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Cellular plasticity defines the capacity of cells to adopt distinct identities during
development, tissue homeostasis and regeneration. Dynamic fluctuations
between different states, within or across lineages, are regulated by changes in
chromatin accessibility and in gene expression. When deregulated, cellular
plasticity can contribute to cancer initiation and progression. Cancer cells are
remarkably plastic which contributes to phenotypic and functional heterogeneity
within tumours as well as resistance to targeted therapies. It is for these reasons
that the scientific community has become increasingly interested in
understanding the molecular mechanisms governing cancer cell plasticity. The
purpose of this mini-review is to discuss different examples of cellular plasticity
associated with metaplasia and epithelial-mesenchymal transition with a focus on
therapy resistance.
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Introduction

In 1957, the biologist Conrad Waddington described embryonic development as a
series of distinct paths that stem cells follow before reaching an irreversible terminal
differentiation stage (Waddington, 2014; Rajagopal and Stanger, 2016). This predictive
model introduced the concept of unidirectional hierarchical cell fate. However, the notion
of irreversible cellular commitment, meaning a cell becomes a fixed type of specialized cell
with a determined physiological function, has been radically revised during the late 20th
and early 21st centuries. John B. Gurdon challenged Waddington’s dogma by transferring
the nucleus of fully differentiated adult cells into an enucleated eggs which results into
fully developed adult animal (Gurdon, 1962). Later, Shinya Yamanaka, by introducing
four transcription factors (Klf4, c-Myc, Oct3/4, and Sox2), reprogrammed fully
differentiated mouse fibroblast cells into a pluripotent stem cell state, capable of
producing multiple cell types (Takahashi et al., 2007). Gurdon and Yamanaka’s results
revolutionized the notion of terminal cell differentiation, relaunched the concept of cell
plasticity and in 2012 they were awarded the Nobel Prize for Physiology or Medicine for
their ground-breaking discoveries.

Since then, a growing number of studies conducted on different organs have
demonstrated the ability of committed cells to be reprogrammed in response to various
stimuli. Currently the term “plasticity” refers to the cell’s ability to adopt different identities
through multiple mechanisms, such as dedifferentiation or transdifferentiation, particularly
when tissue homeostasis is perturbed. Interestingly, cancer cells can alter their identity by
adopting alternative developmental lineages. Lineage plasticity is a mechanism commonly
employed by tumour cells to evade chemotherapy treatment, leading to intra-tumour
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heterogeneity, therapy resistance and metastasis. The development
of single cell sequencing technologies has profoundly contributed to
gathering new insight into tumour cell plasticity. This has led to the
identification of previously uncharacterized cell states and allowed
us to trace transitions between different states. As a result, we have
gained a better understanding of the mechanisms underlying
tumour heterogeneity and resistance to therapy offering us new
therapeutic prospects.

Here, we will discuss concisely recent literature on metaplasia
and EMT, two biological processes that regulate the emergence of
distinct cell identities in response to specific stimuli, with a final
emphasis on lineage plasticity and therapy resistance.

Metaplasia

Metaplasia is an adaptive process characterized by the
replacement of a differentiated cell type with another cell type
not normally observed in the tissue where it occurs. It is mainly
characterized by changes in cell morphology and expression of
lineage-specific markers, including transcription factors defining
tissue-specific identity. Metaplasia affects organs constantly
exposed to external damaging agents or suffering from chronic
inflammation, such as the lungs, intestinal tract, and pancreas. It is
generally considered a protective process to limit tissue injury.
However, metaplasia is also considered a precursor to dysplasia,
and can be associated with an increased risk of malignancy. Here, we
will discuss the most common forms of inflammatory-driven
metaplasia which includes the specialized intestinal metaplasia

(SIM) reported in Barrett’s esophagus (BE) and the acinar-ductal
metaplasia (ADM) observed in the pancreas.

BE is a metaplastic condition in which the normal stratified
squamous epithelium, covering the distal esophagus, is gradually
replaced with a columnar intestinal-like epithelium, including goblet
cells, in response to chronic exposure to acid and bile in patients
with gastroesophageal reflux disease (GERD). It has been suggested
that the goblet cells’ cytoprotective role makes the epithelium more
resistant to GERD-induced damage. Nevertheless, BE can progress
into low-grade and high-grade dysplasia and culminate in the
development of esophageal adenocarcinoma (EAC) (Figure 1A).
BE pathogenesis has been largely debated and several cell types have
been proposed as cells of origin (Souza and Spechler, 2022).
However, the lack of an in vivo model able to recapitulate many
aspects of human disease has left the question about its origin and
the association to EAC unanswered for several years. In 2012, M.
Quante et al. (2012) using lineage tracing experiments in a mouse
model of chronic esophageal inflammation, identified Lgr5+ve

progenitor cells in the gastric cardia as the origin of BE. In 2017,
M. Jiang et al. (2017) demonstrated that p63+ve, KRT5+ve, KRT7+ve

basal progenitor cells, localized in the squamous/columnar junction
of the upper gastrointestinal tract, can differentiate into intestinal
cells, including goblet cells, recapitulating SIM. Few years later,
Nowicki-Osuch et al. (2021) conducted comparative multi-omics
analyses on different potential tissues of origin, including the fresh
isolated esophageal submucosal glands, and they found that, to
repair GERD-damaged squamous epithelium, undifferentiated cells
at the gastric cardia can adopt a new identity resulting in SIM.
Additionally, the authors report that the undifferentiated phenotype

FIGURE 1
(A) Schematic representation of BE initiation and progression to adenocarcinoma. (B)Model of ADM origin and progression to PDAC. (C) Illustration
ofmorphological changes that occur during the process of EMT aswell as during the reverse process. (D) Schematic overview of drug response in cancer.
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observed in BE was maintained during EAC transition, even when
BE was no longer detectable (Nowicki-Osuch et al., 2021). Although
these findings are mainly correlative, they support what other
groups have previously hypothesized that BE originates from the
gastric cardia lineage (Quante et al., 2012) and that it can be
considered a precancerous condition.

Independently of the cell of origin, what remarkably emerges
from several studies is the contribution to the BE reprogramming
process of key regulators of intestinal epithelial identity, such as
CDX2 and HNF4α (Jiang et al., 2017; Nowicki-Osuch et al., 2021)
which are both upregulated in BE, along with other intestinal TFs
(Rogerson et al., 2019). In addition, ectopic expression of
CDX2 leads to intestinal metaplasia in the mouse gastric
mucosa (Silberg et al., 2002) and HNF4a-mediated
CDX2 expression intestinalize antral stomach organoids by
regulating chromatin access at specific intestinal enhancers
suggesting that enhancer accessibility can serve as mechanism
for protecting the identity of the tissue of origin (Singh et al., 2022).
Both CDX2 and HNF4α are TFs essential for embryonic intestinal
development and adult intestinal homeostasis and whose
deregulation impairs cell identity (Garrison et al., 2006;
Hryniuk et al., 2012; San Roman et al., 2015). For example, the
conditional deletion of Cdx2 from early endoderm affects the
expression of additional TFs that define the intestinal identity,
such as CDX1 and HNF1α, and leads to squamous differentiation
through the activation of the esophageal differentiation program
(Gao et al., 2009). Therefore, a better understanding of how specific
TFs regulate esophageal cell identity and reprogramming is
important for better defining the molecular mechanisms that
cause BE and the transition to EAC.

ADM is a reversible and highly regulated form of cell plasticity
induced by the inflammatory microenvironment and it is
frequently observed in the pancreas affected by acute or chronic
pancreatitis. Pancreatic acinar cells are one the major cell
components in the pancreas. They are postmitotic cells
responsible for synthesising, storing and secreting digestive
enzymes, such as amylase and lipases. Interestingly, pancreatic
acinar cells are sensitive to different stress conditions. In response
to inflammation or injury, pancreatic acinar cells can
dedifferentiate into embryonic progenitor cells with a ductal-
like phenotype. Specifically, during ADM, acinar cells reduce
the expression of acinar-specific TFs, such as MIST1, PTF1A,
GATA 6, and NR5A2, and they rapidly decrease the expression
of digestive enzymes that could enhance the inflammatory
response (Zhu et al., 2004; Krah et al., 2015; Martinelli et al.,
2013; von Figura et al., 2014; Pinho et al., 2011). These changes are
accompanied by the expression of ductal markers, such as KRT19,
osteopontin and TFs expressed by pancreatic embryonic
progenitors such as Sox9 (Kopp et al., 2012; Prevot et al., 2012;
Mills and Sansom, 2015). The resulting hybrid ductal-like cells are
proliferative and able to replace damaged acinar cells contributing
to regeneration after injury. Therefore, ADM is considered a
protective and reversible repair mechanism that pancreatic cells
adopt to limit the damage and reconstitute tissue integrity.
However, in the presence of persistent inflammation,
deregulated signalling pathways and KRAS oncogenic
mutations, ADM becomes persistent and can progress to
different grades of pancreatic intraepithelial neoplasia (PanIN)

lesions (Habbe et al., 2008) and ultimately to pancreatic ductal
adenocarcinoma (Ji et al., 2009; Guerra et al., 2011; Ardito et al.,
2012; Bailey et al., 2016a; Bailey et al., 2016b; Storz, 2017)
(Figure 1B). Kras mutant cells acquire multiple highly plastic
states defined by distinct chromatin accessibility profiles
(Burdziak et al., 2023). The combination of Kras mutations and
injury-induced inflammation is associated with a variety of gene
expression programs, some of which are maintained in PDAC,
suggesting that the combined effect of early genetic mutations and
tissue injury primes cells for tumour development (Alonso-
Curbelo et al., 2021; Burdziak et al., 2023). Based on these
studies, it appears that the switch of ADM from a protective
mechanism to a precancerous lesion is a critical step that
require particular attention. Recent intriguing data generated by
Andrea Viale’s laboratory demonstrate that a transient
inflammatory event induces an adaptive response characterized
by persistent transcriptional and epigenetic changes that facilitate
reacquiring ADM, if a second inflammatory challenging event
occurs, thereby providing a powerful protective mechanism (Del
Poggetto et al., 2021). However, the early onset of oncogenic Kras
activation can override the effect of this initial defence mechanism
contributing actively to the development of tumours. Thus, one
can speculate that a controlled induction and/or stabilization of
ADM state could be beneficial for pancreatitis treatment, and it
may prove to be an effective strategy to prevent patients from
progressing into PDAC.

This could be achieved by pharmacologically intervening in key
pathways regulating the initiation and progression of ADM.

As suggested by Del Poggetto et al. (2021) treatment withMAPK
pathway agonists could reduce the selective pressure to activate
oncogenic Kras representing a strategy to induce ADM and
ameliorate pancreatitis. Although this strategy may prove to be
an initial effective treatment option, the long term consequences of
the MAPK pathway and inflammation should be carefully
investigated to exclude the possibility of induction of a neoplastic
commitment, as observed with Kras mutations (Alonso-Curbelo
et al., 2021). Inhibition of Numb could represent another beneficial
therapeutic option. Loss of Numb induces progression to ADM but
reduces the proliferation of PanIN, thus blocking the progression to
tumour (Greer et al., 2013; Mills and Sansom, 2015). A recent study
proposes a more complex cell heterogeneity in injury-induced
ADM. Lineage tracing and single-cell RNA sequencing (scRNA
seq) analysis of ADM identified acinar cells undergoing a pyloric-
type metaplasia and transitioning to mucinous progenitor cell-like
populations that differentiate in multiple subtypes of tuft and
enteroendocrine cells (Ma et al., 2022). Overall, each of the
different cell types identified in ADM may be susceptible to
oncogenic transformations; therefore, a better molecular
characterization of the cell types and cell states contributing to
the unresolved ADM will help to identify new therapeutic targets to
block the progression to PDAC.

Epithelial-mesenchymal transition

EMT is a transient physiological process essential for
embryonic development and tissue formation. During EMT
epithelial cells transit to cells with a complete mesenchymal
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phenotype through a dynamic program regulated by the
expression of a core set of EMT transcription factors (EMT-
TFs) such as Twist1, Zeb1, Snail1, and Slug (Thiery et al., 2009;
Nieto, 2011) (Figure 1C). Despite years of debate about the
presence and function of EMT in adults, the reactivation of the
EMT program has been reported in several pathological conditions
including many metastatic cancer types. Accordingly, the
conditional knockout of Zeb1 in a metastatic pancreatic cancer
mouse model fix the cells in an epithelial state and strongly reduce
the progression to metastatic tumours (Krebs et al., 2017).
However, Snail1 or Twist1 depletion, in the same tumorigenic
mouse model, has no effect on metastasis formation (Zheng et al.,
2015). Although these findings confirm the tissue specific function
of EMT-TFs already proposed by other groups (Caramel et al., 2013;
Ye et al., 2015), one of themajor caveats is the use of the mesenchymal
marker a-smooth muscle actin as an indicator of EMT, despite its
expression being rarely detected in the same mouse model. In
addition, the compensatory effects of key EMT-TFs, such as
Zeb1 and Slug, expressed in the Twist and Snail knockout, cannot
be excluded (Aiello et al., 2017). An alternative explanation that could
explain the apparent lack of EMT requirement for metastasis in
Zheng’s paper may come from studies that focus on the dynamic
activation of specific EMT-TFs. Only the transient, and not
continuous, expression of Twist1 induces a novel cell state that
promotes invasive growth in a model of immortalized human
mammary epithelial cells (Schmidt et al., 2015). These results are
consistent with previous published data showing that Snail1 and
Twist1 transient expression leads to metastatic growth in mouse
models of breast and squamous cell carcinomas (Tsai et al., 2012;
Tran et al., 2014). Due to the transient nature of EMT during
tumorigenesis, tracing the dynamic of this process has been
challenging. In 2020, using dual recombinases-mediated genetic
lineage tracing (Cre/Lox and Dre/Lox), Li Yan and colleagues
detected EMT activity in a spontaneous breast-to-lung tumour
metastasis model. In this model, cells start expressing the EMT
marker N-cadherin during the early phases of dissemination and
then form the majority of lung metastases. Consistently, N-cadherin
deletion significantly reduces the number of metastases compared to
control mice (L et al., 2020; Vieugue and Blanpain, 2020). It has now
been widely demonstrated that, rather than transitioning to a full
mesenchymal state, cancer cells undergo a partial or “hybrid” EMT
showing both epithelial andmesenchymalmarkers being expressed by
the same cancer cell, including circulating tumour cells. The presence
of a partially activated EMT program is sufficient to provide cancer
cells with highly invasive and metastatic potential (Yu et al., 2013;
Ruscetti et al., 2015; Puram et al., 2017). In 2021, Luond et al. (2021)
using a novel tamoxifen-inducible dual recombinase lineage tracing
approach, were able to map partial and full EMT states in a mouse
model of metastatic breast cancer. They showed that mammary
cancer cells rarely reach full EMT, but once established, cells tend
to retain this phenotype. Conversely, cells undergoing partial EMT
frequently go through the inverse process called mesenchymal-
epithelial transition (MET).

Various degrees of dynamic hybrid states have been reported
among cancer cells, indicating their ability to shift between multiple
states. Compelling work by I. Pastushenko and co-workers,
performed on a mouse model of skin squamous cell carcinomas
undergoing spontaneous EMT and on metaplastic-like mammary

tumours, led to the identification of different tumour
subpopulations with a spectrum of intermediate EMT states
which contribute to tumour heterogeneity. Interestingly, the
different intermediate subpopulations show varying degrees of
invasive and metastatic capacity, with hybrid epithelial-
mesenchymal cells showing an increased capacity for entering the
circulation and forming lung metastases (Pastushenko et al., 2018).
A number of significant papers have been published since these data
were first reported by the Blanpain’s group. These studies
demonstrate that multiple EMT states are present in a variety of
different models including glioblastoma (Neftel et al., 2019) and
melanoma (Wouters et al., 2020).

Intriguing discussion has arisen regarding the existence of a
phenotypic continuum rather than the presence of stable discrete
EMT states. MAGIC, a computational method that recovers
missing gene expression in individual cells, has significantly
improved scRNA seq quality data and, when applied to an
EMT model, has revealed a transcriptional continuum gradient
with the majority of cells residing in intermediate states (van Dijk
et al., 2018). This alternative EMT model has been confirmed by
other groups analysing epithelial cells undergoing spontaneous
EMT or following treatment with TGFβ (McFaline-Figueroa et al.,
2019). In 2021, Simeonov et al. (2021) developed an excellent
CRISPR/Cas9-based tool capable of capturing transcriptional and
phylogenetic information at a single cell level. This method, called
macsGESTALT, was applied to a model of pancreatic cancer
metastasis. Their findings support the notion that a continuum
of EMT states exists in vivo, where cells gradually lose epithelial
markers and gradually acquire EMTmarkers with late hybrid EMT
transcriptional signatures associated with higher risk of death in
patients with PDAC and lung cancer (Simeonov et al., 2021). The
gradual changes in gene expression observed within a tumour
translates in a gradient of tissue morphologies. Multiplexed 3-
dimensional analysis in combination with spatial transcriptomic
analysis has highlighted the continuous phenotypic changes that
occur from the centre of the tumour toward the invasive front and
in the tissue microenvironment in colorectal cancer samples (Lin
et al., 2023; Messal and van Rheenen, 2023).

Finally, it is worth mentioning that alternative EMT
programmes can be adopted during tumour progression. Using a
lineage-labelled murine model of ductal pancreatic cancer, Aiello
et al. (2018) described an additional EMT model that involve loss of
the epithelial phenotype through protein internalization, rather than
the transcriptional repression commonly associated with the
classical EMT phenotype. Interestingly, this alternative post
translational-regulated program is mainly associated to collective
cell migration with cell maintaining cell-cell contacts during the
metastatic process. Overall, despite the initial controversy about
EMT, the experimental evidence published in recent years have
strongly supported its critical role in cancer, regardless of the mode
of action.

Lineage plasticity and drug resistance

During cancer progression, cancer cells undergo extensive
genetic and epigenetic reprogramming which reveals their latent
ability to change lineages. The expansion of emerging subclones with
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a new identity is highly context specific, can contribute to intra-
tumour cell heterogeneity and adversely affect treatment response as
new cell types have different sensitivity to the original drug target,
which may even be no longer present. Thus, targeting communal
regulatory mechanisms of the epithelial-mesenchymal plasticity
could prove to be a more efficient therapeutic strategy (Cook and
Vanderhyden, 2022) (Figure 1D). Several studies report a link
between EMT and the development of drug resistance in
different in vitro and in vivo tumour models. For instance, EMT
has been associated with resistance to gemcitabine treatment in
models of PDACs (Shah et al., 2007;Wang et al., 2009). Accordingly,
loss of Snail and Twist1 enhanced sensitivity to gemcitabine by
regulating the expression of nucleosides transporters and resulting
in an increased overall survival (Zheng et al., 2015). Furthermore,
EMT cells appear to be resistant to cyclophosphamide, one of the
most used chemotherapeutic agents for treating breast cancer. It is
important to note that surviving EMT cells significantly contribute
to lung metastasis formation (Fischer et al., 2015). Debaugnies et al.
(2023) identified RHOJ, a small Rho GTPase of the Cdc42 subfamily,
as regulator of anti-cancer therapy resistance in a mouse model of
skin squamous cell carcinoma undergoing spontaneous EMT.
Mechanistically, high level of RHOJ in the EMT-resistant cells
prevents the accumulation of DNA damage and alleviates the
replicative stress by promoting the activation of “dormant origin”
of DNA replication. This process facilitates the cell’s ability to repair
DNA damage, which allows them to survive treatment (Debaugnies
et al., 2023). More recently, promising data published by Lengrand
et al. (2023) show that the pharmacological inhibition of netrin-1, a
protein expressed in EMT tumour cells, increases the proportion of
epithelial cells, while reducing the proportion of hybrid and late
EMT cells. Importantly this sensitizes cells to chemotherapy
treatment. This might represent a novel therapeutic option for
targeting EMT (Lengrand et al., 2023).

The process of therapy resistance is further complicated because
chemotherapy treatment itself can trigger lineage plasticity and
promotes drug resistance. As an example, EGFR mutant lung
adenocarcinomas that are repeatedly treated with tyrosine kinase
inhibitors develop resistance within months of treatment. In a
subgroup of patients with resistance to treatment, evidence of
small-cell lung cancer transition has been reported, indicating
that treatment can trigger the transformation of the tumour into
a distinct histological subtype (Oser et al., 2015).
Transdifferentiation as mechanism of drug resistance has been
also reported in a mouse model of castration resistant prostate
cancer (CRPC) treated with the anti-androgen abiraterone (Zou
et al., 2017). Similar histologic features, indicative of CRPC
becoming an aggressive neuroendocrine type, has been observed
in patients resistant to androgen receptor inhibitor treatment
(Beltran et al., 2011; Beltran et al., 2016). Lineage plasticity in
response to treatment has been also reported in patients with
metastatic muscle invasive bladder cancer (MIBC). In particular,
partial squamous differentiation has been observed in the basal cells
of MIBC following chemotherapy. Combination of ATAC-
sequencing and proteomic analyses indicates the lysosomal
cysteine proteinase Cathepsin H (CSTH) as potential regulator of
this distinctive form of lineage plasticity. Gradual increase of CSTH
has been observed during this partial basal-squamous transition. An
intriguing finding in this study is that treatment with the CSTH

inhibitor, E64, caused full squamous differentiation and tumour
growth suppression indicating that differentiation therapy could be
a potential treatment alternative for patients suffering from MIBC
(Wang et al., 2022). The use of differentiation therapy to leverage
lineage plasticity is an innovative classical approach that may be
applied to treat solid tumours in which cell plasticity contributes to
chemotherapy resistance. Thus, a better understanding of the
molecular changes that occur in multiple resistant clones, which
emerge following therapy treatment, is essential for the
identification of targets that can be exploited by differentiation
therapy. Recently, Goyal et al. (2023) developed a novel
approach, called FateMap, to follow the fates of resistant clones.
Using a combination of DNA barcoding, scRNA seq and
computational analysis, the authors show that the transcriptional
and phenotypic variability in the resistant clones is determined prior
to drug treatment and it is not dictated by genetic mutations. These
findings suggest that the characterization of the initial intrinsic
molecular state of a tumour cell is critical to predict its fate
following drug administration. This is essential for the
development of new therapeutic approaches and to prevent
relapse in patients.

Conclusion

The studies discussed in this mini-review highlight the cells’
remarkable capacity to adapt and change their fate and identity in
response to stimuli and cancer. Perturbations of adult tissue
integrity result in a prompt adaptive response characterized by
extensive cellular reprogramming. This is mainly regulated by a
complex network of TFs that define cell identity. In this context, cell
plasticity may serve as a repair mechanism, which, at least initially,
may be beneficial since reprogrammed cells can adopt new functions
to limit damage. However, it is now widely accepted that even this
form of “advantageous” cell plasticity can predispose to cancer.
Therefore, defining the molecular mechanisms that govern this
functional switch is imperative to stop tumour progression.
Considering this, several questions remain open including: how
do specific insults, like, for example, inflammation, regulate the
expression of TFs that determine cell identity? What are the long-
term consequences of early changes in chromatin accessibility for
tumour initiation and progression?

In regard to EMT, as discussed in this mini-review, the
transition from an epithelial to a mesenchymal state can
manifest through two distinct models: a continuum spectrum of
transitional states or multiple discrete states. Despite this apparent
discrepancy, perhaps caused by different technical approaches,
what overall emerges from these studies is the extraordinary
capacity of EMT cells to dynamically shift between multiple
different states. However, in response to specific cell intrinsic
and extrinsic factors, cells within the EMT continuum can stall
and reside in intermediate and more stable states. This
considerably contributes to tumour heterogeneity and therapy
resistance. Open questions that arise from these observations
are: which model plays a more critical role in tumour
development and metastasis formation? Can we target a stable
discrete state or a range of multiple states? Can we shift EMT cells
toward a less aggressive or more targetable state?
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In addition to EMT, distinct forms of cell plasticity have been
reported in cancer posing new challenges in investigating cell
heterogeneity and therapeutic approaches. However, given the
rapid progress with single-cell sequencing technologies and
methods of analysis the function of novel cell plasticity regulators
will be described soon potentially unveiling new therapeutic
avenues.
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