease (CKD)
and end-stage renal disease (ESRD) (Lee et al., 2022). Presently, no
specific treatment exists for the prevention of AKI, enhancing
recovery, or improving the long-term prognosis of AKI,
including CKD, ESRD, or death (Yang et al., 2006). Therefore,
there is an urgent need to identify novel therapeutic targets for AKI
treatment.

The kidney is the second largest metabolic organ in the human
body with abundant mitochondria, second only to the heart
(O’Connor, 2006; Pagliarini et al., 2008). Under normal
physiological conditions, the kidney requires a large amount of
energy to maintain its functions. Tubular epithelial cells (TECs) are
one of the primary sites of AKI injury, and under pathological
conditions, their mitochondria suffer severe damage, leading to
disruptions in oxidative phosphorylation and energy metabolism
disorders (Bhargava and Schnellmann, 2017). Consequently, the
utilization of metabolic substrates (such as glucose, amino acids,
fatty acids (FAs), ketone bodies, citric acid, and lactate) in TECs
undergoes alterations to adapt to the pathological environment
during AKI (Bhargava and Schnellmann, 2017). It should be
noted that this metabolic reprogramming in TECs during AKI
serves as a double-edged sword. Current evidence suggests that
this reprogramming may represent a protective mechanism for
surviving TECs to adapt to the pathological environment.
However, prolonged inhibition of FAO and increased glycolysis
can influence kidney outcomes and promote the transition of AKI to
CKD through multiple molecular mechanisms (Simon and Hertig,
2015). Additionally, numerous studies have found that changes in
energy metabolism can also regulate programmed cell death
(Fougeray et al., 2012; Wu et al., 2021). Therefore, this article
presents a comprehensive summary of the changes in the energy
metabolism of TECs and the interplay between these energy
metabolism alterations and programmed cell death, offering
insights into the diagnosis and treatment of AKI.

2 Energy metabolism of renal tubular
epithelial cells in healthy kidneys and
acute kidney injury

2.1 Lipid metabolism

2.1.1 Lipid metabolism in healthy renal tubular
epithelial cells

The kidney performs a complex reabsorption function, and
TECs are the key players responsible for the reabsorption
processes involving sodium, water, glucose, and other substances.
Similar to the metabolically active cardiomyocyte, TECs relies on
fatty acid oxidation (FAO), because per 1 molecule of 16-carbon
saturated fatty acids provides 106 ATP units compared to 36 from
one molecule of glucose metabolism (Simon and Hertig, 2015).
Renal tubules absorb FAs through the cluster of differentiation 36
(CD36) receptor, fatty acid binding protein (FABP), and fatty acid
transport protein (FATP) expressed on the plasma membrane
(Trimble, 1982; Susztak et al., 2005). Additionally, FAs can be
produced through fatty acid synthase in the cytosol or through

the metabolism of phospholipids via phospholipase A2 (Simon and
Hertig, 2015). Long-chain FAs, such as palmitic acid esters, are the
preferred substrates for ATP generation by proximal renal tubular
epithelial cells (PTECs). This transportation is facilitated by
carnitine palmitoyltransferase 1 (CPT1), located on the outer
mitochondrial membrane. CPT1 converts fatty acyl-coenzyme A
into long-chain acylcarnitine, allowing it to enter the mitochondrial
matrix, where it is converted back to acyl-coenzyme A (acyl-CoA) by
CPT2, releasing carnitine. Acyl-CoA undergoes β-oxidation in the
mitochondria, and the resulting acetyl-CoA is completely oxidized
in the tricarboxylic acid (TCA) cycle. The resulting nicotinamide
adenine dinucleotide hydrogen (NADH) and flavin adenine
dinucleotide hydrogen (FADH) enter the electron transfer chain
(ETC) generating an electrochemical gradient that promotes ATP
production (Houten et al., 2016; Gewin, 2021) (Figure 1). Among

FIGURE 1
Schematic diagram of fatty acid metabolism pathway. FAs are
absorbed by renal tubules via the CD36 receptor, fatty acid binding
protein (FABP), and fatty acid transport protein (FATP). Long chain and
very long chain FAs are acylated to acyl-CoA by very long chain
acyl-CoA synthetase located on the peroxisomal membrane, then
enter peroxisomes for beta-oxidation, generating short chain
products such as acetic acid. The short chain products enter the
mitochondrial TCA cycle for complete oxidation. Short -, medium -
and long-chain FAs (FA) are conjugated to CoA by acyl- CoA
synthetase on the outer mitochondrial membrane to form fatty acyl-
CoA. Long chain acyl-CoA is converted to long chain acylcarnitine by
carnitine palmitoyltransferase 1 A(CPT1A) located on the outer
mitochondrial membrane, enters themitochondrial matrix, and is then
converted to acyl-CoA by carnitine palmitoyltransferase-2 (CPT2),
releasing carnitine. Acyl-CoA undergoes β-oxidation in the
mitochondria, producing acetyl-CoA which enters the tricarboxylic
acid (TCA) cycle for complete oxidation. The resulting nicotinamide
adenine dinucleotide (NADH) and flavin adenine dinucleotide (FADH)
enter the electron transport chain (ETC) to provide electrons for
generating an electrochemical gradient, leading to ATP production.
The ROS and H2O2 generated during this process can enter
peroxisomes for metabolism by peroxisomal catalase and other ROS
neutralizing enzymes. ↑, Up-regulation of the substance or metabolic
pathway in AKI; ↓, Down-regulation of the substance or metabolic
pathway in AKI. ⊕, Positive regulatory effect.
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the three different gene-encoded subtypes of CPT1(a,b and c),
CPT1A is most highly expressed in renal PTECs and is crucial
for FAO initiation, as it catalyzes the rate-limiting step of the
process, making its expression and activity key determinants of
proximal renal tubular ATP production (Szeto, 2017).

In the proximal tubules, long-chain FAO occurs not only in the
mitochondria but also in the peroxisomes. Peroxisomal FAO
operates independently of carnitine and employs very long-chain
acyl-CoA synthetase situated on the peroxisomal membrane to
catalyze the esterification of very long-chain fatty acids with
coenzyme A to generate very long chain acyl-CoAs. However,
within peroxisomes, acyl-CoA oxidase (ACOX) remains inactive
when presented with substrates containing an acyl group composed
of eight or fewer carbon atoms. This restriction impedes the
shortening of the carbon chain. Unlike the mitochondria,
peroxisomes lack respiratory chain enzymes, and therefore,
peroxisomal FAO is not directly coupled with ATP production.
However, they metabolize long-chain FAs into acetic acid and other
short-chain products with higher hydrophilicity, allowing them to
cross the membrane to exit the cell or enter the mitochondria for
complete oxidation (Hashimoto, 1996). Additionally, peroxisomes
contain abundant catalase and other ROS-scavenging enzymes,
protecting PTECS from the toxic accumulation of long-chain FAs
and serving as a sink for ROS generated in mitochondria (Vasko,
2016) (Figure 1). Hashimoto (1996) discovered that ACOX
dysfunction leads to peroxisomal dysfunction and subsequent
accumulation of long chain FAs, confirming the role of
peroxisomes. Furthermore, peroxisomal activity varies with
different physiological conditions, and peroxisomal proliferation
significantly increases the activity of peroxisomal oxidase
(Hashimoto, 1996). These findings indicate a cooperative
relationship between peroxisomes and mitochondria, supported
by observed physical interactions between the two, and the
secondary effect of peroxisome function ablation on
mitochondrial function (Peeters et al., 2015).

The metabolic pathways of FAO are regulated by reversible post-
translational modifications (PTMs) (Rardin et al., 2013), particularly
lysine acylation, and the sirtuin deacetylase that removes these
PTMs. Among the sirtuins, nuclear/cytosolic sirtuin1 (Sirt1) has
been shown to prevent AKI by restoring the number and function of
peroxisomes, upregulating catalase, and eliminating renal ROS
(Hasegawa et al., 2010). Mitochondrial sirtuin3 (Sirt3) also exerts
a renal protective effect by improving mitochondrial dynamics
(Morigi et al., 2015). Sirtuin5 (Sirt5) has a unique substrate
preference for succinyl-lysine, propionyl-lysine, and glutaryl-
lysine among sirtuins. Studies have demonstrated that
Sirt5 promotes FAO in mitochondria but inhibits FAO in
peroxisomes. Notably, after ischemia- or cisplatin-induced AKI,
Sirt5−/− mice showed higher peroxisomal FAO than
mitochondrial FAO in PTECs, leading to significantly improved
function with reduced tissue damage (Chiba et al., 2019).

2.1.2 Lipid metabolism in renal tubular epithelial
cells during acute kidney injury
2.1.2.1 Fatty acid metabolism

Mitochondrial damage in PTECs is a common feature of AKI
caused by various etiologies, and individual metabolic pathways are
also dysregulated. Studies have shown that FAO is significantly

downregulated in all types of AKI, primarily due to the lack of
expression of CPT1A, which prevents medium-chain and long-
chain FAs from entering the mitochondrial matrix. Overexpression
of CPT1A and its activators has been found to alleviate AKI (Idrovo
et al., 2012). CPT1A expression is regulated by various factors,
including peroxisome proliferator-activated receptor coactivator
(PGC)-1 alpha (PGC1α), as well as nuclear receptor family
members such as the peroxisome proliferator-activated receptor-
alpha (PPARα), PPARγ, estrogen-related receptor alpha (ESRRα),
pregnane X receptor (PXR), and farnesoid X receptor (FXR). In AKI,
alterations in the expression of these factors affect FAOmetabolism.
For example, the Kruppel-like factor (KLF15) positively regulates
CPT1A transcription and controls FAO metabolism by binding to
PPARα, but it is down-regulated in AKI (Piret et al., 2021a).
Additionally, ESRRα inhibitors can inhibit the expression of
PPARα and CPT1A (Dhillon et al., 2021). PXR-deficient rats
exhibit reduced gene expression of CPT1A and medium-chain
acyl-CoA dehydrogenase (MCAD) (Yu et al., 2020). Recent
studies have also identified a co-regulation between FXR and
PPARγ in PTEC FAO. In cisplatin-induced AKI, PPARγ in
PTEC is down-regulated, and treating cisplatin-damage PTEC
with FXR agonists restores PPARγ expression. PPARγ-specific
knockdown mice experience aggravated renal TEC injury and
increased lipid droplet formation after cisplatin treatment, with
reduced expression of PGC1α, leading to a decrease in CPT1A
expression (Fontecha-Barriuso et al., 2020; Fontecha-Barriuso et al.,
2022; Xu et al., 2022). PGC1α, a key co-activator factor for
peroxisomes, plays crucial roles in peroxisome remodeling and
abundance. These discoveries imply a mutual interaction among
these factors. Their up-regulation can enhance CPT1A expression,
consequently improving mitochondrial FAO and ameliorating acute
kidney injury (Hu et al., 2012; Wang et al., 2021). Furthermore,
Chiba et al. (2019). upregulated peroxisomal FAO in mice by
deleting the lysine deacetylase Sirt5, leading to the preservation
and improvement of renal function after cisplatin and IRI. This
indicates that upregulating peroxisomal FAO may serve as a novel
therapeutic target for AKI. PPAR agonists have been shown to
upregulate mRNA expression of peroxisomal FAO enzymes, as well
as their metabolic activity and proliferation rate. Therefore, dual
improvement of AKI TEC injury may be achieved by upregulating
both CPT1A and peroxisomal FAO through PPAR agonists or
overexpression of PPAR (Figure 1). However, considering that
PPAR regulates many physiological processes in the kidney, its
effects on AKI are multifaceted. In addition to their role in
protecting the kidneys by regulating energy metabolism, synthetic
PPARγ agonists as well as PGC1α agonists may have diverse adverse
effects such as fluid retention or blood volume expansion, obesity,
heart disease, and liver toxicity (Sauer, 2015; Fontecha-Barriuso
et al., 2022). Studies have found that the use of endogenous and
natural PPAR agonists can avoid the side effects of excessive
activation of PPAR induced by synthetic PPAR agonists (Sharma
and Patial, 2022). Therefore, it is crucial to select appropriate PGC1α
and PPAR activators and establish the optimal therapeutic time
window for PGC1α and PPAR activation.

After IRI, TECs show changes in other genes related to FAs
metabolism, in addition to downregulation of the key gene CPT1A
associated with FAO. Genes related to FAs transport or storage, such
as CD36 and Perilipin 2, exhibit significant upregulation. Similarly,
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genes involved in FAs synthesis, including fatty acid synthase
(FASN), sterol regulatory element-binding transcription factor 1
(SREBF1), and elongation of very long chain fatty acids like protein
1 (ELOVL 1), show a trend of upregulation after IRI. Additionally,
genes associated with lipoprotein intakes, such as low-density
lipoprotein receptor-related protein 2(LRP2) and very low-
density lipoprotein receptor (VLDLR), are increased (Zhang
et al., 2018). These results indicate that TECs not only decrease
the utilization of FAs but also significantly increase the uptake or
storage of FAs during the progression of AKI. This leads to FA
accumulation, and evidence shows that the storage of free lipids in
lipid droplets can prevent the adverse effects of lipid peroxidation
and mitochondrial membrane potential damage caused by the
accumulation of free lipids (Zhang et al., 2018; Farmer et al.,
2019). The formation of lipid droplets is regulated by the
intracellular super transcription factor forkhead box protein
O1(FOXO1), which is significantly upregulated in TECs during
AKI, along with miR-21-3p, which regulates FOXO1 (Lin et al.,
2019). This suggests that the increase in fatty acid synthesis,
absorption, and transport in TECs during AKI also contributes
to the accumulation of FAs, while the synthesis of lipid droplets is
also increasing.

2.1.2.2 Cellular membrane lipid metabolism
The cell membrane lipids encompass various types, including

phospholipids, sphingomyelin, glycerolipids, and cholesterol.
Among these, phospholipids and sphingomyelin constitute the
major components and predominate the cell membrane lipids.
Metabolites of phospholipids play an important role in cellular
stress response. Lysophosphatidylcholine acyltransferase (LPCAT)
catalyzes the conversion of lysophosphatidylcholine (LPC) to
phosphatidylcholine (PC) and participates in phospholipid
metabolism. LPCAT enzymes include LPCAT1, LPCAT2,
LPCAT3, and LPCAT4. Among them, LPCAT3 is widely
expressed in various tissues, including the testis, kidney, liver,
and small intestine, exhibiting the widest distribution (Yamazaki
et al., 2012). In lipopolysaccharide-induced AKI, the expression of
miR-124-3p.1 targeting LPCAT3 is decreased, leading to an increase
in LPCAT3 activity and, subsequently, an elevation in
phosphatidylcholine content in TECs, inducing cellular lipid
peroxidation and ferroptosis (Zhang et al., 2022). Another study
by Zager et al. (1999) reported an increased percentage of
phosphatidylcholine in the renal cortex after 18 h of ischemia,
supporting these findings.

Sphingomyelin, as a platform for receptor proteins and lipids,
are strategically distributed to specific microdomains of the cell
membrane, thereby promoting transmembrane signal transduction.
Elevated levels of sphingomyelin have been observed in ischemic
kidneys, which may alter the distribution and formation of
cytomembrane microdomains in renal TECs, thereby affecting
signal pathways and second messenger production.
Sphingomyelin can be hydrolyzed by the sphingomyelinase
(SMase) family to generate ceramide, a central lipid in the
sphingolipid pathway that plays an important role in intracellular
processes such as cell proliferation, differentiation, and cell cycle
arrest, and is an effective regulator of cell fate and metabolism
(Scantlebery et al., 2021). Numerous studies have consistently
demonstrated that the upregulation of ceramide synthesis is a

common feature in several AKI causes (Laviad et al., 2008;
Dahdouh et al., 2014; Valdés et al., 2021; Ma et al., 2022).
Inhibiting the accumulation of ceramide by inhibiting SMase can
potentially improve renal outcomes across several AKI models
(Dupre et al., 2017; Nicholson et al., 2022). Ceramide can be
enzymatically converted to sphingosine by neutral ceramidase
(nCDase). Subsequently, sphingosine is phosphorylated by
sphingosine kinase 1 (SK-1) to generate sphingosine-1-phosphate
(S1P) (Figure 2A. A). S1P is a natural sphingolipid ligand of the 5 G
protein-coupled receptor (S1P1-S1P5Rs) family, responsible for
regulating cell survival and lymphocyte circulation (Bajwa et al.,
2015). Several studies propose that S1P1 can stabilize mitochondrial
function and alleviate renal TEC injury during IRI (Dupre et al.,
2017). Promoting SK-1 synthesis and S1P1 production can prevent
ischemia-reperfusion AKI (Park et al., 2012). Moreover, ceramide
can also be enzymatically converted to glucosylceramide by
glucosylceramide synthase. Inhibitors of glucosylceramide
synthase have been shown to increase ceramide levels and
decrease glucosylceramide in the renal cortex, rendering mice
more susceptible to cisplatin-induced AKI (Nicholson et al.,
2022). This indicates that the metabolism of ceramide to
glucosylceramide could act as a buffer for renal ceramide and
potentially alleviate renal injury. Therefore, reducing neuro
amides or inducing S1P generation may represent a promising
novel therapeutic strategy for AKI.

Arachidonic acid (AA) is a major component of cell membrane
lipids and is mainly metabolized by three active enzymes:
cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome
P450 (CYP450) enzymes. In the proximal tubules of the kidney,

FIGURE 2
(A) Diagram of sphingomyelin metabolism: SM, Sphingomyelin;
SMase, Sphingomyelinase; SMs, Sphingomyelin synthase; nCDase,
Neutral Ceramidase; GCS, Glucosylceramide Synthase; SK-1,
Sphingosine Kinase-1; S1P, Sphingosine-1-Phosphate; GSLs,
GlycoSphingomyelin. (B) Diagram of fatty acid metabolism: FABP: atty
acid binding protein; FATP, fatty acid transport protein; FA, Fatty Acid;
FFA, Free Fatty Acid; PLA2, Phospholipase A2; TG, Triglyceride; DGAT,
Diacylglycerol Acyltransferase. ↑, Up-regulation of the substance or
metabolic pathway in AKI; ↓, Down-regulation of the substance or
metabolic pathway in AKI.
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the CYP450 pathway is the primary route for AA metabolism,
leading to the formation of 20-hydroxyeicosatetraenoic acid (20-
HETE) and 19-hydroxyeicosatetraenoic acid (19-HETE) by ω-19
hydroxylation (Quigley et al., 2000; Wang et al., 2019). Following
renal ischemia/reperfusion (I/R), the production of 20-HETE
increases, which can activate PPARs and participate in regulating
lipid metabolism (Roman et al., 2011; Tanaka et al., 2011).
Additionally, 20-HETE has been implicated in prolonging post-
reperfusion vasoconstriction and exacerbating IRI in the kidney
(Nilakantan et al., 2008). However, in certain instances, 20-HETE
can mitigate the effects of IRI by increasing medullary oxygenation
(Regner et al., 2009; Roman et al., 2011). Researchers have
demonstrated that administration of 20-HETE agonists can
prevent the secondary decrease in medullary blood flow and
medullary hypoxia after bilateral renal ischemia, thereby reducing
the severity of IRI (Regner et al., 2009). On the contrary, some
studies have suggested that inhibiting 20-HETE can prevent IRI in
acutely uninephrectomized rats (Hoff et al., 2011). Hence, the effect
of 20-HETE on AKImay be closely related to the severity of the renal
injury.

2.1.2.3 Metabolism of cholesterol and triglycerides
The accumulation of cholesterol in the renal cortex is a delayed

consequence observed in various forms of renal damage. After
ischemic, toxic, obstructive, or immune-related renal injuries for
18–24 h, the levels of free cholesterol, cholesterol esters, and
triglycerides in the proximal renal tubules significantly increase
(Zager et al., 1999). Triglyceride level regulation mainly involves
the synthesis of free fatty acids (FFAs), diacylglycerol acyltransferase
(DGAT)-mediated triglyceride assembly, and the catabolism of
triglycerides (Figure 2B). Glycerol and ischemia/reperfusion-
induced renal injury can lead to a 20%–35% decrease in lipase
activity in the renal cortex, resulting in the accumulation of
triglycerides in HK-2 cells. Moreover, HK2 cell injury induced by
hypoxia/reoxygenation and lipopolysaccharide (LPS) can activate
phospholipase A2 (PLA2), increase the expression of DGAT, and
cause mobilization of FAs from the phospholipid pool, consequently
increasing triglyceride formation (Johnson et al., 2005).
Furthermore, after AKI, cells increase their uptake of FAs, while
the consumption of FAs by mitochondria decreases, leading to an
increase in substrate for triglycerides and ultimately resulting in
triglycerides accumulation.

2.2 Glucose metabolism

2.2.1 Glucose metabolism in healthy renal tubular
epithelial cells

The kidneys play an important role in the production and
metabolism of glucose, with approximately 25% of all glucose
released into circulation being produced by the human kidneys
(Stumvoll et al., 1995). Glucose has two main sources: one is
produced through glycogen breakdown, and the other is through
gluconeogenesis. Given the limited glycogen reserves in the kidneys,
it is probable that gluconeogenesis serves as the primary mechanism
for glucose production. Both insulin signaling and glucose
reabsorption by proximal tubular cells play a role in regulating
gluconeogenesis. In HK-2 cells, these processes act to inhibit the

expression of gluconeogenic genes by deactivating FOXO-1 and
PGC1α, respectively (Akhtar et al., 2021). In gluconeogenesis,
substrates such as lactate, glycerol, alanine, and glutamine can
ultimately produce glucose through the process of glucose-6-
phosphate. The primary precursor of renal gluconeogenesis is
lactate, which is freely filtered by the glomerulus and
subsequently reabsorbed by the renal TECs through the
monocarboxylate transporters (MCTs) (Becker et al., 2010).
Lactate is then converted to pyruvate by lactate dehydrogenase
(LDH). Pyruvate enters the mitochondria and is sequentially
converted to oxaloacetate and citrate, which is then exported
from the mitochondria as citrate. Finally, citrate is converted
back to oxaloacetate by phosphoenolpyruvate carboxykinase
(PEPCK), and, ultimately, to glucose. However, although lactate
is the predominant substrate for TECs gluconeogenesis, glutamine
also makes a significant contribution.

Under normal physiological conditions, renal gluconeogenesis
occurs mainly in the proximal tubules, expressing key enzymes
required for this process (glucose-6-phosphatase, PEPCK, and
fructose-1,6-bisphosphatase). On the other hand, glycolysis is
predominant in the distal tubules, which express high levels of
glycolytic enzymes (hexokinase (HK), phosphofructokinase (PFK),
and pyruvate kinase (PK)) (Legouis et al., 2022). Glucose can be
metabolized to pyruvate via glycolysis, and then further oxidized in
the TCA cycle or metabolized to lactate. Studies have found that
even under aerobic conditions, the distal tubules can also metabolize
glucose to lactate (Bagnasco et al., 1985), and it has been discovered
that glucose oxidation and ATP generation in the proximal tubules
are significantly lower than in the distal tubule segments in rats
(Klein et al., 1981). This indicates that glucose is produced by renal
gluconeogenesis in the proximal tubule and metabolized by renal
glycolysis in the distal renal unit segments.

2.2.2 Glucosemetabolism in renal tubular epithelial
cells in acute kidney injury
2.2.2.1 Glycolysis and the pentose phosphate pathway

Recent investigations have elucidated the consequences of
impaired FAO in PTECs, resulting in compromised energy
production, accumulation of lipids, cellular injury, and eventual
fibrosis (Emma et al., 2016). Although under normal physiological
conditions, PTEC does not primarily use glucose as fuel, the
surviving PTECs during AKI can adapt to FAO defects by
increasing glycolysis. Several studies have shown the upregulation
of glycolytic enzymes (such as HK, PFK, and PK) at bothmRNA and
protein levels in sepsis, IRI, and aristolochic acid I (AAI)-induced
AKI (Lan et al., 2016; Li et al., 2020). In addition, glucose-6-
phosphate, the first metabolite of glycolysis, is produced from
glucose under that catalysis of hexokinase, and can also enter the
PPP pathway through a series of enzymatic reactions to produce
NADPH and 5-phosphoribose (Figure 3), which can be used as
substrates for the synthesis of purine and pyrimidine nucleic acids.
In AKI, the mRNA expression of several genes encoding PPP
enzyme is upregulated (Scantlebery et al., 2021), and the PPP
pathway is activated, which in turn provides reducing capacity to
antioxidant enzymes (such as glutathione (GSH) reductase) by
increasing NADPH level to maintain REDOX homeostasis and
reduce oxidative damage (Kim et al., 2009). Elsewhere, Smith
et al. (2014) found that LPS-induced HK activation was
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associated with increased glucose-6-phosphate dehydrogenase
activity in the pentose phosphate pathway. The above evidence
suggests that both glycolysis and pentose phosphate pathways are
upregulated in AKI.

Glycolysis generates only two ATP molecules in the cytoplasm.
To produce more ATP, pyruvate, the final product of glycolysis,
must enter the mitochondria and be transformed into acetyl-CoA by
pyruvate dehydrogenase (PDH), which then enters the tricarboxylic
acid cycle to form citric acid. PDH activity can be inhibited by
phosphorylation at sites S232, S293, and S300 by pyruvate
dehydrogenase kinases (PDKs). Additionally, pyruvate can be
converted to lactate by LDH. Hypoxia/reoxygenation-induced
elevation of hypoxia-inducible factor-1α (HIF-1α) can upregulate
both PDKs and LDH (Eleftheriadis et al., 2022), leading to increased
lactate production. In LPS-induced AKI, the expression of pyruvate
kinase muscle isoform 2 (PKM2), a critical enzyme responsible for
catalyzing the last step of glycolysis, is significantly increased, and
PKM2 can directly stimulate HIF-1α transactivation (Luo et al.,
2011), indicating that PKM2 can regulate PDKs and LDH to
promote lactate generation by activating HIF-1α. Elevated lactate
levels and decreased pyruvate levels were also observed in IRI mouse
kidney tissues (Wei et al., 2007) (Figure 3). Inhibiting PKM2 to
prevent IRI-induced kidney injury may be related to the increase in
the pentose phosphate pathway (PPP) flux due to PKM2 inhibition,
resulting in increased nicotinamide adenine dinucleotide phosphate

(NADPH) generation, thus enhancing GSH and antioxidant enzyme
levels (Zhou et al., 2019). This was confirmed by Kim et al. (2015),
who demonstrated that activation of p53 during AKI could target
TP53-induced glycolysis and apoptosis regulator (TIGAR). They
also found that transient activation of TIGAR could suppress PFK-1
activity and the activity of glucose-6-phosphate dehydrogenase
(G6PD). In cases of mild ischemic injury, G6PD can quickly
recover, and TIGAR can reduce the sensitivity of TECs to injury
by inhibiting glycolysis and redirecting glycolysis intermediates to
the oxidative branch of the PPP to produce NADPH. However, in
severe IRI, TIGAR only inhibits glycolysis and, since PPP and
NADPH are not increased due to severe suppression of G6PD,
cannot overcome the loss of renal function and histological damage.
As a result, under mild ischemic conditions, inhibiting TIGAR may
protect mouse TECs by promoting the PPP pathway. Therefore,
simply inhibiting glycolysis may not be sufficient to improve AKI, it
may require a combination of inhibiting glycolysis and promoting
glycolysis intermediates toward the PPP pathway metabolism.

2.2.2.2 Gluconeogenesis
In conditions of fasting and stress, the kidney plays an important

role in glucose production, accounting for 40% of the body’s glucose
through lactate gluconeogenesis in PTECs (Gerich et al., 2001). During
the acute ischemia phase of AKI, gluconeogenic enzyme levels (such as
fructose-1,6-bisphosphatase (FBP1), phosphoenolpyruvate

FIGURE 3
Diagram of glucose metabolism pathway. Illustration: G6Pase, Glucose-6-phosphatase; HK, Hexokinase; G6PD, Glucose-6-phosphate
dehydrogenase; FBP-1, Fructose-1, 6-bisphosphatase; PFK-1, Phosphofructokinase-1; PCK, Phosphoenolpyruvate Carboxykinase; PKM2, Pyruvate
Kinase M2; PDH, Pyruvate Dehydrogenase Complex; PDKs, Pyruvate Dehydrogenase Kinases; LDH, Lactate Dehydrogenase; HIF-1α, Hypoxia-Inducible
Factor-1 alpha. ↑, Up-regulation of the substance or metabolic pathway in AKI; ↓, Down-regulation of the substance or metabolic pathway in AKI. ⊕,
Positive regulatory effect.

Frontiers in Cell and Developmental Biology frontiersin.org06

Zhao et al. 10.3389/fcell.2023.1276217

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1276217


carboxykinase (PCK1), PCK2) are decreased, while mRNA levels of
glycolytic enzymes (such as HK1, PKM, PFK) are relatively increased,
leading to impaired glucose production and lactate clearance (Legouis
et al., 2020) (Figure 3). In the early reperfusion phase of AKI, lactate
levels are generally lower, possibly due to rapid lactate efflux, as the
levels of PDH are decreased, limiting the conversion of pyruvate to
acetyl-CoA and promoting its conversion to lactate. However, during
the late reperfusion phase of AKI, the depletion of pyruvate is associated
with an increase in gluconeogenesis. This observation is further
confirmed by experiments where exogenous administration of
pyruvate increases the renal cortex glucose content in AKI but not
in normal kidneys (Zager et al., 2014). Thus, gluconeogenesis undergoes
dynamic changes during the process of ischemia-reperfusion-induced
AKI. Changes in gluconeogenesis are regulated by insulin. Studies have
found that there is impaired insulin response and insulin resistance in
the occurrence of acute kidney injury (Clark and Mitch, 1983; Portilla
et al., 2006). The mechanism may be that the up-regulation of
FOXO1 expression in renal TECs leads to the block of insulin
signaling. Glucose-insulin infusion can reduce renal injury induced
by severe I/R in mouse experimental models (Melo et al., 2010), and
clinical studies have shown that insulin sensitizing agents can improve
AKI (Hu et al., 2012), and intensive insulin therapy for tight control of
blood glucose can reduce the incidence of AKI in diabetic patients and
critically ill patients (Schetz et al., 2008). This further suggests that AKI
is accompanied by an impaired insulin response. Improving insulin
response can regulate gluconeogenesis and improve AKI renal function.

2.2.2.3 Polyol metabolism
Glucose metabolism can also generate some polyols, such as

sorbitol and xylitol, through a pathway known as the polyol pathway.
Under the influence of aldose reductase, glucose is reduced to sorbitol
with the supply of NADPH, which can then be further converted to
fructose (Figure 3). Normally, aldose reductase expression is rarely
detected or absent in the PTECs (Lanaspa et al., 2014), but after AKI,
its expression is significantly upregulated within 24 h, leading to the
production of fructose in a time-dependent manner (Andres-
Hernando et al., 2017). Elevated urine fructose levels have also
been observed in AKI patients (Andres-Hernando et al., 2017).
Fructose can be metabolized by fructokinase, leading to ATP
consumption and uric acid generation (Johnson et al., 2010).
Inhibiting fructokinase has been shown to increase ATP levels in
the kidneys of AKI mice, reduce local uric acid generation and
oxidative stress, and exert a protective effect against AKI. Notably,
aldose reductase-deficient mice are unable to produce sorbitol and
consequently, exhibit impaired urine concentration mechanisms,
leading to polyuria (Andres-Hernando et al., 2017). Thus, targeting
fructokinase, either alone or in combination with therapies that
reduce renal uric acid production, could represent important
treatment strategies for preventing kidney disease or expediting
kidney recovery.

2.3 Metabolism of amino acids

2.3.1 Metabolism of amino acids in healthy renal
tubular epithelial cells

The human kidney plays a major role in maintaining the body’s
amino acid pools’ homeostasis. Approximately 50–70 g of amino

acids are filtered daily, and the proximal tubules reabsorb almost all
of them (97%–98%) (Garibotto et al., 2010). These reabsorbed
amino acids can serve as substrates for gluconeogenesis and, after
undergoing metabolism, enter the TCA cycle for oxidation.
Branched-chain amino acids (BCAAs), including leucine, valine,
and isoleucine, are important energy sources for the kidneys. They
are metabolized by branched-chain aminotransferase (BCAT) to
generate branched-chain α-keto acids, which are then oxidatively
decarboxylated by the branched-chain α-keto acid dehydrogenase
(BCKDH) complex, producing acyl-CoA. The resulting acetyl-CoA
enters the TCA cycle for oxidation (Suryawan et al., 1998).
Glutamine metabolism is also important for maintaining acid-
base balance, in addition to energy production. Glutamine is
metabolized by the proximal tubules to form glutamate, which
can be converted to α-ketoglutarate (αKG), an intermediate in
the TCA cycle. Ammonium ions resulting from this process are
mainly excreted in the urine, serving as a disposable cation to
promote acid excretion. The resulting αKG is transported into
the mitochondria and converted to succinyl-CoA by the α-
ketoglutarate dehydrogenase complex. This succinyl-CoA is
further transformed into succinate through the action of
succinyl-CoA synthetase. Succinate is then dehydrogenated into
fumaric acid, which undergoes hydration to yield malic acid. Malic
acid is subsequently transported out of the mitochondria into the
cytoplasm, where it is further dehydrogenated to form oxaloacetate.
This oxaloacetate is metabolized by phosphoenolpyruvate
carboxylase to generate phosphoenolpyruvate (Reshef et al.,
2022), a compound that is subsequently converted into glucose
or carbon dioxide. This metabolic process generates bicarbonate
ions, which are selectively transported into the venous bloodstream,
thus partially compensating for metabolic acidosis (Scholz et al.,
2021). Moreover, the kidneys play a major role in arginine synthesis
and metabolism. Arginine can be metabolized through various
pathways, such as generating citrulline and NO via nitric oxide
synthase (NOS) in the cytoplasm. It can also produce creatine via
mitochondrial arginine-glycine amidinotransferase, guanidinobutyrate
viamitochondrial arginase; and urea and ornithine via both cytoplasmic
and mitochondrial arginases (Bellinghieri et al., 2006). Ornithine, in
turn, serves as a precursor for polyamine synthesis through ornithine
decarboxylase. Additionally, tryptophan undergoes extensive
metabolism via the kynurenine (KYN) pathway in the proximal
tubules, ultimately leading to the de novo synthesis of nicotinamide
adenine dinucleotide (NAD+). NAD+ is an important cofactor for
many enzymes involved in FAO and the TCA cycle, making it essential
for overall renal TECmetabolism. Furthermore, phenylalanine, glycine,
tyrosine, and serine are alsometabolized in the kidney (van de Poll et al.,
2004). Taken together, while glucose and FAs are important energy
sources for a healthy kidney, amino acid metabolism is undeniably
indispensable for maintaining organismal homeostasis.

2.3.2 Amino acid metabolism in renal tubular
epithelial cells in acute kidney injury
2.3.2.1 Glutamine

The kidney normally takes up only a small amount of glutamine.
However, during the metabolic acidosis phase of AKI, about one-
third of plasma glutamine is taken up and metabolized by the
kidney. The increased utilization of glutamine occurs primarily in
the proximal convoluted tubules, where a significant increase in
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glutaminase activity has been observed (Anderson et al., 1982). The
mechanism underlying this phenomenon may be related to z-crystal
protein, which, under acidic conditions, enhances the binding with
glutaminase mRNA sequence, inhibiting ribonuclease recruitment,
and stabilizing glutaminase mRNA, resulting in increased
glutaminase expression (Curthoys, 2001). Elevated glutaminase
promotes glutamine metabolism thereby increase the production
of metabolites, such as ammonium and bicarbonate ions, which help
compensate for metabolic acidosis during AKI. Additionally, αKG
generated from glutamine can supplement the TCA cycle. It has
been observed that in IRI, the enhanced expression of transforming
growth factor (TGF)-β1 in renal TECs leads to increased expression
of glutaminase 1(GLS1), which promotes glutamine decomposition
and αKG production (Spurgeon et al., 2005). However, under
hypoxia conditions, an acidic PH will promotes the conversion of
αKG to 2-hydroxyglutaric acid (2-HG), in which S-2HG constitutes
the majority of the 2HG pool and has the effect of inhibiting the egg-
laying defective nine homolog (EGLN). Under normoxic conditions,
prolyl-4-hydroxylase of EGLN family can label HIF-1α subunits for
degradation in an oxygen-dependent manner (Burr et al., 2016).
Under hypoxic conditions, the lack of oxygen and the inhibitory

effect of S-2HG on EGLN causes HIF-1α accumulation and
sustained activation (Cienfuegos-Pecina et al., 2020; Hewitson
and Smith, 2021). Activation of HIF-1α, in turn, can regulate the
transcription of GLS1 (Stegen et al., 2016). Thus, there appears to be
a potential vicious cycle, where the upregulation of HIF-1α leads to
an increase in GLS1 expression, resulting in glutamine breakdown
and αKG production. and the metabolite s-2-HG of αKG can inhibit
prolyl hydroxylase and thus lead to the accumulation of HIF-1α
(Figure 4A). HIF-1α, as a key regulatory factor of glycolysis, can
induce the shift in cellular energy metabolism towards glycolysis by
controlling the expression of several key enzymes involved in
glycolysis. As the end product of glycolysis, most of the pyruvate
is metabolized into lactate and does not enter the TCA cycle.
Therefore, the αKG produced from glutamine metabolism may
be essential for supplementing the TCA cycle. Studies in
pulmonary fibroblasts using carbon tracing have demonstrated
this flux change (Hewitson and Smith, 2021). Bernard et al.
(2018) experimentally demonstrated that the primary function of
glutamine metabolism in fibroblasts is to supply biosynthetic
pathways rather than ATP generation. Elsewhere, Lu et al. (2021)
through single-cell sequencing, found that renal TECs undergo

FIGURE 4
(A) Diagram of glutamine metabolism pathway. Gln, Glutamine; Glu, Glutamate; GLS, Glutaminase; GDH, Glutamate Dehydrogenase; HIF-1α,
Hypoxia-Inducible Factor-1 alpha; TGF-β1, Transforming Growth Factor beta 1; αKG, Alpha Ketoglutarate; S-2-HG, S-2-hydroxyglutaric acid; EGLN, egg-
laying defective nine homolog. (B)Diagram of tryptophanmetabolism pathway: TRP, Tryptophan; IDO, Indoleamine 2, 3-dioxygenase; TDO, Tryptophan
2, 3-dioxygenase; KYN, Kynurenine; KYUN, Kynurenic Acid; KYNA, Kynurenine Acid; KAT, Kynurenine Aminotransferase; KMO, Kynurenine 3-
Monooxygenase; XA, Xanthurenic Acid; 3-HK, 3-Hydroxykynurenine; ANA, Anthranilic Acid; ACMSD, 2-Amino-3-carboxymuconate semialdehyde
decarboxylase; PA, Picolinic Acid. (C) Diagram of arginine and polyamine metabolism pathway: NOS, Nitric Oxide Synthase; ADC, Arginine
Decarboxylase; ARG2, Arginase 2; ODC, Ornithine Decarboxylase; PAOX, Polyamine Oxidase; SSAT, Spermidine/Spermine N1-acetyltransferase; SPD
synthase, Spermidine Synthase; SPM synthase, Spermine Synthase; SMOX, Spermine oxidase; AGMase, Agmatinase; AC-CoA, Acetyl-CoA. ↑, Up-
regulation of the substance or metabolic pathway in AKI; ↓, Down-regulation of the substance or metabolic pathway in AKI.
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phenotype conversion during the repair and proliferation process.
Newly generated PTEC circular cells can differentiate into PTEC-
S1-new cells, and some of them may subsequently transform into
PTEC damage and fibroblasts. In this process, energy metabolism
plays an important role. Therefore, it is hypothesized that changes in
glutamine metabolism pathways may affect this process, suggesting
that intervening in glutamine metabolism could potentially improve
kidney injury by regulating the phenotype conversion of newly
generated renal TECs.

2.3.2.2 Tryptophan
Tryptophan is an essential amino acid in humans, with 95% of it

being metabolized through the kynurenine pathway (KP). The key
enzymes in KP include indoleamine 2,3-dioxygenase (IDO) and
tryptophan 2,3-dioxygenase (TDO). Both IDO and TDO can be
activated by inflammatory factors to degrade tryptophan into KYN.
Under normal physiological conditions, tryptophan is mainly
metabolized by TDO. However, during inflammation or stress,
liver TDO activity is inhibited, and extrahepatic IDO is rapidly
activated, leading to a shift in tryptophan metabolism from TDO-
dominated to extrahepatic IDO-dominated pathways (Zheng et al.,
2019). Subsequently, KYN undergoes further metabolism through
three pathways: the NAD branch, converting KYN into 3-
hydroxykynurenine (3-HK) and anthranilic acid (ANA), 3-
hydroxy anthranilic acid (3-HAA), quinolinic acid (QUIN), and
ultimately to NAD, the preferred end product of KP; the picolinic
acid (PA) branch, producing PA as the second pathway of KYN
metabolism in the kidney and liver. This branch also generates
acetyl-CoA, which is further metabolized in the tricarboxylic acid
cycle, providing CO2 and ATP. The enzyme
aminocarboxymuconate semialdehyde decarboxylase (ACMSD) is
responsible for shifting KPmetabolism fromNAD + synthesis to PA
production. The third branch of the KYN pathway is the kynurenic
acid (KYNA) branch, which produces KYNA and xanthurenic acid
(XA) through the mediation of kynurenine aminotransferases
(KATs). KYNA exhibits protective effects against inflammation,
clears ROS, and demonstrates antioxidant activity. This branch is a
minor pathway under physiological conditions, and kynurenine
hydroxylase (KYNU) also plays an important role in this
pathway (Wee et al., 2021) (Figure 4B). The key enzyme
kynurenine-3-monooxygenase (KMO), responsible for converting
KYN to 3-HK in human kidneys, is located on the outer membrane
of PTECs (Zheng et al., 2019). After AKI, the activity of the IDO
enzyme increases in renal TECs leading to an increase in KP
decomposition (Krupa et al., 2022). Studies have shown that the
expression of KMO in renal TECs decreases in a dose-dependent
manner after treatment with cisplatin, resulting in an increase in
KYN entering the KYNA and NAD branch (Tan et al., 2021). A
longitudinal study has demonstrated that the decrease in 3-HK and
the increase in KYNA in AKI patients further support this point
(Wee et al., 2021). Furthermore, research has indicated that
administering KYNA externally or inhibiting KMO to elevate
KYNA levels can alleviate AKI (Arora et al., 2014; Zheng et al.,
2019). Inhibition of ACMSD to increase NAD production also
showed a protective effect (Katsyuba et al., 2018). In addition,
overexpression of PGC1α in the kidney, an important
transcriptional co-regulation factor in tryptophan metabolism via
KP, can restore mRNA expression of various KP enzymes in AKI

mice, increase NAD + levels after IRI, and protect against kidney
injury (Tran et al., 2016). These findings suggest that targeting the
tryptophan KP pathway may improve AKI.

2.3.2.3 Arginine
The kidney is the primary site of arginine synthesis, responsible

for maintaining arginine’s steady state throughout the body.
Arginine plays a key role in the urea cycle, acting as a precursor
for urea, creatine, and nitric oxide. Under the influence of
inflammatory cytokines, arginine metabolism is upregulated,
leading to the synthesis of urea, creatine, and proline. In the urea
cycle, arginase hydrolyzes arginine into urea and ornithine,
facilitating the elimination of toxic ammonium ions (Bellinghieri
et al., 2006). Mammals express two subtypes of arginase enzymes:
arginase 1 (ARG1, cytosolic) and arginase 2 (ARG2, mitochondrial)
(Oates et al., 2019). ARG1 is predominantly expressed in the liver,
while ARG2 is primarily expressed in the cortical tubules of the
kidney. ARG2 competes with NOS for the same substrate arginine,
leading to reduced availability of arginine for NOS. This results in
NOS uncoupling, characterized by the generation of superoxide
rather than NO, inducing the formation of peroxynitrite.
Peroxynitrite acts on proteins or DNA, ultimately leading to cell
death or apoptosis. 3-nitrotyrosine (3-NT) is one of the major
proteins nitrated by peroxynitrite and is widely used as a marker
of nitrosative stress. Studies have shown that from hypoxia to
reoxygenation, ARG2 expression is upregulated, and the
accumulation of 3-NT gradually increases in HK-2 cells.
Inhibition of ARG2 or supplementation with arginine can reduce
nitrosative stress after hypoxia/reoxygenation injury to renal TECs,
improve renal histological damage, and reduce renal tubular cell
apoptosis (Hara et al., 2020; Tanuseputero et al., 2020).
Furthermore, the upregulation of ARG2 can also lead to an
increase in ornithine levels, and the production of proline from
ornithine can promote pathological fibrosis (Hara et al., 2020).
These results indicate that the upregulation of ARG2 mediates
AKI induced by I/R, and targeting ARG2 may serve as a new
therapeutic target for AKI. Furthermore, arginine can also
generate guanidinoacetate via mitochondrial arginine
decarboxylase, and numerous studies have shown that
guanidinoacetate has a protective effect on AKI. Therefore,
adjusting arginine metabolism pathways may be a promising
strategy for improving AKI. Additionally, Jouret et al. (2016)
have demonstrated through metabolomic analysis that arginine
metabolism is crucial in the kidney following RI for 48 h.

2.3.2.4 Polyamine
Polyamine biosynthesis relies on the conversion of arginine to

ornithine. Ornithine decarboxylase catalyzes the decarboxylation
of ornithine, resulting in the production of putrescine.
Subsequently, spermidine synthase and spermine synthase add
the aminopropyl group to putrescine and spermidine, respectively,
ultimately forming spermidine and spermine (Casero and Pegg,
2009). The process involves the acetylation of the N1 position of
spermine or spermidine by spermine/spermidine N1-acetylation
and N1-acetylpolyamine oxidase (SAT1). Following acetylation,
these compounds can be either transported outside the cell or
undergo oxidative reversion mediated by polyamine oxidase
(PAOX). Additionally, spermine can be directly transformed
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into spermidine through the action of spermine oxidase (SMOX).
During these processes, hydrogen peroxide (H2O2) and reactive
aldehydes are generated (Figure 4C). H2O2 can cause DNA damage
by generating hydroxyl radicals, while reactive aldehydes can
damage the integrity of lysosomal and mitochondrial
membranes, leading to cell injury through the activation of cell
death and apoptosis pathways (Wood et al., 2006). In AKI,
activation of p53 enhances the expression and activity of key
enzymes involved in polyamine degradation, such as SAT1 and
SMOX, thereby enhancing polyamine degradation. Inhibition or
ablation of SMOX and SAT1, as well as neutralization of metabolic
products (such as H2O2 and reactive aldehydes), can reduce
oxidative stress, inflammation/innate immune responses, and
endoplasmic reticulum stress/unfolded protein response, thereby
ameliorating renal tubular injury induced by endotoxins, I/R, and
cisplatin-induced AKI (Zahedi et al., 2010; Zahedi et al., 2017).
However, long-term use of polyamine catabolism inhibitors or
ablation of the SAT1 gene has been reported to cause lung injury
and induce changes in lipid metabolism (Jain et al., 2018; Yuan
et al., 2018). Therefore, additional research is required to confirm
the specific effects of improving AKI by inhibiting polyamine
metabolism.

2.3.2.5 Branch chain amino acid
Recent studies have revealed a reduction in the activity of BCAA

decomposition metabolism enzymes in mice treated with AAI and
in cases of septic AKI, leading to decreased decomposition
metabolism (Piret et al., 2021b; Standage et al., 2021). This
downregulation may hold significant implications for ATP
production in the AKI environment when FAO has been
impaired, as BCAA decomposition metabolism may promote the
TCA cycle through acetyl-CoA and succinyl-CoA. Piret et al.
(2021a). discovered that increased expression of Klf6 in AKI
injury inhibits the expression of BCAA decomposition
metabolism enzymes in HK-2 cells, resulting in decreased
mitochondrial ATP production. However, further research is
required to confirm whether improving AKI can be achieved by
upregulating branch-chain amino acid metabolism.

3 Relationship between energy
metabolism and programmed cell
death in renal tubular epithelial cells of
acute kidney injury

3.1 Metabolism and autophagy

Autophagy can be categorized into three types based on the process
of occurrence: macroautophagy, microautophagy, and chaperone-
mediated autophagy (CMA). People commonly refer to
macroautophagy as autophagy. Autophagy is an evolutionarily
conserved lysosomal-dependent catabolic process and serves as an
important mechanism for cell homeostasis and survival under
pathological stress conditions in the kidney (Decuypere et al., 2015).
Many studies have shown that autophagy is triggered in renal TECs
during AKI. Inhibiting autophagy, either through pharmacological
means or genetic intervention, has been found to exacerbate AKI.
Conversely, promoting autophagy can alleviate kidney injury (Jiang

et al., 2012). However, some studies have also found that autophagy can
exacerbate IR-induced kidney injury (Wu et al., 2009), indicating a dual
role of autophagy in AKI. Recently, increasing evidence suggests that
autophagy regulates or controls metabolism, and changes in
metabolism can also affect autophagy (Yang et al., 2019).

In AKI patients, lactate generated via glycolysis downregulated
the levels of phosphorylated adenosine monophosphate-activated
protein kinase (p-AMPK) and SIRT3 in LPS-treated HK-2 cells.
This nullified the augmented impact of 2-DG on LC2II/I in LPS-
treated HK-2 cells. The hindrance of glycolysis demonstrates a
capacity to enhance autophagy through the decrease of lactate
production and the up-regulation of p-AMPK and
SIRT3 expression. This, in turn, contributes to averting sepsis-
induced AKI (Tan et al., 2021). Gatticchi et al. (2015) reported
that down-regulation of FAO in PTECs during AKI can also
activate autophagy, while enhancing FAO reduces the need for
autophagy. Transcription factor EB (TFEB) is a key regulator of
lysosomal biogenesis and autophagy and can induce lipid metabolism
by regulating transcription genes involved in lipophagy and lipolysis
(Nakamura et al., 2020). Gene knockout of PGC1α exacerbates the
inhibitory effect of cisplatin on TFEB in mouse kidneys (Lynch et al.,
2019). Mice lacking TFEB experience lipid droplet accumulation
(Settembre et al., 2013). Excessive lipid levels can stimulate
autophagy activity in TECs (Settembre and Ballabio, 2014).
However, prolonged lipid overload can lead to lysosomal
dysfunction and impairment of autophagic flux, resulting in the
accumulation of phospholipids in lysosomes (Yamamoto et al.,
2017). The uncoupling protein (UCP) superfamily, a critical gene
for lipid degradation, is significantly downregulated in AKI mice, and
levels decrease with the severity of the renal injury. Upregulation of
UCP1 can alleviate lipid accumulation in AKI and significantly inhibit
the progression of AKI by promoting the AMPK/unc-51 like
autophagy activating kinase 1 (ULK1)/autophagy pathway (Xiong
et al., 2021). Additionally, Dany and Ogretmen. (2015) have found
that upregulation of the metabolite of sphingomyelin, ceramide, can
induce cell death-related autophagy. On the other hand, amino acid
deprivation has been shown to induce autophagy (Eleftheriadis et al.,
2017). Following AKI onset, the levels of amino acids in renal tubular
cells significantly decrease (Zhang et al., 2017). Up-regulation of IDO
enzyme-induced tryptophan depletion can increase the autophagic
flux in human renal TECs by activating eukaryotic initiation factor 2
(eIF2α) kinase general control non-derepressible 2 (GCN2) (Fougeray
et al., 2012; Krupa et al., 2022). Chaudhary et al. (2015) found that
increasing renal IDO1 activity or inducing autophagy with
GCN2 agonists can protect mice from renal inflammatory injury.
These results suggest that the up-regulation of glycolysis reduces
autophagy in TECs after AKI, while the down-regulation of fatty acid
oxidation, lipid accumulation, amino acid deprivation, and up-
regulation of ceramide synthesis, a sphingomyelin metabolite,
promote autophagy. However, abnormal accumulation of
intracellular lipids can impair autophagic clearance, while the
reduction of autophagic clearance further promotes lipid
accumulation, exacerbating autophagy dysfunction and forming a
vicious cycle. In conclusion, changes in energy metabolism of renal
TECs have dual and complex effects on autophagy during AKI.
Hence, it is prudent to approach the modulation of cell autophagy
through the regulation of energy metabolism with caution, aiming to
enhance outcomes in cases of AKI.
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3.2 Metabolism and apoptosis

Apoptosis represents the most extensively studied form of
programmed cell death in various forms of AKI. This process relies
heavily on the activation of effector cysteine aspartic proteases (namely,
caspase-3, caspase-6, and caspase-7) (VanOpdenbosch Lamkanfi, 2019).
PK, a key enzyme in the final step of glycolysis, exists in four isoforms:
PKM1, PKM2, pyruvate kinase liver isoform (PKL), and pyruvate kinase
red blood cell isoform (PKR). PKM2 is significantly upregulated in the
LPS-induced AKI model, and its inhibition was found to significantly
suppress the expression of HIF-1α and apoptosis-related factors, such as
B-cell lymphoma 2/adenovirus E1B 19 kDa interacting protein
3(BNIP3), B-cell lymphoma 2-associated X protein (Bax), and
caspase-3. Moreover, it improved the pathological symptoms of LPS-
induced AKI tissue, indicating that PKM2 can potentially play a role in
the regulation of cell apoptosis in AKI (Wu et al., 2021). IDO
upregulation leads to the depletion of tryptophan (TRP), which can
activate the general control non-derepressible 2 kinases (GCN2K)
pathway and inhibit the mammalian target of rapamycin (mTOR)
signaling, thereby promoting renal TEC’s apoptosis. Increased IDO
activity can also regulate cysteine aspartic protease-8 activation and

TECs apoptosis via the Fas/Fas ligand (FasL) -dependent mechanism
(Krupa et al., 2022). The metabolism of polyamines produces ROS and
reactive aldehyde, which are important inducing factors for DNA
damage, mitochondrial damage, endoplasmic reticulum stress/
unfolded protein response, and can trigger TEC’s apoptosis and AKI
renal tubular injury (Zahedi et al., 2019). Therefore, all these factors may
contribute to apoptosis in AKI.

3.3 Metabolism and necroptosis

Necroptosis is a form of programmed cell death mediated by the
phosphorylation of mixed lineage kinase domain-like protein (MLKL)
by receptor-interacting protein kinase 3 (RIPK3), leading to subsequent
plasma membrane rupture. In many AKI models, MLKL stands out as
one of the most upregulated genes. In a clamp ischemia model, mice
with defects in RIPK3 and MLKL are protected from IRI (Maremonti
et al., 2022). Studies have reported elevated levels of RIPK3 in the
plasma and urine of sepsis-inducedAKI patients, andRIPK3 expression
is also higher in AKI kidneys with tubular injury in human biopsy
samples (Uni and Choi, 2022). Elevated RIPK3 can influence metabolic

TABLE 1 Summary of energy metabolism changes in renal tubular epithelial cells in acute kidney injury.

Energy metabolism substances and metabolic pathways Key enzymes and products

Lipid metabolism Fatty acid metabolism Fatty acids oxidation↓ CPT1A↓

The synthesis, intake, and storage of fatty acids↑ CD36↑, Perilipin 2↑, FASN↑, SREBF1↑,
ELOVL1↑

Cellular membrane lipid
metabolism

Synthesis of phosphatidylcholine↑ LPCAT↑

Hydrolysis of sphingomyelin↑ SMase↑, ceramide↑

Arachidonic acid metabolism:CYP450↑ 20-HETE↑

Metabolism of triglycerides Synthesis of triglycerides↑ DGAT↑

Breakdown of triglycerides↓ lipase↓

Glucose metabolism Glycolysis↑ HK↑, PFK↑, PKM2↑, PDKs↑, LDH↑, lactic
acid↑

The pentose phosphate pathway↑ G6PD↑

Gluconeogenesis↓ (the acute ischemia phase of AKI) FBP1↓, PCK1↓, PCK2↓ (the acute ischemia
phase of AKI)

Gluconeogenesis↑ (the late reperfusion phase of AKI)

Polyol metabolism↑ Aldose reductase↑, Fructose↑

Metabolism of amino
acids

Glutamine metabolism Glutaminolysis↑ GLS↑

Tryptophan metabolism Kynurenine pathway↑:the NAD branch↑, the picolinic acid
branch, the KYNA branch↑

IDO↑, KMO↓, 3-HK↓

Arginine metabolism Hydrolysis of arginine↑ ARG2↑

Polyamine metabolism Polyamine degradation↑ SAT1↑, SMOX↑

Branch chain amino acid
metabolism

Decomposition metabolism of Branch chain amino acid↓ Branch chain amino acid decomposition
metabolism enzymes↓

CPT1A, Carnitine palmitoyltransferase 1 A; CD36, Cluster of differentiation 36; FASN, fatty acid synthase; SREBF1, Sterol regulatory element-binding transcription factor 1; ELOVL, 1,

Elongation of very long chain fatty acids like protein 1; LPCAT, lysophosphatidylcholine acyltransferase; CYP450, Cytochrome P450; SMase, Sphingomyelinase; 20-HETE, 20-

hydroxyeicosatetraenoic acid; DGAT, diacylglycerol acyltransferase; PLA2, Phospholipase A2; HK, hexokinase; FBP-1, Fructose-1, 6-bisphosphatase; PFK-1, Phosphofructokinase-1; G6PD,

Glucose-6-phosphate dehydrogenase; PCK, phosphoenolpyruvate carboxykinase; PKM2, Pyruvate Kinase M2; PDH, pyruvate dehydrogenase; PDKs, Pyruvate dehydrogenase kinases; LDH,

lactate dehydrogenase; GLS, glutaminase; NAD, nicotinamide adenine dinucleotide; IDO, Indoleamine 2, 3-dioxygenase; TDO, Tryptophan 2, 3-dioxygenase; KYNA, kynurenine acid; KAT,

kynurenine aminotransferase; KMO, Kynurenine 3-monooxygenase; 3-HK, 3-hydroxykynurenine; ARG, arginase; SAT1/PAOX, Spermidine/spermine and by N1-acetylation and N1-

acetylpolyamine oxidase; SMOX, Spermine oxidase.↑, Up-regulation of the substance or metabolic pathway in AKI; ↓, Down-regulation of the substance or metabolic pathway in AKI.
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enzymes in the mitochondrial matrix through the RIPK1/RIPK3/
MLKL necrotic body, promoting the production of mitochondrial
reactive oxygen species (mtROS) that can act on glutamate
dehydrogenase (GDH) and catalyze the generation of αKG from
glutamate. αKG, as an energy substrate, actively participates in the
respiratory chain, promotes mtROS production, and induces
necroptosis (Zhao et al., 2021; Maremonti et al., 2022; Tian et al.,
2022). However, Li et al. (2021) found that glycolytic metabolism
inhibits RIPK-dependent necroptosis by suppressing mtROS in renal
TEC injury. Therefore, further research is needed to validate the
relationship between the alterations in energy metabolism of renal
TECs and necroptosis.

3.4 Metabolism and pyroptosis

Pyroptosis is an inflammatory form of programmed cell death that
primarily occurs in macrophages and dendritic cells, but it can also
happen in other cell types, including hepatocytes and renal TECs. In the
kidney, cellular pyroptosis can be induced by various factors, such as
cadmium, contrast agents, renal ischemia-reperfusion, and unilateral
ureteral obstruction, characterized by the activation of inflammatory

caspase cysteine-dependent aspartate proteases and the release of
interleukin-1 beta (IL-1β) (Liu et al., 2022). Studies have
demonstrated that the metabolite αKG induces pyroptosis in tumor
cells through death receptor6 (DR6) and gasdermin-C (GSDMC)
-dependent pathways. Additionally, treatment with the end product
of glycolysis, lactate, to establish acidic environments, can make cancer
cells more susceptible to α-KG induced pyroptosis (Zhang et al., 2021).
Hao et al. (2017) found thatmicroRNA-17-5p (miR-17-5p)may inhibit
DR-6 to promote renal TEC survival during hypoxic/ischemic renal
injury, suggesting that energy metabolism in renal TECs is closely
related to pyroptosis. Given the scant research in this domain,
additional studies are required to substantiate these discoveries.

3.5 Metabolism and ferroptosis

Ferroptosis is a form of cell death regulated by iron-dependent
lipid peroxidation. After hypoxia-reoxygenation, metabolites such
as KYN and KYNA produced from tryptophan metabolism via the
KYN pathway, along with the IDO1 enzyme from the metabolism of
indoleamine, can activate aryl hydrocarbon receptor (AhR) and
trigger ROS generation, leading to AhR-mediated ferroptosis of

FIGURE 5
Diagram of energy metabolism changes in renal tubular epithelial cells in acute kidney injury. FA, Fatty acid; CPT1A, Carnitine palmitoyltransferase
1 A; CD36, Cluster of differentiation 36; FASN, Fatty acid synthase; SREBF1, Sterol regulatory element-binding transcription factor 1; ELOVL 1, Elongation
of very long chain fatty acids like protein 1; PC, Phosphatidylcholine; LPC, Lysophosphatidylcholine; LPCAT, Lysophosphatidylcholine acyltransferase; AA,
Arachidonic acid; CYP450, Cytochrome P450; 20-HETE, 20-hydroxyeicosatetraenoic acid; SM, Sphingomyelin; SMase, Sphingomyelinase; TG,
Triglycerides; DGAT, Diacylglycerol acyltransferase; PLA2, Phospholipase A2; Plin2, Perilipin 2; LD, Lipid droplet; GLUT, Glucose transporters; HK,
Hexokinase; FBP-1, Fructose-1, 6-bisphosphatase; PFK-1, Phosphofructokinase-1; G6PD, Glucose-6-phosphate dehydrogenase; PCK,
Phosphoenolpyruvate carboxykinase; PKM2, Pyruvate Kinase M2; PDH, Pyruvate dehydrogenase; PDKs, Pyruvate dehydrogenase kinases; LDH, Lactate
dehydrogenase; GLS, Glutaminase; TRP, Tryptophan; NAD, Nicotinamide adenine dinucleotide; IDO, Indoleamine 2, 3-dioxygenase; TDO, Tryptophan 2,
3-dioxygenase; KYNA, Kynurenine acid; PA, Picolinic Acid; ARG, Arginase; SAT1/PAOX, Spermidine/spermine and by N1-acetylation and N1-
acetylpolyamine oxidase; SMOX, Spermine oxidase; BCAA, Branched-chain amino acid. *, Gluconeogenesis↓(FBP-1↓, PCK↓) (the acute ischemia phase of
AKI); Gluconeogenesis↑ (the late reperfusion phase of AKI).↑:Up-regulation of the substance or metabolic pathway in AKI; ↓:Down-regulation of the
substance or metabolic pathway in AKI. Progress of the relationship between energy metabolism reprogramming and programmed cell death in renal
tubular epithelial cells of acute kidney injury.
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renal TECs (Krupa et al., 2022). Furthermore, during AKI,
upregulation of LPCAT3 leads to phospholipid peroxidation
containing polyunsaturated fatty acids, which induces ferroptosis
(Zhang et al., 2022). Kang et al. (2019) found that P53-mediated
ferroptosis is associated with solute carrier family 7member 11
(SLC7A11) inhibition and upregulation of SAT1 and GLS2 in
cancer cells. However, further research is needed to confirm if
P53 can induce iron death in AKI renal TECs by regulating these
substances.

4 Summary and perspectives

In summary, AKI leads to significant reprogramming of energy
metabolism in renal TECs. This reprogramming involves not only
the well-known down-regulation of FAO and up-regulation of

glycolysis but also changes in the metabolism of cell membrane
lipids, triglycerides, PPP, gluconeogenesis, and amino acids (Table 1;
Figure 5). FAO plays a critical role in maintaining energy supply in
PTECs, occurring not only in mitochondria but also in peroxisomes.
Peroxisomes not only metabolize long-chain fatty acids into shorter
chain products, but also serve as a sink for the ROS generated by
mitochondria due to their abundant catalase and other ROS
scavenging enzymes, protecting TECs from toxic accumulation of
long-chain fatty acids. Up-regulating FAO in peroxisomes has been
found to protect against AKI kidney injury. Cell membrane lipid
metabolism also plays an important role in AKI. LPCAT can induce
ferroptosis in renal TECs by regulating phospholipid metabolism.
Additionally, the metabolism of AA derivative 20-HETE and
sphingolipid-derived ceramides play a significant role in AKI.
Furthermore, cholesterol and triglycerides accumulate in renal
TECs during AKI, inducing autophagy. Nevertheless, the

TABLE 2 Summary of the literature on the regulation of energy metabolic reprogramming to improve AKI.

Energy metabolism
substances

Targeted energy
metabolic pathways

Targets Interventions Injury model References

Lipid metabolism Fatty acids oxidation↑ CPT1A↑ C75 I/R Idrovo et al. (2012)

PPARγ agonist I/R Hu et al. (2012)

PGC1α agonist I/R Wang et al. (2021)

PXR agonist I/R Yu et al. (2020)

Synthesis of S1P↑ S1P↑, SK-1↑ Selective A1AR agonist
(CCPA)

I/R Park et al. (2012)

Synthesis of ceramides↓ Sphingomyelinase↓ Myriocin, amitriptyline Cisplatin Dupre et al. (2017)

Arachidonic acid metabolism:
CYP450

20-HETE↑ 20-HETE agonists I/R Regner et al. (2009)

20-HETE↓ 20-HETE Inhibitors I/R Hoff et al. (2011)

Glucose metabolism Glycolysis↓, pentose
phosphate pathway↑

PKM2↓ Shikonin, S-nitroso-CoA Lipopolysaccharide,
I/R

Wu et al. (2021); Zhou
et al. (2019)

Gluconeogenesis↓ Reduction in insulin
resistance

Insulin I/R Melo et al. (2010)

Glipizidone I/R Hu et al. (2012)

Polyol metabolism↓ Fructokinase↓ luteolin I/R Andres-Hernando et al.
(2017)

Amino acid metabolism Tryptophan metabolism:
Kynurenine pathway↑:the
NAD branch↑, the picolinic
acid branch↓, the KYNA

branch↑

ACMSD↓ ACMSD inhibitors Cisplatin Katsyuba et al. (2018)

KYNA↑ Exogenous
supplementation with

KYNA

I/R Arora et al. (2014)

KMO↓ KMO gene blockade I/R Zheng et al. (2019)

NAD↑ PGC1α agonist I/R Tran et al. (2016)

Arginine metabolism: arginase
pathway↓

Arginase2↓ Arginase2 inhibitors I/R Hara et al. (2020)

Arginine metabolism: nitric
oxide synthase pathway↑

Arginase2 Exogenous administration
of arginine

Sepsis Tanuseputeroet al. (2020)

Polyamine degradation↓ SAT↓, SMOX↓ Ablation of the SSAT or
SMOX gene

Cisplatin, Sepsis Zahedi et al. (2010);
Zahedi et al. (2017)

FAO: CPT1A, Carnitine palmitoyltransferase 1 A; PGC1α, Peroxisome proliferator-activated receptor coactivator (PGC)-1 alpha; PPARγ, Peroxisome proliferator-activated receptor-gamma;

PXR, pregnane X receptor; CYP450, Cytochrome P450; 20-HETE, 20-hydroxyeicosatetraenoic acid; PKM2, Pyruvate Kinase M2; SK-1, Sphingosine kinase 1; S1P, Sphingosine-1-phosphate;

NAD, nicotinamide adenine dinucleotide; KYNA, kynurenine acid; KMO, Kynurenine 3-monooxygenase; SAT1/PAOX, Spermidine/spermine and by N1-acetylation and N1-acetylpolyamine

oxidase; SMOX, spermine oxidase; ACMSD, aminocarboxymuconate semialdehyde decarboxylase; I/R:Ischemia/reperfusion. ↑, Up-regulation of the substance or metabolic pathway after the

intervention; ↓, Down-regulation of the substance or metabolic pathway after the intervention.
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abnormal accumulation of intracellular lipids hinders the
autophagic clearance process. This, in turn, results in even more
lipid buildup, further aggravating the impaired autophagic function.
This establishes a detrimental cycle. During AKI, various changes
occur in the glucose metabolism of renal TECs, including increased
glycolysis, activated PPP, inhibited gluconeogenesis, and
upregulated polyol metabolism. Inhibiting glycolysis and
increasing PPP activity, as well as blocking the polyol pathway,
may offer protective effects for the kidneys. Amino acid metabolism
is also an important aspect of AKI metabolic reprogramming.
Upregulated glutamine metabolism in AKI compensates for
metabolic acidosis and supplements the TCA cycle. The
tryptophan metabolism pathway in the kidneys mainly involves
KYN, and inhibiting the PA branch of KYN metabolism while
increasing the NAD branch and KYNA branch metabolism can
alleviate AKI kidney injury. Moreover, the upregulation of arginase
in renal TECs during AKI competes with nitric oxide synthase for
the same substrate, arginine, leading to nitrosative stress and
damaging cells. Branched-chain amino acid and polyamine
metabolism are also closely related to AKI. These changes in
energy metabolism pathways, metabolites, and key enzymes can
further regulate autophagy, apoptosis, necroptosis, ferroptosis, and
other pathways in renal TECs. Additionally, AKI triggers changes in
nucleotide metabolism in renal TECs. Under ischemic and
inflammatory conditions, ATP degrades into AMP to generate
adenosine, which has been shown to have a protective effect on
cells (Módis et al., 2009). Xanthine oxidoreductase (XOR) activity
and purine degradation products were also found to be significantly
elevated in AKI (Kosaki et al., 2022). Administering exogenous
NAD and inhibiting poly ADP-ribosepolymerase (PARP) can
restore renal tubular cell ATP, phosphocreatine (PCr), and NAD
+ levels, reducing renal TEC apoptosis (Liu et al., 2015). However,
due to limited research, further experiments are needed to clarify the
specific mechanisms.

Recent studies have shown that activating SIRT1 and AMPK/
mToR through calorie and diet restriction enhances autophagy,
counters the decrease of endothelial nitric oxide synthase (eNOS)
and PGC-1α induced by I/R, and improves AKI (Lempiäinen et al.,
2013; Robertson et al., 2015; Andrianova et al., 2021). Therefore, in
the future, regulating the energy metabolism pathway, key enzyme
activity, and metabolic product generation are potential strategies
for regulating programmed cell death in renal TECs and improve
AKI (Table 2). Dietary structure adjustments may also serve as

supportive measures in the treatment of assist in the treatment
of AKI.
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Glossary

AKI Acute kidney injury; TECs, Tubular epithelial cells; PTECs, Proximal
renal tubular epithelial cells

FAO Fatty acid oxidation

PPP Pentose phosphate pathway

IRI Ischemia-reperfusion injury

ROS Reactive oxygen species

FAs Fatty acids

CPT Carnitine palmitoyltransferase

Acyl-CoA Acyl-Coenzyme A

TCA Tricarboxylic acid

NADH Nicotinamide adenine dinucleotide hydrogen

FADH Flavin Adenine Dinucleotide hydrogen

Sirt Sirtuin

PGC Peroxisome proliferator-activated receptor coactivator

PGC1α Peroxisome proliferator-activated receptor coactivator -1 alpha

PPAR Peroxisome proliferator-activated receptor

CD36 Cluster of Differentiation 36

LPCAT Lysophosphatidylcholine acyltransferase

20-HETE 20-hydroxyeicosatetraenoic acid

19-HETE 19-hydroxyeicosatetraenoic acid

I/R Ischemia/reperfusion

FFAs Free fatty acids

LPS Lipopolysaccharide

LDH Lactate dehydrogenase

HK Hexokinase

PFK Phosphofructokinase

PK Pyruvate kinase

PDH Pyruvate dehydrogenase

HIF-1α Hypoxia-inducible factor-1α

PKM Pyruvate kinase muscle isoform

NADPH Nicotinamide adenine dinucleotide phosphate

GSH Glutathione

G6PD Glucose-6-phosphate dehydrogenase

αKG α-ketoglutarate

NOS Nitric oxide synthase

KYN Kynurenine

NAD Nicotinamide adenine dinucleotide

GLS Glutaminase

KP Kynurenine pathway

IDO Indoleamine 2,3-dioxygenase

TDO Tryptophan 2,3-dioxygenase

KYNA Kynurenic acid

SAT1/
PAOX

Spermidine/spermine
and by N1-acetylation and
N1-acetylpolyamine oxidase
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