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Background: Diabetic nephropathy (DN) was considered a severe microvascular
complication of diabetes, which was recognized as the second leading cause of
end-stage renal diseases. Therefore, identifying several effective biomarkers and
models to diagnosis and subtype DN is imminent. Necroptosis, a distinct form of
programmed cell death, has been established to play a critical role in various
inflammatory diseases. Herein, we described the novel landscape of necroptosis in
DN and exploit a powerful necroptosis-mediated model for the diagnosis of DN.

Methods: We obtained three datasets (GSE96804, GSE30122, and GSE30528)
from the Gene Expression Omnibus (GEO) database and necroptosis-related
genes (NRGs) from the GeneCards website. Via differential expression analysis
andmachine learning, significant NRGswere identified. And different necroptosis-
related DN subtypes were divided using consensus cluster analysis. The principal
component analysis (PCA) algorithm was utilized to calculate the necroptosis
score. Finally, the logistic multivariate analysis were performed to construct the
necroptosis-mediated diagnostic model for DN.

Results: According to several public transcriptomic datasets in GEO, we obtained
eight significant necroptosis-related regulators in the occurrence and progress of
DN, including CFLAR, FMR1, GSDMD, IKBKB, MAP3K7, NFKBIA, PTGES3, and
SFTPA1 via diversified machine learning methods. Subsequently, employing
consensus cluster analysis and PCA algorithm, the DN samples in our training
set were stratified into two diverse necroptosis-related subtypes based on our
eight regulators’ expression levels. These subtypes exhibited varying necroptosis
scores. Then, we used various functional enrichment analysis and immune
infiltration analysis to explore the biological background, immune landscape
and inflammatory status of the above subtypes. Finally, a necroptosis-mediated
diagnosticmodel was exploited based on the two subtypes and validated in several
external verification datasets. Moreover, the expression level of our eight
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regulators were verified in the singe-cell level and glomerulus samples. And we
further explored the relationship between the expression of eight regulators and
the kidney function of DN.

Conclusion: In summary, our necroptosis scoring model and necroptosis-
mediated diagnostic model fill in the blank of the relationship between
necroptosis and DN in the field of bioinformatics, which may provide novel
diagnostic insights and therapy strategies for DN.

KEYWORDS

diabetic nephropathy, necroptosis, immune landscape, inflammatory response, diagnostic
model

Introduction

Diabetic nephropathy (DN) as an important microvascular
complication in diabetes patients, which was strongly associated
with the development of end-stage renal diseases (Papadopoulou-
Marketou et al., 2018; Xiong and Zhou, 2019; Sasso et al., 2021). The
lesion of DN is mainly located in the glomerulus. There was a
noticeable accumulation of extracellular matrix within the
glomerulus and tubulointerstitial compartments in DN. This
accumulation is often accompanied by the thickening and
hyalinization of the renal vascular system (Kanwar et al., 2011).
Damage to renal blood vessels can lead to incomplete blood
filtration, leading to protein infiltration into urine. Therefore,
when continuous microalbuminuria occurs in patients with
diabetes, it can be suspected that DN exist (Gross et al., 2005;
Papadopoulou-Marketou et al., 2017; Vijay et al., 2018).
Importantly, DN is related to the occurrence of various diseases
including renal failure, cardiovascular diseases like stroke and
hypertension, cerebral vascular disease like cerebral hemorrhage
and cerebral embolism, digestive system diseases and
musculoskeletal disorders. Because of this, it was an enormous
threat to human health and aggravates expenditure of public
health finance (Flyvbjerg, 2017). Moreover, hyperglycemia plays a
pivotal role in the progression of DN by contributing to various
mechanisms. These include increased oxidative stress, formation of
renal polyols, activation of protein kinase C-mitogen-activated
protein kinases (PKC-MAPK), accumulation of advanced
glycation end products, systemic hypertension, and elevated
intraglomerular pressure. All these factors collectively contribute
significantly to the occurrence, development, and deterioration of
DN. (Kikkawa et al., 2003). Clinically, people commonly used
microalbuminuria to evaluate the progress of DN in the past.
However, it is not accurate to assesse the severity or prognosis
solely based on the degree of proteinuria, because not all diabetes
patients with renal failure experience significant albuminuria (Qi
et al., 2017). Besides, the other two broad study outcome measures,
hard renal end-points (e.g., death, end stage renal disease, chronic
kidney disease) and the rate of GFR/eGFR (estimated glomerular
filtration rate) decline all have certain defects. Studies using hard
renal end-points require large sample sizes to reach statistical
significance. The creatinine levels and derived estimates of GFR
are less precise (Macis et al., 2014; Radcliffe et al., 2017). Therefore, it
is necessary to find new markers or models for DN, which can
accurately assess the progression of DN to provide assistance for
more effective treatment.

Throughout the whole life, cell death serves an indispensable
function. Traditionally, cell death is merely categorized into
programmed cell death (PCD) and accidental cell death (ACD).
Nowadays, PCD accounts for the majority of cell death containing
ferroptosis, cuproptosis, autophagy, pyroptosis, etc (Chen et al., 2022;
Liu et al., 2022). Additionally, it has been demonstrated that there exists
a form of programmed and regulated cell death called necroptosis.
Necroptosis is profit to defend pathogen invasion, and its inducements
aremostly pathological changes or severe damage, presented as swelling
and deformation of cell and organelles, rupture of membrane, random
degradation of DNA. The dying cells releases damage-associated
molecular patterns (DAMPs) and inflammatory cytokines
stimulating the expression of proinflammatory genes in innate
immune cells, and then drives inflammation (Frank and Vince,
2019; Lu et al., 2021; Mohammed et al., 2021; Newton et al., 2021)
Necroptosis is distinct from classical apoptosis and necrosis and is
regulated by membrane receptors and intracellular signal transduction
molecules (Khoury et al., 2020; Yan et al., 2022). Several key molecules
related to necroptosis, such as protein kinase 1 (RIPK1), receptor-
interacting protein kinase 3 (RIPK3), and mixed-lineage kinase
domain-like protein (MLKL), can be induced by various factors
such as death receptors, interferons, toll-like receptors (TLR),
intracellular DNA and RNA sensors, as well as other potential
substances (Pasparakis and Vandenabeele, 2015; Grootjans et al.,
2017; Weinlich et al., 2017). What is more important, research has
shown that molecules related to necroptosis are differentially expressed
in diseases and can serve as biomarkers (Li et al., 2022).

Hyperglycemia can also induce the development of DN by
triggering necroptosis in renal tubular epithelial cells. Which is a
significant mechanism underlying the pathogenesis of DN (Shen
et al., 2022). Some researches state that necroptosis might play a
critical role in the process of podocyte injury and reduction in DN
(Erekat, 2022; Guo et al., 2023). Apoptosis of podocyte results in
glomerular injury and podocyte depletion, causing proteinuria and
Glomerular insufficiency. In patients with DN, the necroptosis is
increased in tubulointerstitium and nephridial tissue of glomerulus,
which is most obvious in the glomerulus in the stage of
macroalbuminuria (Wang et al., 2022). In general, necroptosis
plays an integral part of occurrence and development of DN. But
there is currently no research on differential expression of necrosis
related genes in DN and screening of biomarkers.

Herein, based on analysis of several public datasets obtained
from the Gene Expression Omnibus (GEO), we selected key
necroptosis-related regulators. Subsequently, combined with the
above regulators, in our training set, all DN samples were
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categorized into two necroptosis-related subtypes with researching
separately distinct immune infiltration landscapes and
inflammatory statuses of them. Moreover, via the principal
component analysis (PCA) algorithm, we calculated the
necroptosis score to distinguish the above subtypes. Then, based
on the above two subtypes, we exploited a necroptosis-mediated
diagnostic model via various machine learning methods. Finally, the
expression level of our eight significant regulators was validated in
the single-cell level and several glomerulus samples. Overall, our
research potentially provided methods in distinguishing different
DN subtypes and indicated the novel insights in conducting
personalized therapy strategies for DN patients, The step-by-step
procedures of our study was exhibited in Figure 1.

Materials and methods

Data acquisition and processing

Based on the public and well-known large-scale database, GEO
(https://www.ncbi.nlm.nih.gov/geo/), we searched and collected

several data sets including patients with DN (Edgar et al., 2002).
The inclusion criteria for data sets were as follows: 1) Organism:
Homo sapines, 2) Tissue: Glomerulus, 3) datasets containing
corresponding normal (CN) samples and comprehensive
introduction for each sample. Moreover, the detailed introduction
of the GEO data sets included in our research was exhibited in
Table 1. In addition, the necroptosis-related regulators (NRGs) were
downloaded from the public website GeneCards (https://www.
genecards.org/), in which the selection criteria was the correlation

FIGURE 1
The step-by-step procedures and graph abstract of our study.

TABLE 1 The information of the data sets utilized in our research.

Accession Platform Type Samples Tissue

CN DN

GSE96804 GPL17586 Training Set 20 41 Glomerulus

GSE30528 GPL571 Validation Set 12 9 Glomerulus

GSE30122 GPL571 Validation Set 26 9 Glomerulus

24 10 Tubules

Frontiers in Cell and Developmental Biology frontiersin.org03

Hu et al. 10.3389/fcell.2023.1271145

https://www.ncbi.nlm.nih.gov/geo/
https://www.genecards.org/
https://www.genecards.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1271145


score >1 and searched with the key word “necroptosis” (Safran et al.,
2010).

Differential expression analysis for our
training set

To investigate the expression difference of genes in DN and
explore the expression characteristic at the mRNA level, we utilized
differential expression analysis via the “limma” package in R
software, which was utilized to obtain the differentially expressed
genes (DEGs) in our training set between CN and DN samples,
respectively (Ritchie et al., 2015). The p < 0.05 were used to define
the threshold of DEGs. To visualize the results of differential
expression analysis, the “ggplot2” package in R software was used
to create a volcano plot and a heat map.

Weighted gene Co-expression network
analysis (WGCNA)

The WGCNA was performed to screen the significant gene
clusters correlated with DN (Langfelder et al., 2008). The “gplots”
package in R software was utilized for hierarchical cluster analysis,
and abnormal samples or values were deleted. The gene correlation
between samples was calculated via WGCNA algorithm. Then we
selected the best soft threshold power and established a standard
non-proportional network. The WGCNA model or network was
related to the characteristics of external samples. Via a dynamic tree-
cutting strategy, various different modules named by different colors
were constructed through the hierarchical clustering of genes.

Machine learning (ML)

Several machine learning methods were used to investigate the
diagnostic efficiency of the regulators. Random Forest (RF) can
evaluate the significance of each feature in classification problems
(Ishwaran and Kogalur, 2010; Wang and Zhou, 2017). Support
vector machine recursive feature elimination (SVM-RFE),
analgorithm that adds or removes features to obtain the optimal
combination variable that maximizes model performance for
specific feature variables. We use the “rfe” function in the R
package “caret” for feature recursive elimination, set functions =
caretFuncs, and obtain the best model. Moreover, least absolute
shrinkage and selection operator-cox (Lasso-cox) regression analysis
is an algorithm to evaluate the influence for binary outcome via
merging some variables using the R package “glmnet” (Tang et al.,
2017).

Identification of different necroptosis-
related subtypes of DN

According to the expression level of the selected significant
necroptosis-regulators, we divided all the 41 DN samples in our
training set into different necroptosis-related subtypes via the
“ConsensusClusterPlus” package in R software (Wilkerson and

Hayes, 2010). Then, with the most appropriate k-value, two
different subtypes were identified.

Moreover, to exhibit the heterogeneity between the above
subtypes, the PCA algorithm was performed (Diaz-Papkovich
et al., 2021). And then, the necroptosis score was calculated with
the results of PCA algorithm to explore the biological background of
the two subtypes: Necroptosis Score = Σi(PCA1i + PCA2i).

Enrichment analysis

We utilized the ClueGO plug-in in the Cytoscape software with
the threshold (p < 0.05) to conduct gene ontology (GO) enrichment
analysis (Bindea et al., 2009). And the Molecular complex detection
(MCODE) plug-in in cytoscape was used to extract several
significant models in the gene-pathway interacted network of the
results of ClueGO. Moreover, the R software package
“clusterProfiler” was selected to perform the KEGG and
Reactome enrichment analysis (Yu et al., 2012).

In addition, the gene set enrichment analysis (GSEA) was
performed to comprehensively explore the biological background
between the two necroptosis-related subtypes of DN. With the
standard gene set of Hallmark, in the analysis, the size of the
gene set is limited to 5–5,000 genes. Results with a p-value less
than 0.05 were considered statistically significant. (Hacisalihoglu
et al., 2016).

Construction of a predictive diagnostic
model based on the necroptosis-related
subtypes of DN

Similarly and firstly, the differential expression analysis was
performed between the two different necroptosis-related subtypes to
obtain the DEGs (Hao et al., 2023). To select several more
prominent genes to construct the diagnostic model, the criteria
for identifying DEGs was the absolute value of log2 fold change (|log2
FC|) > 1 and p < 0.05.

Then, the Search Tool for the Retrieval of Interacting Genes
(STRING, https://cn.string-db.org/) was used to construct the
protein-protein interaction (PPI) network of our candidate genes
and the cypscape software was utilized to visualized the PPI network
(Shannon et al., 2003; Szklarczyk et al., 2023). Furthermore, we used
the cyttoHubba plug-in in cytoscape software to screen the
significant features from our candidate genes (Chin et al., 2014).
Then, four machine learning methods: SVM-RFE, RF, univariate
Cox regression analysis and Lasso-Cox regression analysis were
conducted to further construct our diagnostic model. Finally, we
performed multivariate logistics regression to establish our
diagnostic model: Diagnostic Score = Σi (Coefficienti *
Expression level of featurei).

Immune infiltration analysis

Single sample gene set enrichment analysis (ssGSEA) is a novel
type of gene set variation analysis which is a method of unsupervised
clustering based on a specific gene set to evaluate the score of each
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sample. In our study, ssGSEA was used to calculate the infiltration
score of 28 different scores in DN.We collected genes from previous
studies related to 28 different types of immune cells and predicted
the infiltration abundance of immune cells based on these genes
(Supplementary Table S1) (Barbie et al., 2009; Charoentong et al.,
2017). Moreover, based on our expression matrix, we used the
“IOBR” package in R software to select the ESTIMATE method
to calculate the ESTIMATE Score of each sample in our training set
(Yoshihara et al., 2013; Zeng et al., 2021). The CYT Score was
calculated via averaging the expression value of GZMA and PRF1 in
each sample to evaluate the inflammatory status. Furthermore,
Mantel correlation analysis was performed to explore the
correlated relationship between the significant necroptosis-related
regulators and the infiltration score of each immune cell (Sunagawa
et al., 2015).

Single cell analysis

The Study: Human Diabetic Kidney: Wilson et al., PNAS 2019.
(*Note: The CFH + cluster was renamed to parietal epithelial cells)
in the public website: Humphreyslab (http://humphreyslab.com/
SingleCell/) was included in our research to explore the
expression trend of significant necroptosis-regulators in DN
(Wilson et al., 2019).

Animal experiments

Male 8-week-old diabetic db/db (BKS-Leprem2Cd479/Nju; n =
8) and their nondiabetic wild type (C57BL/Ksj; n = 8) mice were
purchased from the Model Animal Research Center of Nanjing
University (Nanjing, China). All mice were housed under specific
pathogen-free conditions with controlled temperature and humidity
(22°C ± 2°C, 50% ± 5% RH) and a standard 12-h light/dark cycle. All
experimental procedures were approved by the Institutional Animal
Care and Use Committee at Nanchang University (NO. 0064257)
and performed in accordance with the guidelines for the ethical
treatment of laboratory animals. All mice were randomly divided
into two groups: control (CN, n = 8) group and diabetic
nephropathy (DN, n = 8) group. The successful establishment of
the diabetic model was defined as random blood glucose
levels ≥16.7 mmol/L. At 20 weeks of age, the mice were
anesthetized with isoflurane and subsequently euthanized.
Postmortem, the body weight, kidney weight, and tibial length
were measured. The kidneys were then excised and divided into
sections for further analysis.

Reverse transcription-quantitative PCR (RT-
qPCR)

The total RNA of serum was extracted from fresh glomerulus
samples utilizing Trizol reagent (Ambion, Singapore). The quantity
and purity of the total RNA were determined using the
Nanodrop®ND1000 (TIANJIN). The total RNA was reverse
transcribed into complementary DNA (cDNA) employing the
Script cDNA synthesis kit (TianGEN). Quantitative PCR reaction

was performed on an EDC-810 Real-Time PCR Detection
Instrument (Eastwin life, China), using SYBR Premix ExTaq kit
(Takara, China), All genes were analyzed Relatively and calibrated to
the expression of control groups. The 2−̂ΔΔCt method was employed
to calculate the relative RNA expression values. The primer pairs
used for the amplification of target genes are listed in Supplementary
Table S2. All the above experiments were strictly carried out in
accordance with the instructions.

Biochemical assays

Serum blood urea nitrogen (BUN) levels were quantified in murine
samples using a commercial colorimetric assay kit (DEIABL-M3) per
the manufacturer’s protocol. An enzymatic creatinine reagent kit
(DEIABL-M4S) was employed to determine serum creatinine
concentrations in the sourced murine serum samples. Urine
specimens harvested from the mice underwent analysis of
microalbumin content by enzyme-linked immunosorbent assay
utilizing a microalbumin-specific antibody (ab108792). Murine urine
creatinine concentrations were evaluated by a commercial colorimetric
assay kit (LS-F13025) following the provided manufacturer guidelines.

Statistical analysis

The data were shown as mean ± SD. R software (version 4.2.2)
and its related software packages were used to process and analyze
data. The unpaired t-test was utilized to analysis the statistical
difference between two different groups. p < 0.05 were
considered statistically significant. And the “RMS” package in R
software was used to visualize Nomograms. The receiver operating
characteristic (ROC) curves were visualized via the Sangerbox
website (http://vip.sangerbox.com/home.html).

Results

General exploration of NRGs in DN

Firstly, to exhibit the remarkable characteristic of necroptosis in
the transcriptomic level in DN. Initially, we conducted a differential
expression analysis comparing the NC group and DN group. Genes
with a p-value less than 0.05 were identified as differentially
expressed genes (DEGs), as depicted in Figure 2A. A total of
10,779 DEGs were identified, with 5,159 genes being upregulated
and 5,620 genes being downregulated. The detailed expression status
of these DEGs is displayed in Figure 2B, providing a comprehensive
overview of their differential expression patterns. Then, the location
in chromosomes of the top 50 downregulated and upregulated genes
were listed in Figure 2C with the corresponding p-value and
normalized expression value. The primary NRGs in DN were
obtained via intersecting the upregulated DEGs, downregulated
DEGs, and NRGs in Genecards. Finally, a total of 45 necroptosis-
related DEGs (NRDEGs) were identified (Figure 2D).

Furthermore, the WGCNA was performed to extract several
gene modules significantly correlated with DN (Figures 2E–G). We
intersected the above NRDEGs and the genes in the significant
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modules of WGCNA to ensure several NRDEGs prominently
correlated with DN (Figure 2H). As a result, a total of
19 NRDEGs were identified. Moreover, a Spearman correlation
analysis was performed among the above 19 NRDEGs and
almost all regulators indicated a remarkably positive correlation
(Figure 2I).

Further screening of the significant NRDEGs
in DN via ML

According to the above general exploration of the role of
necroptosis-related regulators in DN, we subsequently excavated
several significant NRDEGs in DN to evaluate the crucial

FIGURE 2
Selection for the NRDEGs between DN and CN. (A) The volcano map for the DEGs identified between DN and CN with p < 0.05. (B) The heat map
exhibited the detailed expression status of the above DEGs. (C) The location of the upregulated DEGs with the top highest log2FC and the downregulated
DEGswith the lowest log2FC in the chromosomeswith the corresponding p and normalized expression value. (D) The Venn-gramwas utilized to describe
the relationship between NRGs, upregulated DEGs and downregulated DEGs. (E,F) The determination for the soft threshold of WGCNA. (G) The
gene modules calculated via WGCNA with the corresponding p and correlation coefficient. (H) The Venn-gram was utilized to intersect the module
genes, upregulated NRDEGs and downregulated NRDEGs. (I) The correlated heat map of the 19 NRDEGs in DN samples of our training set. *, p < 0.05; **,
p < 0.01; ***, p < 0.001.
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characteristic of necroptosis in DN. To begin with, we performed the
Lasso regression analysis to obtain the key features in distinguishing
DN and NC (Figures 3A, B). Moreover, another ML method, SVM-
RFE was performed to extract the features with prominent
diagnostic efficiency. As a result, we obtained 10 NRDEGs
(Figures 3C, D). Via the cross validation of a 10×fold, a total of
12 NRDEGs were identified. Furthermore, RF was utilized to assess
the importance of 19 NRDEGs in recognizing NC and DN patients.
With the importance >25 as the criteria, 10 NRDEGs were selected
(Figure 3E). Finally, after intersecting results of the above 3 different
ML methods, a total of 8 NRDEGs (CFLAR, FMR1, GSDMD,
IKBKB, MAP3K7, NFKBIA, PTGES3, and SFTPA1) were finally
regarded as the significant NRDEGs (Figure 3F). The co-expression
network of the eight significant NRDEGs was construction with co-
expression of 61.91%, physical interactions of 28.79%, shared
protein domains of 7.12%, and pathway of 2.17%, wherein the
enrichment analysis revealed that the 8 regulators was mainly
associated with the inflammatory and immunal pathways, such
as “pattern recognition receptor signaling pathways” “toll-like
receptor signaling pathways”, and “I-kappaB kinase/NF-kappaB
signaling” (Figure 3G).

Moreover, to better demonstrate the diagnostic characteristic of
the above 8 regulators, the ROC curves were exhibited, the area
under curve (AUC) of which were 0.96 0f IKBKB, 0.95 of GSDMD,

0.91 of PTGES3, 0.94 of SFTRA1, 0.91 of CFLAR, 0.88 of FMR1,
0.90 of MAP3K7 and 0.81 of NFKBIA, which emphasized the
powerful diagnostic efficiency (Figures 3H–O). Meanwhile, the
heat map exhibited the expression level of the above 8 features
between CN and DN (Figure 3P). Furthermore, utilizing the
expression levels of the eight features in GSE96804, we developed
a nomogram to visualize the predictive ability of our model for
diagnosing DN patients (Figure 3Q). Additionally, the calibration
curve was generated to assess the accuracy and calibration of our
model (Figure 3R).

Obtaining of two different necroptosis-
related subtypes of DN

According to the expression value of the above 8 significant
NRDEGs (IKBKB, GSDMD, PTGES3, SFTRA1, CFLAR, FMR1,
MAP3K7, and NFKBIA) in DN samples, all the 41 DN samples in
our training set were classified into two various necroptosis-related
subtypes (C1 and C2) with the most compatible K-value (K = 2)
using a consensus cluster analysis (Figures 4A–C). Moreover, the
PCA-gram exhibited an obvious differentiation between the above
two DN subtypes (Figure 4D). In addition, the detailed expression
level of all our 8 crucial NRDEGs between the two DN subtypes were

FIGURE 3
Identification of the significant NRDEGs in DN. (A,B) The outcome of the Lasso-cox regression analysis. (C,D) The results of the SVM-RFM. (E) The
importance of the 19 significant NRDEGs calculated via the random forest algorithm. (F) The Venn-gram exhibited the intersection of the results of the
above 3 ML methods. (G) The co-expression network of the eight significant NRDEGs. (H-O) The ROC curves of (H) CFLAR, (I) FMR1, (J) GSDMD, (K)
IKBKB, (L)MAP3K7, (M) NFKBIA, (N) PTGES3, and (O) SFPTA1 in the diagnosis of DN. (P) The heat map revealed the detailed expression status of the
eight significant NRDEGs in all samples of our training set. (Q) The nomogram of the eight significant NRDEGs in predicting the risk of DN. (R) The
calibration curve of the above nomogram.
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exhibited in the heat map, which emphasized the heterogeneity of
our two subtypes (Figure 4E). Meanwhile, via the PCA algorithm, we
calculated the necroptosis-score to objectively recognize the two
necroptosis-related subtypes, in which subtype C1 was prominently
lower than subtype C2 (p < 0.05, Figure 4F).

Exploration of the biological differential
characteristic between two necroptosis-
related subtypes

According to the above analysis, the significant difference between
the two necroptosis-related subtypes has been exhibited. Thus, we
further investigated the biological differential characteristic between
the two subtypes. First, we performed differential expression analysis to
obtain the DEGs between the two subtypes (C2 vs. C1). As a result,
121 DEGs were identified based on the criteria of p < 0.05 and |
log2FC| > 1 (Figure 4G). Similarly, differential expression analysis was
performed in the whole training set to determine DEGs between CN
and DN group, which results in a total of 616 DEGs, including
290 upregulated and 326 downregulated. Moreover, to select some
candidate features with potential diagnostic efficiency, we intersected
the DEGs between two necroptosis-related subtypes and the DEGs
between CN and DN group (Figure 4H).

Subsequently, to better exhibit the biological characteristic between
the two subtypes, we performedGO andKEGG enrichment analysis for
the 58 candidate features. Via ClueGO plug-in in Cytoscape software,
the GO enrichment analysis revealed that pathways related to
metabolism and immunity played a crucial role in necroptosis-
related subtypes, especially “hemoglobin complex” with the

proportion of 38.46% and “complement activation, alternative
pathway” with the proportion of 23.08% (Supplementary Figure
S1A). Moreover, the MCODE plug-in was utilized for the extract of
some significant functional clusters and these clusters were mainly
related to metabolism and immunity (Supplementary Figures S1B–D).
Meanwhile, the results of KEGG and Reactome enrichment analysis
proved the crucial role of immune landscape in the two necroptosis-
related subtypes (Supplementary Figures S1E, F). Moreover, the GSEA
enrichment analysis was also performed to further explore the
functional backgrounds between the two subtypes, the results of
which emphasized the role of “DNA Repair”, “TGF-β Signaling”,
and “Heme Metabolism” (Supplementary Figures S1G–I).

The construction of a diagnostic model
based on the two necroptosis-related
clusters

According to the crucial role of significant NRDEGs in DN and the
lack of effective diagnostic markers or models, we exploited a novel
necroptosis-mediated diagnostic model for DN patients. Via the above
rounds of selection, we finally ensured 58 genes for the construction of
our model. Firstly, all the 58 features were imported into the STRING
website to establish a PPI network (Figure 5A). Then via the
cyttoHubba plug-in in Cytoscape software, we utilized 7 algorithms
to obtain the top 15 features with highest interaction score in each
algorithm (MCC, MNC, Degree, EPC, Closeness, Radiality, Stress).
After intersecting the 10 features in each algorithm, a total of 5 features
were identified in all the 7 algorithms, which were selected for the
subsequent analysis (Figure 5B).

FIGURE 4
The recognition of two different necroptosis-related subtypes of DN. (A) The cumulative distribution curve of each k value from 2 to 10 in the
consensus cluster analysis. (B) The area under the curve of each k value. (C) The heatmap of the two different necroptosis-related subtypes of DN. (D) The
PCA diagram exhibited the general distribution of the above two subtypes. (E) The heap map of the eight significant NRDEGs in the two subtypes. (F) The
difference of the necroptosis score calculated via the PCA diagram between the above two subtypes. (G) The volcano map was utilized to identify
the DEGs between the above two subtypes. (H) The Venn-gram revealed the intersection of the DEGs between the above two subtypes and the DEGs
between DN and CN.
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FIGURE 5
Construction and validation of the necroptosis-mediated diagnostic model for DN. (A) The PPI network of the 35 overlapped DEGs. (B) The upset
diagram revealed the top 15 hub DEGs in the seven algorithms of cyttoHubba plug-in. (C,D) The results of the SVM-RFE. (E,F) The results of the random
forest. (G,H) The outcome of the Lasso-cox regression analysis. (I) The Venn-gram exhibited the intersection of the 4 ML methods in identifying the
elements for constructing our diagnostic model. (J) The calibration curve of the diagnostic score calculated via our model. (K, M, O, Q) The
difference of the diagnostic score in (K)GSE96804, (M) the glomerulus tissue in GSE30122, (O) the tubules tissue in GSE 30122 and (Q)GSE30528. (L, N, P,
R) The ROC curve of the diagnostic score in (L)GSE96804, (N) the glomerulus tissue in GSE30122, (P) the tubules tissue in GSE 30122 and (R)GSE30528.
**, p < 0.01; ***, p < 0.001; ****, p < 0.0001.

Frontiers in Cell and Developmental Biology frontiersin.org09

Hu et al. 10.3389/fcell.2023.1271145

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1271145


Furthermore, we utilized 4 different ML methods to select
several significant features. Originally, one classical ML methods,
SVM-RFE, was performed to screen features with more accurate
diagnostic efficiency. As a result, all the 5 features were regarded as
regulators with significant diagnostic efficiency (Figures 5C, D).
Then, we utilized an additional ML method (RF) to calculate the
importance of all the 5 features in recognizing the DN and CN
samples. The lollipop chart revealed the importance in detail and
4 features with importance >4 were regarded significant features
(Figures 5E, F). Moreover, to ensure the accuracy of our selection, we
further performed another ML method, lasso-cox regression
analysis to extract the features, which can better distinguish DN
and CN patients. Five features were considered to play a key role in
the diagnosis of DN (Figures 5G, H). In addition, the univariate-cox
regression analysis was also conducted to select the significant
features with the criteria: p < 0.05 (Table 2). Finally, the
4 features (COL6A3, FBLN5, LUM, and VCAN) intersected in
the whole 4 ML methods were regarded as the source elements of
the construction of our diagnostic model (Figure 5I).

Subsequently, for establishing our diagnostic model for DN, the
logistic regression analysis was performed: Diagnostic Score =
(12.1605262153362 × COL6A3) + (-3.03974790703008 × FBLN5)
+ (2.42256407679845 × LUM) + (-3.13831314409003 ×VCAN). And
the calibration curve revealed that there was no potential difference
between our model and the ideal situation (p = 0.985, Figure 5J). In our
training set (GSE96804) we performed unpaired t-test to inspect the
statistical significance between CN andDN group based on the formula
of the diagnostic score described above. As a result, our necroptosis-
mediated diagnostic model revealed a statistically significant difference
in the training set (p < 0.0001, Figure 5K). Meanwhile, the AUC of our
model in the training set was 0.97, which emphasized the powerful
diagnostic efficiency (Figure 5L). Additionally, to strengthen the
reliability of our diagnostic model, we chose two external verification
sets (GSE30528 and GSE30122) to validate our model. Interestingly, in
GSE30528 and GSE30122, the statistical significance between CN and
DN group both occurred (Figures 5M, O, Q). And the AUC was
0.86 the glomerulus tissue in GSE30122, 0.83 the tubules tissue in GSE
30122 and 0.86 in GSE30528, which indicated the accuracy of the
diagnostic efficiency of our model (Figures 5N, P, R).

The investigation of the immune landscape
in the two necroptosis-related clusters

Based on the above functional exploration of the two
necroptosis-related clusters, the immune microencironment

was considered to keep a critical role in DN and
corresponding clusters. Two different algorithms, ESTIMATE
and ssGSEA, were utilized to comprehensively explore the
immune microenvironment of DN. Via the ESTIMATE
algorithm, the ESTIMATE Score was lower in C1 than that in
C2, which revealed there were potentially different immune
response and infiltration between the above two necroptosis-
related subtypes of DN (Figure 6A). Then, via ssGSEA, we
visualized the superficial landscape of various immune cells
infiltrations in all samples of our training set, which exhibited
the prominent difference of immune microenvironment
between CN and two different DN clusters (Figure 6B). And
between DN and CN, abundant immune cells exhibited
significant infiltration status (Figure 6C). Moreover and
intriguingly, we concuded the Mantel correlation analysis to
compute the correlation coefficient between the expression level
of our 8 significant NRDEGs and the immune infiltration score.
As a result, the necroptosis score and expression of 8 NRDEGs in
C1 was more correlated with the immune microenvironment
than in C2, further proving the result of ESTIMATE
(Figures 6D, E).

According to the above investigation of the immune
landscape in two different clusters, we ensure the diversified
immune microenvironment between C1 and C2. And based on
the significant role of immune checkpoints (ICKs) in the
regulation of immune response, we further explore the role of
ICKs in DN. The unpaired t-test was used to detect the expression
of 14 classical ICKs between C1 and C2. Interestingly, a total of
8 ICKs exhibited a significantly different expression in C2 than
C1 (). Moreover, the CYT Score calculated via the average of the
expression of GZMA and PRF1 also exhibited the different
inflammatory status between the two necroptosis-related
subtypes of DN (Figure 6T). Finally, the Sankey plot
demonstrated the potential relationship between the two
necroptosis-related subtypes, the immune microenvironment
and the inflammatory status (Figure 6U).

Exploration of the expression of the eight
significant NRDEGs in the single-cell Level

To better describe the expression pattern of our 8 significant
NRDEGs in DN, we selected a data set including 12 different cell
clusters (PCT, CD-ICA, PEC, DCT, DCT/CT, CD-PC, CD-ICB,
MES, LEUK, ENDO, LOH, PODO, n = 23,980). The general
landscape of the above 12 cell clusters in different samples was

TABLE 2 The results of the univariate-cox regression analysis.

Features Hazard ratio 95%CI lower 95%CI higher p-value

COL1A2 97.11 4.29 2,198.66 0.004

COL6A3 542.4 10.05 29,262.06 0.002

FBLN5 2.75 1.51 5.04 0.001

LUM 2.86 1.6 5.13 0.0004

VCAN 2.03 1.25 3.29 0.0044
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FIGURE 6
The immune landscape and microenvironment regulated by necroptosis in DN. (A) The difference of the ESTIMATE score between the above two
necroptosis-related subtypes. (B) The detailed proportion of each immune cells in each sample of our training set. (C) The difference of the infiltration
score of each immune cells calculated via ssGSEA between DN andCN. (D,E) Themantel correlation heatmap between (D) the necroptosis score and the
infiltration score of the 28 kinds of immune cells, (E) the expression level of eight significant NRDEGs and the infiltration score of the 28 kinds of
immune cells. (F-S) The expression difference of (F) CD2, (G) CD47, (H) CD96, (I) CD200, (J) CD226, (K) CTLA4, (L) HHLA2, (M) KIL3DR1, (N) KLRD1, (O)
LAG3, (P) PDCD1, (Q) PDCD1LG2, (R) SIGIRR, (S) SIGLEC15 between the above two subtypes. (T) The difference of CYT score between the above two
subtypes. (U) The general relationship among the necroptosis-related subtypes, immune landscape and inflammatory response. -, p > 0.05; *, p < 0.05;
**, p < 0.01; ***, p < 0.001; ****, p < 0.0001.
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exhibited in Figure 7A. Interestingly, the expression level of our
8 significant NRDEGs (CFLAR, FMR1, GSDMD, IKBKB, MAP3K7,
NFKBIA, PTGES3, and SFTPA1) was different in the different cells

between the DN and CN group, which revealed that our 8 significant
NRDEGs played a crucial and various role in the characteristic of
DN (Figures 7B–Q).

FIGURE 7
The expression status of our eight significant NRDEGs in the single-cell dataset. (A) The annotated heat map of different cell clusters. (B–I) The
expression cluster heat map of (B)CFLAR, (C) FMR1, (D)GSDMD, (E) IKBKB, (F)MAP3K7, (G)NFKBIA, (H) PTGES3 and (I) SFTPA1 between CN andDN. (J-Q)
The detailed expression of (J) CFLAR, (K) FMR1, (L)GSDMD, (M) IKBKB, (N)MAP3K7, (O)NFKBIA, (P) PTGES3 and (Q) SFTPA1 in each cell between CN and
DN exhibited via violin plot and bubble plot. PCT, proximal convoluted tubule; CFH, complement factor H; LOH, loop of Henle; DCT, distal
convoluted tubule; CT, connecting tubule; CD, collecting duct; PC, principal cell; IC, intercalated cell; PODO, podocyte; ENDO, endothelium; MES,
mesangial cell; LEUK, leukocyte.
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Validation of the eight significant NRDEGs and
exploration of the correlation with the kidney
function

Moreover, we constructed a mice model with DN to better and
comprehensively explore and validate the above-mentioned eight
significant NRDEGs. In our mice model, all the eight indexes,
including blood glucose, body weight, blood urea nitrogen
(BUN), kidney length/tibial length, kidney weight, micro-albumin
urine, serum creatine, and urine creatine, exhibited a significantly
higher trend in the DN group except the urine creatine (Figures
8A–H). And the volume of the kidney in the DN group was also
lager than that in the CN group (Supplementary Figure S2). The
above phenomenon indicated the success of our DN model. We
firstly extracted the expression level of the eight significant NRDEGs
between the DN and CN group in our training set (Figure 8I). And
the glomerulus samples were collected form the mouse model with
DN or healthy mouse model. After obtaining the glomerulus tissue
from each mouse, the RT-qPCR was performed to detect the
concentration of our eight significant NRDEGs. As a result,
except MAP3K7 and NFKBIA, the other six NRDEGs exhibited

significant expression difference between DN and CN group and
consistent expression trend with the phenomena in our
bioinformatic analysis (Figure 8J).

Furthermore, we explored the role of the eight significant
NRDEGs in the kidney role. The spearman correlation analysis
between the expression level of the eight significant NRDEGs and
the eight indexes in our DNmodel. In Table 3, interestingly, the low-
expressed genes in DN (FMR1, GSDMD, NFKBIA, and PTGES3)
were significantly negatively correlated with almost all the indexes
while the high-expressed genes in DN (CFLAR, IKBKB, MAP3K7,
and SFTPA1) were positively correlated with the indexes.

Discussion

DN is a clinical syndrome, which is characterized by
albuminuria, or increased excretion of urine albumin (Doshi and
Friedman, 2017). As one of the most common causes of end-stage
renal disease, the hazard of DN to homeostasis and endocrine
system is irreparable. However, over the last abundant years,

FIGURE 8
(A–H) The statistical difference of (A) blood glucose, (B) body weight, (C) BUN, (D) kidney weight/tibial length, (E) kidney weight, (F)micro-albumin
urine, (G) serum creatine, and (H) urine creatine between the DN and CN group, indicating the successful construction of our DN mice model. (I) The
expression difference of the above eight significant NRDEGs between DN and CN in the training set. (J) The expression difference of the above eight
significant NRDEGs between DN and CN in the DN mice model via RT-qPCR. -, p > 0.05; ****, p < 0.0001.
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most studies have considered DN as an endocrine and
microvascular disease (Flyvbjerg, 2017; Li X. et al., 2022).
Actually, DN has been regarded as a chronic inflammatory
disease in recent years, in which immune system and
inflammatory cytokines played a critical role (Yu et al., 2021;
Chen et al., 2022). In addition, with the continuous deepening of
research on various diseases at the cellular level and molecular
mechanisms, more and more studies indicated programmed cell
death as the potential culprit of various diseases (Kopeina and
Zhivotovsky, 2022). Necroptosis, an emerging form of
programmed cell death differed from necrosis and apoptosis,
induces the occurrence of inflammation via attacking the
cytoplasmic membrane. Cells with necroptosis expel their
contents, stimulating inflammatory responses in surrounding
cells and activating the body’s immune response (Abi-Aad et al.,
2019; Bertheloot et al., 2021). Moreover, evidence indicate that
necroptosis may play a crucial role in the damage and decline of
cells in DN, especially since it has been shown to be triggered after
hyperglycemia-induced inhibition of apoptosis (Liu et al., 2018). In
the above exploration and analyses, we have superficially described
the correlation between necroptosis and DN. Despite a growing
interest in this field, major research gaps remain that need to be
addressed. Herein, we tried to create a new prospect for the tip of an
iceberg in the field of the diagnosis and personalized therapy for DN.

In our study, a RNA-seq dataset, GSE96804, including 41 DN
samples and 20 CN samples, was obtained from the GEO as our
training set. A total of 102 necroptosis-related genes were included,
in which 45 were regarded as the necroptosis-related DEGs.
Moreover, for DN, as a metabolic disease, various pathways play
a crucial role in the development and occurrence of DN. Herein, the
percentage of necroptosis-related DEGs in the necroptosis-related
genes also demonstrated the significance in DN. Via differential
expression analysis and WGCNA, a total of 19 NRDEGs were
identified. Then, various ML methods were performed to extract
the final 8 significant NRDEGs (CFLAR, FMR1, GSDMD, IKBKB,
MAP3K7, NFKBIA, PTGES3 and SFTPA1). Subsequently, the
diagnostic efficiency of the above 8 features were exhibited.
Moreover, based on the expression pattern of the 8 features, we
classified 41 DN samples into two distinct necroptosis-associated
subtypes. The PCA algorithm was utilized to clarify the difference
between the two subtypes and calculate the necroptosis score to
excavate and correlated the biological background of the subtypes.
In addition, via the discussion of the correlation between the
immune/inflammatory response and the necroptosis score, we
inferred the subtype with higher necroptosis score may be faced
with more severe immune infiltration and inflammatory response.
Additionally, to better emphasize the characteristic of our
necroptosis-associated subtypes, we constructed a necroptosis-
mediated diagnostic model, which was validated in several
external datasets. Finally, all the above 8 significant NRDEGs
were validated in the single-cell dataset and the glomerulus tissue
of the mouse model with DN via RT-qPCR.

Necroptosis is a pro-inflammatory programmed cell death via
attacking the cytoplasmic membrane, which is considered as a
prominent inducing factor of inflammation (Bertheloot et al.,
2021). Zhu et al. prestented that RIPK3-related necroptosis
played a crucial role in the renal tubular epithelial cell death of
chronic renal injury (Zhu et al., 2020). Interestingly, it has beenTA
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confirmed that hyperglycemia in diabetes patients can activate the
intrarenal RAAS system, which induced the release of the renin and
angiotensin (Ang) (Sharma et al., 2006; Lovshin et al., 2018).
However, high concentration of AngⅡ may result in potential
cytotoxicity to induce the renal tubular cell necrosis via activating
the Fas and FasL (Basta et al., 2004). Meanwhile, the depletion of
podocytes is another main cause of DN (Erekat, 2022). The research
of Xu et al. discovered that the abnormal high expression of
UCHL1 in the podocytes of DN disturbed the ubiquitination of
the RIPK1/RIPK3 pathway, which finally induced the occurrence of
necroptosis (Xu et al., 2019). Moreover, in our research, the
pathways related to “hemoglobin complex” and “complement
system” was regarded as the two significant biological process in
the two necroptosis-related subtypes of DN. Recent studies
demonstrated that there have been indivisible relationships
between necroptosis and complement. Necroptosis was confirmed
that induces the injury of vessels via complement activation and
alternative complement pathways (Schreiber et al., 2017).
Meanwhile, the activation of complement played a significant
role in promoting the sensitiveness of necroptosis (Shi et al.,
2015). Overall, these findings provide new insights into the role
of necroptosis in DN.

Subsequently, via the selection of ML and WGCNA, a total of
8 significant NRDEGs were identified, including CFLAR, FMR1,
GSDMD, IKBKB, MAP3K7, NFKBIA, PTGES3, and SFTPA1.
Particularly, several significant NRDEGs have been confirmed
that regulated the immune landscape and inflammatory response
via necroptosis (Yu et al., 2022; Chen et al., 2023). CFLAR is a crucial
regulator in apoptosis, autophagy, and necroptosis [23,392,074]. He
et al. indicated that cells, especially T cells, with the abnormal
expression of CFLAR suffered form severe apoptosis and
necroptosis (He and He, 2013). And FMRP (Protein of FMR1)
binds RIPK1 mRNA, suggesting that FMRP acts as a regulator of
necroptosis pathway through the surveillance of RIPK1 mRNA
metabolism in colorectal cancer (Zhuang et al., 2020; Di Grazia
et al., 2021). Meanwhile, in mitochondria, GSDMD promotes the
release of ROS to induce necroptosis (Weindel et al., 2022). And
abundant studies have indicated that GSDMD induces the
occurrence, development and inflammation of DN via pyroptosis
(Cheng et al., 2021; Zuo et al., 2021). Our research focused for the
first time on the relationship between GSDMD and necrotic
apoptosis in DN, which further emphasized the role of GSDMD
in PCD and DN. Kondylis et al. reviewed the characteristic of IKK,
NF-κB and RIPK1 signaling in necroptosis, tissue homeostasis and
inflammation, which provided a powerful basis for the obtaining of
IKBKB, NFKBIA andMAP3K7 as significant NRDEGs of DN in our
research (Kondylis et al., 2017). IKBKB can alleviate the neuron
injury in Alzheimer’s Disease via regulating autophagy and RIPK1-
Mediated necroptosis [35,083,662]. The phosphorylation mediated
by MAP3K7 (TAK1) can regulate the activation of RIPK1 to dictate
the apoptosis and necroptosis [28,842,570]. Similarly, the
phosphorylation of NFKBIA was correlated with the necroptosis
in breast cancer cells [34,030,642]. And the above 3 NRDEGs have
been regarded as inflammatory regulators in DN in the previous
studies (Zhang et al., 2007; Oguiza et al., 2015). As the co-chaperone
of HSP90, PTGES3 (P23) has been found can activate the RIPK3/
MLKL during the necroptosis in acute respiratory distress syndrome
[32,072,232]. Moreover, the mutation of homozygous

SFTPA1 drives the necroptosis of type II alveolar epithelial cells
in idiopathic pulmonary fibrosis [31,601,679]. Overall, our
8 significant NRDEGs all can be regarded that play a direct or
potential role in necroptosis in various diseases. And in DN, our
study first indicated the characteristic of these 8 genes between DN
and necroptosis, which may provide some novel insights in
personalized therapy strategies for DN.

Based on the 8 significant NRDEGs, we identified two different
necroptosis-related DN subtypes with different necroptosis score.
Meanwhile, the above subtypes exhibited diversified immune
infiltration and inflammatory responses with different
ESTIMATE score, CYT score and expression level of ICKs,
which further demonstrated the regulatory effect of necroptosis
on immune microenvironment and inflammation in DN (Erekat,
2022). In addition, the single-cell analysis revealed that in podocytes,
almost all the 8 significant NRDEGs exhibited remarkable
expression difference between CN and DN, which implied that
necroptosis may play a critical role in the injury of podocytes of DN.
Meanwhile, in other renal tubular cells, epithelial cells and
leukocytes, several NRDEGs also exhibited difference, further
emphasizing the role of necroptosis in the damage of renal
parenchymal of DN patients. Finally, a necroptosis-mediated
model was constructed with the significant diagnostic efficiency
in both training set and validation sets, whose AUC was 0.97,
exhibiting better diagnostic efficiency than individual significant
NRDEGs.

Overall, in our present work, we integrated the transcriptome
data and single-cell data to excavate the crucial characteristic of
necroptosis in DN and identified 8 significant NRGs for the
diagnosis and subtyping of DN. However, due to regulatory and
ethical concerns, collecting the glomerulus samples of human was
excessively difficult and the expression level of these NRGs were only
validated in the animal level via RT-qPCR. Notably, research about
the relationship between the eight significant NRDEGs and the
kidney functions was still rare, our research firstly indicated the
potential correlated relationship between the eight significant
NRDEGs and the kidney function of DN. Then, based on the
landscape of necroptosis-regulators in DN, we identified two DN
subtypes with diversified immune microenvironment and
inflammatory response, which may provide new insights in
exploiting personalized therapy strategies for DN patients. And
regretfully, the detailed mechanism of the 8 NRGs and
necroptosis in DN was not fully discussed and explored in our
work, which was worthy to experimented in the future. Finally,
although the necroptosis-mediated diagnostic model exhibited
superior efficiency, the validation of the model is temporarily
limited to bioinformatics and no further experiments have been
conducted for verification.

Conclusion

Research about necroptosis in DN was still rare, especially via
bioinformatic analysis. Our work exhibited the landscape of
necroptosis in DN and ensured 8 NRGs with significant
expression difference in the glomerulus tissues between DN and
CN via bioinformatics and validation experiments. In addition, two
necroptosis-related subtypes with different inflammatory response
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and immune microevironment were identified, according to which
we calculated the necroptosis score to evaluate the immune
landscape and inflammatory response of DN patients. Finally, we
developed a necroptosis-mediated diagnostic model to accurately
diagnose DN patients. In conclusion, our work demonstrated an
accurate and novel model aiming to contribute in the field of
precision diagnosis and personalized therapy of DN patients,
which further consummate the relationship between DN and
necroptosis andmay become a shining novel star in further research.
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SUPPLEMENTARY FIGURE S1
The biological background and functional enrichment analysis for the two
different necroptosis-related subtypes. (A) The proportion of each pathway
in the results of ClueGOenrichment analysis. (B-D) The significantmodules
identified from the gene-pathway interaction network with the
corresponding score, nodes and edges. (E, F) The results of the (E) KEGG and
(F) Reactome enrichment analysis. (G-I) The pathways identified via the
GSEA algorithm with normalized p-value < 0.05.

SUPPLEMENTARY FIGURE S2
The kidney operated from our mice model, (A) the CN group, (B) the DN
group.
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