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Pulmonary arterial hypertension (PAH) is a severe disease resulting from
progressive increases in pulmonary vascular resistance and pulmonary vascular
remodeling, ultimately leading to right ventricular failure and even death. Hypoxia,
inflammation, immune reactions, and epigenetic modifications all play significant
contributory roles in themechanism of PAH. Increasingly, epigenetic changes and
their modifying factors involved in reprogramming through regulation of
methylation or the immune microenvironment have been identified. Among
them, histone lactylation is a new post-translational modification (PTM), which
provides a novel visual angle on the functional mechanism of lactate and provides
a promising diagnosis and treatment method for PAH. This review detailed
introduces the function of lactate as an important molecule in PAH, and the
effects of lactylation on N6-methyladenosine (m6A) and immune cells. It provides
a new perspective to further explore the development of lactate regulation of
pulmonary hypertension through histone lactylation modification.
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1 Introduction

PAH is a serious disease that involves pulmonary vasoconstriction, pulmonary vascular
multiplication, and the development of plexiform lesions. At first, the right ventricle (RV)
improves circulation by increasing contractility and ventricular wall thickness. With the
progress of the disease, the RV gradually expands, eventually leading to right heart failure
and even death (Harbaum et al., 2022). At the same time, PAH is also an important global
health problem that can affect any age group. The prevalence of PAH is approximately
25 cases per population of 1 million (Maron et al., 2021). In the UK, the prevalence of PAH
was 97 per million, with a female: male ratio of 1.8:1 (Galie et al., 2016), and in the
United States, there are approximately 10.6 cases per 1 million adults (Badesch et al., 2010),
with different epidemiological data of different types of PAH. With the development of
medicine and the continuous efforts of doctors, the 5-year survival rate has increased from
34% tomore than 60% through targeted treatment of PAH (Boucly et al., 2021). Even though
currently available therapies focus on improving PAH symptoms and reducing pulmonary
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vasoconstriction, the mortality rate remains unacceptably high.
Therefore, the identification of new pathways responsible for
pulmonary vascular remodeling as well as identifying novel
therapeutic targets are crucial.

Epigenetics emerging research has brought about many novel
discoveries in PAH. Previous research has already demonstrated
that m6A is a ubiquitous and abundant transcriptional modification.
Mechanically, m6A modification affects multiple functions of
mRNA, including transport, degradation, and translation, thus
participating in various pathophysiological processes. The
imbalance of m6A will lead to the occurrence and development
of tumors, inflammation, cardiovascular disease, and immune
disease (Efremova et al., 2020). The dynamic regulation of m6A
affects the expression level of specific genes involved in PAH. In
addition, inflammation and immune disorders are also involved in
pulmonary vascular remodeling, especially through the secretion of
cytokines and metabolic reprogramming (Xu et al., 2021). The
pathological specimens of PAH patients showed the
accumulation of perivascular inflammatory cells, such as
macrophages, lymphocytes, and mast cells (Jia et al., 2020).

The crosstalk between epigenetics and metabolism plays a key
role in gene expression, cell differentiation, and proliferation
(Vasconcelos et al., 2020). Lactate has been found to be a
signaling molecule and a metabolism regulator, participate in
intercellular signal transduction and immune reaction (Shime
et al., 2008), and play a key role in epigenomic reprogramming
(Bhagat et al., 2019). Under hypoxia, cells stimulate intracellular
lactate production by inhibiting oxidative phosphorylation and
enhancing glycolysis, thereby increasing histone lactylation and
promoting metabolic reprogramming (Zhang et al., 2019). The
increase or decrease of lactate concentration has been shown to
affect cell differentiation and function through multiple pathways.
The increasing understanding of lactate has promoted the
development of new targets. However, it just begin research
histone lactylation in PAH. This review describes the regulation

of m6A and the immune microenvironment by histone lactylation,
affecting the occurrence and development of PAH.

2 Pulmonary arterial hypertension

In 1975, WHO published the first standardized hemodynamic
criterion for pulmonary hypertension (PH) (Maron et al., 2018). In
the resting state at sea level, check through the right heart catheterisation
(RHC) technique, measure the mean pulmonary arterial pressure
greater than 25 mmHg (mPAP ≥ 25 mmHg) (Al-Omary et al.,
2020), and this definition has been followed ever since then. Until
to 2018, the 6th World Symposium on Pulmonary Hypertension
(WSPH) suggest that the diagnostic criteria for PH be modified to
mPAP>20 mmHg, a pulmonary artery wedge pressure of 15 mmHg or
lower, and a pulmonary vascular resistance of 3 Wood units or greater
(Simonneau et al., 2019).

As shown in Table 1, PH is clinically divided into five major
categories (Simonneau et al., 2019). The pathogenesis of PAH is
complex and involves various factors, including vasoactive
molecules (ET-1, Ang, PG, NO, etc.), ion channels (K+ channel,
Ca2+ channel, and new cation channels), signaling pathways (MAPK
pathway, PI3K/AKT pathway, Notch pathway, etc.) (Shafiq et al.,
2021; Zhang et al., 2022), apoptosis resistance, oxidative stress,
inflammation, and immune dysregulation (Norton et al., 2020).
The pathological changes of PH include proliferation of pulmonary
arterial endothelial cells (PAECs) along with the inflammatory
response, proliferation of pulmonary arterial smooth muscle cells
(PASMCs) and sustained contraction, and fibrosis of the external
membrane and matrix remodeling (Rhodes et al., 2019). The main
pathological feature of PH is pulmonary vascular remodeling caused
by phenotypic changes in endothelial cells and muscularization of
the vessel wall (Hautefort et al., 2019). This review focuses on
elucidating the molecular mechanisms underlying the first type of
epigenetic modifications of PH.

TABLE 1 Updated clinical classification of pulmonary hypertension (PH).

1. PAH 2. PH due to left heart disease 4. PH due to pulmonary artery
obstructions

1. 1 Idiopathic PAH 2. 1 PH due to HF with preserved LVEF 4. 1 Chronic thromboembolic PH

1.2 Heritable PAH 2.2 PH due to HF with reduced LVEF 4.2 Other pulmonary artery obstruction

1.3 Drug- and toxin-induced PAH 2.3 Valvular heart disease

1.4 PAH associated with:connective tissue disease, HIV infection, portal
hypertension, congenital heart disease,schistosomiasis

2.4 Congenital/ acquired cardiovascular conditions
leading to post-capillary PH

1.5 PAH long-term responders to calcium channel blockers 3. PH due to lung diseases and/or
hypoxia

5. PH with unclear and/or
multifactorial mechanisms

1.6 PAH with overt features ofvenous/ capillaries (PVOD/PCH)
involvement

3. 1 Obstructive lung disease 5. 1 Haematological disorders

1.7 Persistent PH of the newborn syndrome 3.2 Restrictive lung disease 5.2 Systemic and metabolic disorders

3.3 Other lung disease with mixed restrictive/
obstructive pattern

5.3 Others

3.4 Hypoxia without lung disease 5.4 Complex congenital heart disease

3.5 Developmental lung disorders

PAH, pulmonary arterial hypertension; HF, heart failure; PVOD, pulmonary veno-occlusive disease; PCH, pulmonary capillary haemangiomatosis; LVEF, left ventricular ejection fraction.
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Early symptoms of PAH are not specific and usually include
fatigue and chest tightness. As the disease progresses, symptoms
gradually become more severe, including dyspnea, syncope, chest
pain and right heart failure. Experts believe that early diagnosis and
treatment can improve survival (Simonneau et al., 2019). The
treatment of PAH includes general treatment, special drug
treatment, surgical treatment, and targeted drug therapy. General
treatment includes: activity and rehabilitation, anticoagulant
therapy, diuretic and cardiovascular active drug therapy, oxygen
therapy, anemia improvement and iron supplementation therapy,
and psychosocial support. The specific drug treatments include:
calcium channel blockers (CCB); endothelin receptor antagonists
(ERA) consisting of bosentan, ambrisentan, and macitentan; 5-
phosphodiesterase inhibitor (sildenafil, tadalafil); guanylate
cyclase agonist (sGC) include Adempas; prostacyclin analog
(epoprostenol, treprostinil, iloprost) and prostacyclin receptor
agonist (selexipag) (Humbert et al., 2022).

Additionally, combination therapy is considered a standard
treatment method in PAH. In spite of the fact that these
treatments can improve the life quality and survival of patients,
they do not cure the disease, the long-term prognosis is poor and the
mortality rate is high. Therefore, the development of new drugs and
the search for new treatments are the key to the treatment of PAH.

3 Mechanism of m6A methylation-
modified mRNA affecting the
development of PAH

3.1 The structure and function of m6A

A large number of research have shown that epigenetic
modifications play an important role in regulating cell proliferation,
protein synthesis, and gene transcription, including methylation,
histone lactylation modification, and microRNA dysregulation. It is
worth noting that m6A is a key regulator of mRNA stability, protein
expression, and other cellular processes (Ries et al., 2019). The m6A
peaks are mainly found in the open reading frame (ORF) (Li et al.,
2018), the 3′-untranslated regions (UTRs), and near the stop codons of
the mRNA (Ke et al., 2015). Mechanistically, m6A affects all stages of
RNA metabolism, including translation, stabilization, and degradation,
and plays a key role in the pathological and physiological processes of
cells (H. Huang et al., 2019).

The mRNA methylation modifications are dynamically
regulated by methyltransferases, demethylases, and methylation-
binding proteins to maintain normal gene expression. Among them,
the regulators involved are: methyltransferase including METTL3
(methyltransferase-like3) (Vu et al., 2017), METTL14
(methyltransferase-like14) (Chen et al., 2020), METTL16
(methyltransferase-like16) (Pendleton et al., 2017), WTAP
(Wilms tumor 1associated protein) (Zhu et al., 2020), RBM15
(RNA binding motif protein15) and zinc finger CCCH-type
containing 13 (ZC3H13) (Wen et al., 2018). The demethylases
FTO (FAT mass and obesity-associated protein) (Mathiyalagan
et al., 2019) and ALKBH5 (ALKB homologue5 protein) (Zhang
et al., 2017) both are the ALKB protein family, and belong to the
ferric hydride/ketoglutarate-dependent dioxygenase. The m6A
reader protein recognizes mRNA and binds to it to achieve

corresponding functions. One class of direct and robust m6A
readers are proteins containing the YT521-B homology (YTH)
domain, the YTH domain of the m6A reader protein is
composed of 134 amino acids (Zaccara, and Jaffrey, 2020),
including YTH domain family 1–3 (YTHDF1-3) (Gao et al.,
2019; Li et al., 2020) and YTH domain containing 1–2
(YTHDC1-2) (Roundtree et al., 2017; Jain et al., 2018) in
humans, were confirmed to regulate the mRNA processing,
translation, and degradation processes (Table 2). How to
maintain the above molecular expression level in homeostasis is
the key to preventing vascular dysplasia and elevated pulmonary
arterial blood pressure.

Immunofluorescence showed that METTL3 is located on the
nuclear spots rich in mRNA splicing factors and has a potential
regulatory role in mRNA metabolism (Vu et al., 2017). Previous
research showed that METTL3 might promote the development of
thyroid cancer through the methylation modification of TCF1
(Wang et al., 2020). In mammals, both METTL3 and
METTL14 are highly conserved, and both form stable
heterodimers. Among them, METTL4 is an snRNA m6Am
methyltransferase involved in the regulation of pre-mRNA
splicing (Chen et al., 2020). Li et al. found that METTL14 may
contribute to hepatocellular carcinoma progression through
modulation of m6A methylation of cysteine sulfinic acid
decarboxylase, glutamic-oxaloacetic transaminase 2, and cytokine
signaling suppressor 2 (Li et al., 2020). The methyltransferase
WTAP interacts with METTL3 and METTL14 to jointly regulate
them6A levels of mRNA transcription (Ping et al., 2014).METTL16, a
homolog of METTL3, regulates the expression of human MAT2A,
controls cellular SAM levels, and is also a methyltransferase of
U6 snRNA (Pendleton et al., 2017). In addition, a study has
shown that at least 78 m6A residues of XIST are highly methylated
in human cells. Among them, RBM15 and RBM15B mediate the
methylation of adenosine nucleotides in the commonmotif of m6A in
XIST and mRNA (Patil et al., 2016). The above methyltransferases
achieve different functions by modifying different stages of mRNA.

The demethylases FTO and ALKBH5 play powerful functions in
RNA translation, processing, and splicing (Tang et al., 2018). In
terms of modified bases, the m6Am is one of the most common near
the first coding nucleotide of the 7-methylguanosine cap of mRNA.
FTO preferentially demethylates m6Am and reduces the stability of
mRNA (Mauer et al., 2017). The regulation of mRNA function by
FTO leads to FTO-dependent changes in m6A demethylated protein
levels (Su et al., 2018). A study found that FTO plays a key role in
cardiac remodeling. Compared with healthy heart tissue, m6A
modification was increased and FTO expression was significantly
decreased in heart failure and myocardial infarction regions
(Mathiyalagan et al., 2019). ALKBH5 is the second discovered
m6A demethylase, which is similar to the m6A demethylation
activity of FTO (Zhang et al., 2017). A study showed that
ALKBH5 overexpression can inhibit the proliferation of
pancreatic cancer cells in vitro, whereas ALKBH5 knockdown
promoted the progression of pancreatic cancer (Guo et al., 2020)
(Table 2). This suggests that m6A demethylase achieves distinct
cellular functions by interfering with mRNA stability.

The m6A binding protein YTHDF1 is translocated from the
cytoplasm to the nucleus, where it initiates and enhances translation
in a manner that is dependent on the eIF3 initiation factor
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(Wang et al., 2015). YTHDF1 gene deletion leads to decreased
memory and learning, while YTHDF1 expression enhances
memory and learning (Shi et al., 2018). Transporting mRNA
targets to cytoplasmic processing bodies and promoting their
degradation are the functions of YTHDF2. The CCR4-NOT
deadenylase complex partially promotes the degradation of target
transcripts by cytoplasmic YTHDF2 (Du et al., 2016). The
YTHDF3 protein interacts with the YTHDF1 and
YTHDF2 proteins to enhance translation and degradation (Shi
et al., 2017). A structural and binding study indicates that the
YTH domain of YTHDC1, one of the core members of the YTH
family proteins, preferentially recognizes the GG (m6A)C sequence
(Roundtree et al., 2017). It has been shown that YTHDC1 promotes
the proliferation of cancer cells, the formation of tumors and the
migration of cells (Zhu et al., 2021). In addition, YTHDC2 binds to
the consensus motif of m6Amore preferentially than other members
of the YTH family, improving translation efficiency and reducing
mRNA bundling (Jain et al., 2018). Heterogeneous nuclear
ribonucleoproteins (HNRNPs) regulate alternative splicing or
processing of target transcripts, including HNRNPC, HNRNPG,
and HNRNPA2B1 (Wu et al., 2018) (Table 2).

3.2m6Amethylation-modifiedmRNA affects
the occurrence and development of PAH

The physiological function of m6 A in the cell is mediated by
different mechanisms, m6 A regulates the stem cell fate by modifying
mRNA (Li et al., 2018). In the past 2 years, many studies have
reported that the occurrence and development of PAH is closely
associated with epigenetic modification of mRNA, particularly m6A
methylation modification (Zhu et al., 2021). Zeng et al. had

confirmed that increased m6A methylation in PAH (Zeng et al.,
2021). In addition, some studies have demonstrated that METTL3
(Qin et al., 2021), METTL14 (Zhou et al., 2021), YTHDF1 (Hu et al.,
2021), and YTHDF2 (Qin et al., 2021) are involved in PASMC
proliferation and pulmonary vascular remodeling.

METTL3 plays an important role in the pathogenesis of
hypoxia-induced PAH. Qin et al. pointed out that METTL3 is
abnormally overexpressed in PASMCs of PAH. However,
downregulation of METTL3 inhibited hypoxia-induced
proliferation and migration of PASMCs (Qin et al., 2021).
Meanwhile, study revealed that YTHDF2 regulates RNA
metabolism by localizing bound mRNAs to degradation sites (Fei
et al., 2020). There was a significant upregulation of YTHDF2 in
PASMCs under hypoxia. Since YTHDF2 recognizes m6A on PTEN
mRNA, METTL3 decreases the stability of PTEN mRNA and
accelerates its degradation via YTHDF2. The PI3K/Akt signaling
pathway is activated in response to the reduced PTEN level, further
promoting the proliferation of PASMCs (Qin et al., 2021). In
addition, research also shows that SETD2 catalyzes
H3K36me3 and plays a key role in hypoxic PAH formation (Yao
et al., 2020). Hypoxia-induced PAH mice showed increased
expression of SETD2 and m6A transcript METTL14 in PASMCs,
and SETD2-specific knockout in SMC ameliorated PAH and also
decreased METTL14. This suggests that hypoxia-induced PAH is
caused by METTL14-mediated m6A modification and SETD2-
mediated H3K36me3 modification (Zhou et al., 2021) (Table 3).
Thus, the occurrence and development of PAH are commonly
promoted by multiple m6A methylation modifications.

Recently, YTHDF1 has been shown to be overexpressed in
human and rodent PAH samples and hypoxic PASMCs. The
researchers found that MAGED1 regulates PAH pathogenesis by
directly targeting m6A. YTHDF1 promoted PASMC proliferation

TABLE 2 The structure and function of m6A.

Type Regulator Function References

m6A writer METTL3 catalyzes m6A modification (Vu et al., 2017; Wang et al., 2020)

METTL14 helps METTL3 to recognize the subtract (Chen et al., 2020; Li et al., 2020)

METTL16 catalyzes m6A modification (Pendleton et al., 2017)

WTAP contributes to the localization of METTL3-METTL14 heterodimer to the nuclear
speckle

(Ping et al., 2014; Zhu et al., 2020)

RBM15 binds the m6A complex and recruit it to special RNA site (Patil et al., 2016)

ZC3H13 bridges WTAP to the mRNA-binding factor Nito (Wen et al., 2018)

m6A eraser FTO removes m6A modification (Mathiyalagan et al., 2019; Mauer et al., 2017; Su et al.,
2018)

ALKBH5 removes m6A modification (Guo et al., 2020; Tang et al., 2018; Zhang et al., 2017)

m6A reader YTHDF1 enhances mRNA translation (Gao et al., 2019; Shi et al., 2018; Wang et al., 2015

YTHDF2 promotes mRNA degradation (Du et al., 2016; Li et al., 2020)

YTHDF3 enhances translation and degradation by interacting with YTHDF1 and YTHDF2 (Gao et al., 2019; Shi et al., 2017)

YTHDC1 contributes to RNA splicing and export (Roundtree et al., 2017; Zhu et al., 2021b)

YTHDC2 enhances the translation of target RNA and reduces the abundance of target RNA (Jain et al., 2018)

HNRNPC mediates mRNA splicing (Wu et al., 2018)
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and the development of PAH by increasing MAGED1 translation,
and MAGED1 knockdown reduced hypoxia-induced proliferation
of PASMCs by downregulating proliferating cell nuclear antigen
(PCNA) (Hu et al., 2021). Meanwhile, Wang et al. showed that the
expression of YTHDC1 was enriched in PAECs under hypoxic
conditions and mediated FENDRR involved in the hypoxia-
induced proliferation of PAECs (Wang et al., 2022). In addition,
DEGs and HNRNPA2B1 target genes overlapped in PASMCs,
indicating that HNRNPA2B1 was upregulated in PASMCs.
HNRNPA2B1 regulates the Wnt signaling pathway, cAMP
signaling pathway, P53 signaling pathway, and cell cycle of
muscle cell differentiation, and participates in the signaling
pathway by modifying m6A modification (Zheng et al., 2022)
(Table 3).

4 The immune microenvironment
dysequilibrium promotes the
development of PAH

Recent studies have found that the occurrence and development of
PAH is the result of a variety of cell interactions, which is not only
related to PAECs dysfunction, PASMCs phenotypic switching and
fibroblast activation, moreover, it is also closely related to the immune
microenvironment imbalance. Accumulating evidence suggests that
inflammation is a major contributor to vascular remodeling in PAH
(Xu et al., 2021). The disorder of the immune microenvironment plays
an important role in the development of PAH, and the immune system
regulates PAH via multiple mechanisms.

Mechanistically, immune cells induce an inflammatory response by
releasing various types of inflammatory mediators and cytokines to
bind to cytokines receptors on vascular endothelial cells, smoothmuscle
cells, and fibroblasts (Guihaire et al., 2021; Tang et al., 2021). Pulmonary
vascular and perivascular inflammation is one of the major factors
leading to vasoconstriction and vascular remodeling. PAECdysfunction
leads to the release of vasoconstrictive and inflammatory factors that
promote excessive proliferation of PASMCs and pulmonary artery
constriction (Florentin et al., 2018). Extensive research has shown
that different subsets of T lymphocytes play distinct roles in PAH,

including helper T lymphocytes (Th cells), cytotoxic T lymphocytes,
and regulatory T lymphocytes (Tregs). Among them, Th1 and
Th17 cells are involved in the autoimmune and inflammatory
response of PAH by producing IL-2, IL-6, IL-21, IFN-c and TNF-α
(Steiner et al., 2009). Meanwhile, Maston et al. found that Th17 cells
promote the progression of hypoxia-induced PAH in rats by releasing
IL-17A (Maston et al., 2017) (Figure 1).

Elevated levels of cytokines and chemokines have been found in
patients with idiopathic PAH (Perros et al., 2013). Meanwhile, The
expression of CRTH2 (chemoattractant receptor homologous molecule
expressed on Th2 cells) was increased in both circulating CD3+CD4+

T cells in idiopathic PAH patients and rodent models of PAH. Chen
et al. have shown that CRTH2 promotes PASMC proliferation by
activating STAT6 (Chen et al., 2018; Harbaum et al., 2016). In addition
to regulating collagen synthesis and proliferation of PASMCs, CD44+

T cells play a key role in pulmonary vascular remodeling, immune
regulation, and phenotypic transformation (Isobe et al., 2019). The
above studies suggest that the release of inflammatory factors promotes
the progression of PAH.

In humans and mice, studies have shown that Tregs make up
approximately 5%–10% of peripheral blood lymphocytes (Elkord,
2009). They inhibit autoimmunity and maintain immune
homeostasis. Previous studies have shown that abnormal Tregs
may impair the anti-inflammatory function of PAECs and play a
key role in the pathogenesis of PAH. A decreased number of Tregs
was observed in the pulmonary vessels of PAH patients, while an
increase was observed in the peripheral circulation, indicating the
decreased suppressive function of Tregs (Huertas et al., 2016). In
addition, Tregs are involved in the regulation of adaptive and innate
immunity. In PAH, Treg deficiency promotes the emergence of
destructive macrophage-based immunity that damages the
endothelium and leads to vascular remodeling (Tian et al., 2013).
In conclusion, normal function of Tregs may limit pulmonary
vascular damage and prevent the development of PAH.

Bone morphogenetic protein receptor type 2 (BMPR2) is also
involved in the pathogenesis of PAH, which is mainly secreted by
PAECs and feeds back to them, then inhibits their proliferation and
differentiation (Diebold et al., 2015). Research has shown that Tregs
function by upregulating BMPR2 expression to decrease endothelial

TABLE 3 Role of m6A methylation modification in PAH.

Type Regulator Expression Mechanisms References

m6A
writer

METTL3 Increase METTL3/YTHDF2/PTEN axis promotes the hypoxia induced PAH. (Qin et al., 2021; Zeng et al.,
2021)

METTL14 Increase SEDT2/METTL14-mediated m6A methylation contributes to the hypoxia induced PAH in
mice

(Zhou et al., 2021)

m6A
reader

YTHDF1 Increase YTHDF1 regulates the PAH through translational control of MAGED1 (Hu et al., 2021; Zeng et al.,
2021)

YTHDF2 Increase METTL3/YTHDF2/PTEN axis promotes the hypoxia induced PAH. (Qin et al., 2021)

YTHDC1 Increase FENDRR with YTHDC1 regulates PAH by mediating DRP1 DNA methylation (Wang et al., 2022)

HNRNPA2B1 Increase Interfered with RNA splicing, transport, and maturation which mediate the phenotype
translational of PASMCs

(Zheng et al., 2022)

m6A
eraser

FTO Decreased — (Zeng et al., 2021)

ALKBH5 Decreased — (Zeng et al., 2021)
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cell apoptosis and perivascular inflammation. However, as a
consequence of decreased BMPR2 secretion in injured PAECs,
they are much more susceptible to PAH (Hong et al., 2008). In
the meantime, the study by Chu et al. found that Tregs inhibit
PASMC proliferation and PAH development by inhibiting Akt and
extracellular signal-regulated kinase (Chu et al., 2015). According to
several studies, macrophages are involved in the progression of PAH
through their inflammatory response (Zhang et al., 2020). In
addition, accumulation of B cells and macrophages after 1 week
in Treg-deficient rats exposed to SU5416 (Tamosiuniene et al.,
2011). Jia et al. have shown that by reducing vascular remodeling
through stimulation of H-PGDS-dependent PGD2 release from
macrophages, niacin blocks the progression of HySu-induced
PAH in rodents (Jia et al., 2020).

The immune microenvironment was significantly altered when
PAH rats were exposed to lipopolysaccharide (LPS) and
M1 macrophage polarization was increased. By increasing the
proportion of M1 macrophages, IL-1 and other inflammatory
factors are released, further impairing pulmonary arterial and
cardiac function (Guo et al., 2021). The key transcription factor
STAT1 can activate signaling cascades leading to macrophage
activation and inflammation. METTL3 can upregulate
STAT1 expression and promote macrophage M1 polarization by
directly methylating STAT1 mRNA (Liu et al., 2019). However,
inhibition of METTL3 can inhibit the NF-κB pathway to reduce the
macrophage inflammatory response induced by LPS, reducing the
progression of PAH (Wang et al., 2019). This shows that inhibition
of macrophage inflammatory response can reduce PAH in vascular
remodeling. In addition, dysregulation of m6A regulators was

similarly observed in NK cells, B cells, T cells and Tregs in the
stroma (Zheng et al., 2022). However, the mechanism of action
between m6A and numerous immune cells needs to be further
investigated.

In addition, the vascular endothelial growth factor (VEGF)
secreted by mast cells in PAH may cause angiogenesis to
malfunction, and mast cells around blood vessels produce
chymase. It is known that chymase could stimulate
vasoconstriction and vascular remodeling by promoting the
activation of Ang II, endothelin, and matrix metalloproteases (Qu
et al., 2022) (Figure 1). Therefore, inhibiting the secretion of growth
factors and cytokines by mast cells may slow the progression
of PAH.

In summary, inhibiting the release of inflammatory factors is
one of the most important ways to suppress the progression of PAH.
In PAH, PASMCs, PAECs, fibroblasts and immune cells are
dysfunctional, resulting in pulmonary vascular remodeling.
Inflammation could activate the function of immune cells and
promote the proliferation of PASMCs and PAECs, leading to
pulmonary artery remodeling. Anti-inflammatory therapy may be
a viable option for the treatment of severe PAH, which is associated
with inflammation and dysregulated immunity.

5 Glycolysis and glucose oxidation
in PAH

The interaction between metabolism and epigenetics plays a key
role in gene expression, cell proliferation, and differentiation.

FIGURE 1
Schematic representation of pulmonary artery remodeling promoted by immune microenvironment dysregulation. The dysfunction of
macrophages, mast cells, T cells, B cells, NK cells and Tregs together lead to pulmonary vascular remodeling in PAH. Th1 and Th17 cells mediate the
inflammatory response in PAH by producing IL-2, IL-6, IL-21, IL-17A, IFN-c, and TNF-α. Meanwhile, PASMCs proliferation is promoted by CRTH2 from
Th2 lymphocytes through the activation of STAT6. Tregs inhibit the proliferation of PASMCs by decreasing Akt activity and regulating the kinase of an
extracellular signal. Tregs can reduce perivascular inflammation and PAECs apoptosis through upregulation of BMPR2. In addition, VEGF, Ang II, and ET-1
secreted by mast cells are all involved in the remodeling of the pulmonary vasculature.
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During cellular metabolism, nutrients are absorbed, released, and
converted into energy and complex biomolecules. Depending on the
availability of nutrients, metabolic products modulate cell signaling
and gene expression (Liberti, and Locasale, 2020). A large amount of
lactate is produced by anaerobic glycolysis (Zhang et al., 2021),
which is originally thought that it was a Warburg effect end product
and a metabolic waste product by glycolysis. Nevertheless, lactate is
now recognized as an energy source, a signaling molecule, and an
immunoregulatory molecule (Bhagat et al., 2019).

Cellular metabolic reprogramming due to an imbalance between
the glycolysis and the citric acid (TCA) cycle, leading to increased
histone lactylation (Liberti, and Locasale, 2020). Glucose is first
metabolized by glycolysis in tissues to pyruvate, which is then
converted to circulating lactate. At the same time, pyruvate can
also be oxidized to acetyl-CoA, which participates in the TCA cycle
and ATP production (Gustafsson et al., 2007) (Figure 2). During
hypoxia, cells reorganize metabolism by suppressing oxidative
phosphorylation and increasing glycolysis, which accelerates
lactate production (Zhang et al., 2019). Rather than entering the
TCA cycle, pyruvate is converted into lactate by cytosolic lactate
dehydrogenases (LDHs) in highly glycolytic cells. Finally, as a result
of enhanced glycolysis, microenvironments become acidification
with increased lactate production.

In PAECs (Cao et al., 2019) and PASMCs (Hernandez-Saavedra
et al., 2020) from PAH patients and animal models of PAH, glucose
metabolism gradually shifts from mitochondrial oxidative
phosphorylation to glycolysis, ultimately leading to elevated

lactate levels (Saygin et al., 2017). Meanwhile, evidence suggests
that a glycolytic shift increases the proliferation and extracellular
matrix (ECM) production of PASMCs, thereby promoting
pulmonary vascular remodeling (Kovacs et al., 2019). In addition,
glycolysis-related enzymes were increased in PAH lungs, including
glycolytic regulator PFKFB2 (6-phosphofructo-2-kinase/fructose-2,
6-biphosphatase) (Zhao et al., 2014) and PFKFB3 (6-
phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3). With the
increase of glycolysis and lactate level, the expression of
PFKFB3 in PASMCs is upregulated, resulting in the proliferation
and extracellular collagen synthesis of PASMCs. Studies have shown
that PFKFB3 can induce calpain-2 activation and ERK1/
2 phosphorylation in pulmonary artery smooth muscle cells,
which promote vascular remodeling in PAH. In Sugen/Hypoxia
PAH rat model, inhibition of calpain-2 can prevent ERK1/2 activity,
and reduces lactate-induced increases of PAH and pulmonary
vascular remodeling (Kovacs et al., 2019). Research has also
shown that PFKFB3 promotes the production of
proinflammatory cytokines and growth factors in PAECs through
enhancing endothelial glycolysis. In PAH models, these factors
promote inflammation in endothelial cells and the proliferation
of PASMCs through autocrine and paracrine pathways (Hernandez-
Saavedra et al., 2020).

The proliferation of PASMCs is influenced by endothelial
dysfunction, hypoxia, inflammation, or mechanical stress, which
are augmented by vasoconstrictors, growth factors, and chemokines.
Enhanced anaerobic glycolysis can activate HIF, and the

FIGURE 2
Schematic representation of the glycolysis and the TCA cycle. HK, hexokinase; GPI, phosphoglucose isomerase; G6PD, glycolysis/glucose-6-
phosphate dehydrogenase; PFK, 6-phosphfructokinase-1; G-3-PD, glyceraldehyde-3-phosphate dehydrogenase; PGK, phosphoglycerate kinase; PGM,
phosphoglycerate mutase; PK, pyruvate kinase; LDH, lactate dehydrogenase; PDH, pyruvate dehydrogenase.
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overexpression of PFKFB3 also promotes the release of HIF, thus
leading to the dysfunction of PAECs (Cao et al., 2019). Hypoxia-
induced vasoconstriction is a unique response, and mechanistically,
the cellular response to hypoxic conditions is primarily mediated by
HIF activation (Yang et al., 2021). Induced vasoconstriction by acute
hypoxia results in a reversible increase in pulmonary vascular
resistance, whereas prolonged hypoxia promotes PASMCs
proliferation and migration, thereby facilitating vascular
remodeling and sustained vasoconstriction (Han et al., 2021)
(Figure 3).

Under hypoxic conditions, HIF-1 enters the nucleus and
associates with hypoxic regulatory genes, thereby enhancing
anaerobic glycolysis and further contributing to the hypoxic
response (Depping et al., 2008). Several downstream effects
activated by HIF-1α are associated with immune escape, and
HIF-1α is also an important regulator of macrophage glycolysis
metabolism (Mouton et al., 2018). During hypoxia, HIF-1α is
increased as a result of oxygen-independent protein synthesis and
oxygen-dependent degradation (Kurosawa et al., 2019). During
PAH progression, HIF-1α plays an important role in modulating
downstream gene transcription (Kurosawa et al., 2019). Studies have
shown that HIF-1α expression is upregulated in the pulmonary
artery, leading to long-term sustained pulmonary artery constriction
and promoting pulmonary artery remodeling (Mouton et al., 2018).
Chen et al. have shown that mROS (mitochondrial reactive oxygen
species)-dependent HIF-1α accumulation promotes the PASMCs
proliferative phenotype (Chen et al., 2022). In addition, high levels of
lactate also promote HIF-2α accumulation, leading to PAEC damage
(Tang et al., 2018). This suggests that HIF homeostasis is regulated

by multiple PTMs that control multiple pathophysiological
processes by targeting transcription and translation.

Several signaling pathways may be activated during chronic
hypoxia. The mTORC pathway has been shown to be activated in
both PASMCs and distal pulmonary arteries from patients with
idiopathic PAH (Goncharov et al., 2014). Mechanistically, the
mTORC1 pathway activates certain glycolytic enzymes and
accelerates glucose metabolism by increasing GLUT1 expression
(Liang et al., 2022). With activation of the mTOR-HIF1α axis, the
rate of glycolysis is accelerated, resulting in an increase in the
production of pyruvate and lactate (Bekkering et al., 2018). In
addition, HIF-1α is activated by PI3K/AKT and MAPK/
ERK1 pathways in hypoxia conditions (Xu et al., 2016). A classic
downstream signaling pathway in PAH, PI3K/AKT activation can
promote smooth muscle proliferation in the pulmonary arteries.
Previous studies confirmed PAH development by activating the
PI3K/AKT/mTOR/HIF-1α signaling pathway (Xiao et al., 2017)
(Figure 3). However, the cAMP/PKA signal pathway could
suppress mTOR activity (He et al., 2020). Consequently,
inhibition of the high expression of HIF and mTOR signaling
pathway could suppress pulmonary artery remodeling and the
development of PAH.

6 Histone lactylation regulates m6A
affects the development of PAH

Cellular metabolic reactions require glucose and oxygen as
substrates. During glycolysis, large amounts of lactate are

FIGURE 3
Schematic of signaling pathways driving PASMC proliferation via hypoxia-induced glycolysis. High levels of lactate promote HIF production by
increasing PFKFB3 expression, leading to PAECs dysfunction. After injury, PAECs secrete growth factors and proinflammatory cytokines through the
paracrine pathway to promote PASMC proliferation. At the same time, PFKFB3 promoted PASMCs proliferation by activating calpain-2 and
phosphorylating ERK1/2. In addition, hypoxia promotes HIF release, promotes glycolysis, and inhibits the tricarboxylic acid cycle, thereby increasing
lactate levels, and the increase in lactate can also enhanceHIF expression. Hypoxiamay also promote the onset and development of PAH by activating the
PI3K/AKT/mTOR/HIF-1α signaling pathway.
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produced as an energy source to maintain cellular metabolism.
Histone lysine lactylation has been shown to be caused by lactate
accumulation and regulated by lactate levels. The regulation of gene
expression by lactate through histone lactylation modification is a
newly discovered epigenetic modification, and a novel PTM has
been identified in human and mouse core histones (Bhagat et al.,
2019). Histone lactylation is involved in many cellular processes,
including translation, metabolism, recombination, and repair
(Zhang et al., 2021). Mechanically, lactate is used as a substrate
to generate lactyl-CoA for lysine lactylation on histones, a process
that regulates gene expression in a variety of pathophysiological
conditions (Zhang et al., 2019). Meanwhile, in terms of transcription
and antigenic variation, chromatin repression or induction is
determined by the PTM status of core histones (Stillman, 2018).

In addition to their critical function in signal transduction and
cellular metabolism, PTMs also play a key role in regulating protein
conformation, stability and function (Zhang et al., 2021). Several
factors were associated with PASMCs and PAECs proliferation,
including lactate metabolism, oxidative stress response, HIF-1
pathway and PTMs. A number of studies have shown that
glycolysis plays a critical role in PASMC proliferation, and
inhibition of glycolysis can inhibit PASMC proliferation and
migration and also reverse PAH in animal models (Xiao et al.,
2017). Chen et al. found that mROS-mediated HIF-1α-driven
glycolysis promotes pulmonary artery remodeling. Mechanistically,
lactate accumulation increases histone lactylation at HIF-1α targets
linked to proliferative phenotype (Chen et al., 2022).

Lactate in the intracellular environment can promote the
lactylation of histone H3 on the promoters of homeostatic genes,
which activates their expression (Zhang et al., 2019). A study
found that METTL3 expression was upregulated in tumor-
infiltrating myeloid cells (TIMs) and associated with poor
prognosis. Meanwhile, study confirmed that lactylation was
indeed present in METTL3, and H3K18la was enriched in the
promoter regions of METTL3. In a mechanical manner, lactate
promotes METTL3 transcription by modifying H3K18la. Lactate
accumulated in the tumor microenvironment potently promoted
METTL3 upregulation in TIMs through H3K18la, and lactylation
of METTL3 in TIMs promoted m6A-mediated immunosuppression
(Xiong et al., 2022). In addition, the “CCCH” zinc finger domains
(ZFDs) of the METTL3 protein can be directly lactylated, which via the
METTL3-JAK1-STAT3 signaling pathway. METTL3 was bound and
enhancesm6Amodification of target RNA and promotes the expression
of downstream immunosuppressive effector molecules like iNOS, IL-6,
and IL-10 (Kumagai et al., 2022). This suggests that lactate could
promote METTL3 expression through H3K18la modification, thereby
affecting downstream signaling and gene expression.

METTL3 expression is upregulated in hypoxia-induced PASMCs,
which promotes pulmonary artery remodeling through the METTL3/
YTHDF2/PTEN axis (Qin et al., 2021). Meanwhile, studies have
shown that lactate promotes PASMC proliferation through histone
lactylation modification. H3K18laChIP-seq analysis of PDH kinase 1
(PDK1) and PDK2 silenced hypoxic PASMCs revealed that the density
of H3K18la around the HIF-1α peak was also reduced (Chen et al.,
2022). This suggests that both histone lactylation and METTL3 play
important roles in PAH. However, the specific role of H3K18la and
METTL3 in PAH is still unclear and needs to be further explored,
which will also provide an important basis for the treatment of PAH.

The metabolic dynamics of glucose and lactate levels change
to regulate histone lactylation (Varner et al., 2020). Previous
studies have shown that histone lactylation may contribute to
tumor growth by increasing YTHDF2 transcription. One study
confirmed that H3K18la enrichment is present at the promoter of
YTHDF2, transcription of YTHDF2 is regulated by H3K18la, and
glycolysis inhibitors reduced this enrichment (Yu et al., 2021).
Meanwhile, another study showed that the translation and
expression of LDHB are decreased by YTHDF2, which inhibits
aerobic glycolysis and cell proliferation by promoting mRNA
degradation (Huang et al., 2020; Qing et al., 2021). YTHDF2 is
upregulated and expressed in PAH and inhibited YTHDF2 can
prevent hypoxia-induced PASMC proliferation. However, the
specific role of histone lactylation and YTHDF2 in PAH needs
to be further explored (Figure 4).

In addition, modifications of m6A are enriched around
H3K36me3 peaks, and are reduced globally when H3K36me3 is
depleted in the cell, this indicated that loss of H3K36me3 reduces
m6A methylation. H3K36me3 and m6A modifications overlapped
well with METTL14 binding sites on RNA, according to distance
analysis. In terms of mechanism, METTL14 recognizes and binds
H3K36me3 directly, m6A co-transcriptionally deposited by
delivering the m6A methyltransferase complex (MTC) on actively
transcribed nascent RNAs (Huang et al., 2019). Evidence shown that
METTL14 is upregulated expressed in PAH and inhibited
METTL14 can prevent hypoxia-induced PASMCs proliferation
(Zhou et al., 2021). However, The mechanism of action between
lactate and H3K36me3 remains unclear. The target mechanism of
histone lactylation involved in the methylation modification of

FIGURE 4
Schematic of the hypothesis that lactate regulates m6A to affect
PAH development via histone lactylation modification. Lactate may
promote transcription of RNA METTL3 and YTHDF2 through H3K18la
modification, and whether it may further influence PAH
progression remains to be studied. In addition, whether lactate can
affect the transcription of METTL14 and interfere with PASMC
proliferation through H3K36me3 modification remains to be
investigated.
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METTL14 to regulate the occurrence and development of PAH
requires further study.

7 The immune microenvironment
disrupted by histone lactylation and
promotes the development of PAH

Histone lysine lactylation is involved in the regulation of gene
expression by affecting mRNA splicing, translation, processing, and
degradation. A growing body of evidence suggests that lactate
regulates both innate and adaptive immune cells and affects
significant changes in gene expression in a unique way (Zhang
et al., 2019). According to lactate homeostasis, lactate is vital in fine-
tuning cellular metabolism by regulating extracellular metabolism,
and the function of lactate metabolism is further emphasized by
energy homeostasis (Lagarde et al., 2021). In addition to playing a
role in metabolism, lactate or signal molecules are involved in a
variety of physiological and pathological processes. Lactate shuttles
between and within cells to accomplish its effects and affects cell
function. This shows that connect histone lactylation metabolism
and the importance of epigenetic process.

Lactate is an active signal that regulates immune cells,
metabolically reprogramming them to regulate their function
(Lee et al., 2018). Histone lactylation has been shown to
modulate immune responses and play important biological roles
in the immune system. Lactate promotes the release of pro-
inflammatory cytokines by regulating a variety of immune cell
functions. Lactate can accumulate in response to inflammation or
hypoperfusion. Studies have shown that lactate is a powerful
amplifier of inflammation in arthritis (Souto-Carneiro et al.,
2020). In PAH, an altered immune system contributes
significantly to pulmonary vascular remodelling by promoting
inflammatory cell recruitment and autoimmune dysfunction (Xu
et al., 2021).

Most immunometabolic studies have focused on tumour-
associated macrophages in cancer or abnormal B and T
lymphocyte function in autoimmune diseases. Several studies
have shown that lactate suppresses the proliferation, migration
and function of T cells (Brand et al., 2016). Extracellular lactate
levels are sensed by T cells, causing intracellular signalling and
altering cell function and homeostasis. Excessive lactate inhibits
T-cell mediated immune responses (Watson et al., 2021). By aerobic
oxidative metabolism, glucose is mainly metabolised to carbon
dioxide by resting T cells, whereas activated cytotoxic T cells
utilise glycolysis and produce lactate for energy and biosynthesis
(Fischer et al., 2007).

Lactate signalling in CD4+ T cells promotes Th17 cell
differentiation and suppresses T cell migration and trafficking
(Pucino et al., 2019). Lactate enters CD4+ T cells via MCT1,
through LDHB into pyruvate, promote TCA cycle, decrease
T-cell glycolysis, inhibits CD4+ T cell proliferation, induces
effector T cell dysfunction (Kaushik et al., 2019), favors Treg
expansion, and maintains their suppressive function
(Watson et al., 2021). A link has been established between
aerobic glycolysis and cytokine production. Several studies have
shown that glycolytic enzymes are involved in the production of
cytokines. Ex vivo T-cell activation assays have shown that lactate

stimulates the secretion of cytokines such as IFN-γ, IL-2 and TNF-α
(Wen et al., 2021). In addition, other studies found that the high
lactate microenvironment decreased IFN-g production and
inhibited NKT cell proliferation, survival and effector function
(Kumar et al., 2019) (Figure 5).

An important mechanism for the induction of macrophage
plasticity is the modulation of phenotypic stability and epigenetic
dynamics in the context of inflammation, autoimmune responses
and cancer. Under physiological or pathological conditions,
epigenetic modification may form an integrated pathway during
lactate-induced cell polarisation (Bekkering et al., 2018). Previous
studies have shown that glycolysis and oxidative phosphorylation
(OXPHOS) are closely linked to macrophage polarisation. There are
two types of activated macrophages: pro-inflammatory
M1 macrophages rely primarily on glycolysis, whereas reparative
and immunoregulatory M2 macrophages rely on OXPHOS
(Watanabe et al., 2018) (Figure 5). Thus, these factors that affect
macrophage metabolism may disrupt M1/M2 homeostasis and
exacerbate inflammation.

PAH is the result of a variety of factors and one of the most
important is the imbalance of the immune microenvironment.
Lactate can increase the expression of pro-inflammatory
cytokines and regulate macrophage polarisation both in vivo and
in vitro. Boutens et al. found that in human cell lines, hypoxia and
glucose supplementation increased intracellular lactate levels and
upregulated the expression of histone lactylation, and in particular
promoted histone H3K18 lactylation (Sun et al., 2021), thereby
promoting the polarisation of M1-type macrophages (Boutens et al.,
2018) (Figure 5). The research showed that lactate production is
required for proper histone lactylation, which induces gene
expression and maintains homeostasis by promoting an M2-like
phenotype in the late stages of M1 macrophage polarisation. In the
M1macrophage polarisationmodel, ChIP-seq showed that H3K18la
was enriched at specific genes. When M1 macrophages are polarised
by infection, this is characterised by increased histone lactylation in
promoter regions and leads to the expression of homeostatic genes
(Zhang et al., 2019). One line of clinical evidence suggests that the
expression of H3K18 in peripheral blood monocytes is strongly
correlated with the severity of critically ill patients. Therefore,
H3K18 is a very promising biomarker (Chu et al., 2021).

Endothelial dysfunction accompanied by glycolysis increase
metabolic changes in the pathophysiology, PAH is of great
importance. Recent studies have shown that lactate increases the
acetylation and lactylation of high mobility group protein B1
(HMGB1), and enhances its release from macrophages through
exosomes. In addition, lactate inhibits the steady state and promotes
vascular permeability, which induces vascular endothelial cell injury
(Yang et al., 2022). Meanwhile, from in vitro cultured PASMC,
HMGB1 by increasing the endoplasmic reticulum stress-related
protein PERK and ATF4 reduce HIPK2 expression, increase
SIAH2 expression, thus promoting PASMC proliferation and
migration. Through glycyrrhizic acid interference, HMGB1 can
reduce the development of PAH (Zhang et al., 2023). Glucose
enters the cytoplasm through the glucose transporter 1 (GLUT1)
and is metabolized through the pathways of glycolysis and the
tricarboxylic acid cycle. Overexpression of the primary
macrophage GLUT1 enhances glycolysis and pro-inflammatory
cytokine release. Similarly, lacking GLUT1 of macrophages
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promoted M2 polarization (Freemerman et al., 2019). It has been
shown that GLUT-1 is over-expressed in PAs and PASMCs in an
animal model of MCT-induced PAH (Li et al., 2019). In addition,
studies have shown that the increase of pyruvate kinase M2 (PKM2)
protein expression in PAH can promote the phosphorylation of
ERK1/2 and further upregulate the expression of key glycolytic
enzymes LDHA and GLUT1, thereby participating in vascular
remodeling in PAH. However, increasing shikonin decreased the
protein level of PKM2, decreased the phosphorylation level of
ERK1/2 and the expression level of GLUT1 protein, and
inhibited the progression of PAH (Li et al., 2023).

A hypoxia-induced adaptive response is initiated by HIF-1,
which increases or represses the expression of genes regulating
vascular tone, autophagic response, cell metabolism, and
proliferation. HIF-1 could enhance the transcription of a
glycolysis and pro-inflammatory M1 gene profile (Boutens et al.,
2018). Lactate, as a promoter of angiogenesis, increases angiogenesis
through HIF-1α stabilization to promote the expression of VEGF
(Depping et al., 2008) Furthermore, studies have shown that the
progression of PAH is due to VEGF (Wang et al., 2022) and
Arginase (Arg) (Ji et al., 2022) overexpression. Hypoxia induces
changes in the subcellular distribution of nuclear proteins and
significantly promotes the activation of EGFR signaling. The
phosphorylation modification of EGFR increases the sensitivity of
vascular cells to Ca2+, leading to enhanced vasoconstriction and the
development of pulmonary vascular remodeling, whereas injection
of EGFR inhibitors can improve pulmonary artery remodeling in
MCT-induced PH rats (Wang et al., 2022). EGFR can activate
downstream ERK, and ERK phosphorylation can activate HIF-1.

In addition, lactate induced M2 macrophage polarization can be
attributed to the activator ERK of the STAT3 signaling pathway as
well as increased VEGF and Arg-1 expression (Mu et al., 2018).

In conclusion, lactate accumulation and histone lactylation
contribute to the development of immunotherapy (Cascone et al.,
2018). Several studies have shown that there is some correlation
between immune cells and glucose metabolites. Therapies targeting
immune metabolism are in the early stages of development.
However, the mechanism of their interaction, whether through
direct or indirect signaling pathways, remains unclear and needs
to be further explored. In this review, we bridge the gap between
histone lactylation and the immune microenvironment for the first
time, providing new insights into PAH research.

8 Conclusion

PAH is a serious cardiovascular disease that results from a complex
mechanism involving many cellular and molecular interactions, and
recent studies have shown that lactate plays an important role in PAH.
While impressive progress has beenmade, there are still many questions
that remain unanswered. Specifically, lactate can affect m6A through
histone lactylation modification, thereby altering transcription and
translation of mRNA, which in turn affects cell growth and
metabolism. In addition, lactate may also affect the immune
microenvironment by regulating the number and function of
immune cells, thereby affecting the disease course of patients with PAH.

Existing literature shows that in almost all proteins involved in
at least one regulatory PTM. Lactylated proteins are widely involved

FIGURE 5
Schematic of the hypothesis that lactate promotes PASMC proliferation by disrupting the immune microenvironment via histone lactylation
modification. Glycolysis and the TCA cycle are the major metabolic processes of glucose in the body. When oxygen is adequate, cells produce energy
primarily through the TCA cycle. However, in hypoxia, glucose is metabolized by glycolysis to produce large amounts of lactate. Lactate is transported via
MCT1 to CD4+ T cells, which then promote the differentiation of Th17 cells and the expansion of Treg cells. At the same time, the increase in lactate
promotes the secretion of IFN-γ, IL-2 and TNF-α by immune cells, which promotes PASMC proliferation by activating downstream signalling pathways. In
addition, lactate promotes the release of IL-1 through histone lactylation modification of M1 macrophages, thereby promoting the proliferation of
PASMC.
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in PTMs and protein turnover, and are involved in chaperones,
ribosomal structure, and biogenesis (Zhang et al., 2021). Lactate
regulates cellular metabolism through histone lactylation-mediated
gene expression. In addition, lactate has been shown to play an
important role in angiogenesis, energy supply, immunosuppression,
and epigenetic regulation (Jiang et al., 2021). The lysine lactylation
in core histones is a novel type of histone mark. So far, 28 lactylation
sites have been identified, H3, H4, H2A, and H2B are among the
sites for lactylation on core histones (Zhang et al., 2019). The
discovery of novel signaling pathways, transcription factors,
biomarkers and metabolic mediators of PAH, as well as
intersections that may aid in the development of effective
targeted therapies, is essential.

Investigating the biological mechanisms behind the onset and
progression of PAH is critical to more effectively treating the
disease, improving its prognosis and developing effective strategies to
reverse it. With the discovery of lactylation, the historical role of lactate
has been re-examined from a biological and functional perspective.
Therapeutic strategies targeting lactate metabolism are becoming
increasingly useful and promising. Because lactate stimulates histone
lactylation modifications and contributes to gene expression, advancing
our knowledge of the physiopathology of PAH with histone lactylation
modification is likely to fill an important knowledge gap.
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