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Succinate serves as an essential circulating metabolite within the tricarboxylic acid
(TCA) cycle and functions as a substrate for succinate dehydrogenase (SDH),
thereby contributing to energy production in fundamental mitochondrial
metabolic pathways. Aberrant changes in succinate concentrations have been
associated with pathological states, including chronic inflammation, ischemia/
reperfusion (IR) injury, and cancer, resulting from the exaggerated response of
specific immune cells, thereby rendering it a central area of investigation. Recent
studies have elucidated the pivotal involvement of succinate and SDH in immunity
beyondmetabolic processes, particularly in the context of cancer. Current scientific
endeavors are concentrated on comprehending the functional repercussions of
metabolic modifications, specifically pertaining to succinate and SDH, in immune
cells operating within a hypoxic milieu. The efficacy of targeting succinate and SDH
alterations to manipulate immune cell functions in hypoxia-related diseases have
been demonstrated. Consequently, a comprehensive understanding of succinate’s
role in metabolism and the regulation of SDH is crucial for effectively targeting
succinate and SDH as therapeutic interventions to influence the progression of
specific diseases. This review provides a succinct overview of the latest
advancements in comprehending the emerging functions of succinate and SDH
in metabolic processes. Furthermore, it explores the involvement of succinate, an
intermediary of the TCA cycle, in chronic inflammation, IR injury, and cancer, with
particular emphasis on the mechanisms underlying succinate accumulation. This
review critically assesses the potential of modulating succinate accumulation and
metabolism within the hypoxic milieu as a means to combat various diseases. It
explores potential targets for therapeutic interventions by focusing on succinate
metabolism and the regulation of SDH in hypoxia-related disorders.
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1 Introduction

Succinate and succinate dehydrogenase (SDH) are essential components of the
tricarboxylic acid (TCA) cycle and are integral to the production of adenosine
triphosphate (ATP) within mitochondria (Murphy and O’Neill, 2018). Additionally,
succinate serves as a critical participant in various metabolic pathways, contributing to
the regulation of numerous catabolic and anabolic processes within different stages of the
cycle (Mills and O’Neill, 2014).
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Over the past decade, there has been a growing recognition of
the capacity of immune cells to adapt their metabolic processes in
order to maintain immune homeostasis in hypoxic environments.
These metabolic alterations have been found to have significant
implications for the immune response to chronic inflammation,
ischemia/reperfusion (IR) injury, and tumors (Fulcher and Katelaris,
1991; Murphy and Chouchani, 2022). Recent literature has
increasingly highlighted the non-canonical functions of succinate
levels and the regulation of SDH beyond their traditional role in
metabolism. For instance, succinate has been found to stimulate
dendritic cells (DCs) and stabilize hypoxia-inducible factor-1α
(HIF-1α) via the succinate receptor, G protein-coupled receptor
91 (GPR91), in distinct tumors and activated macrophages (Mills
and O’Neill, 2014; O’Neill and Pearce, 2016; Huang and Millar,
2013; Dalla Pozza et al., 2020). Furthermore, mutations in the SDH
gene have been detected in various cancer types, suggesting potential
mechanisms that lead to abnormal succinate accumulation (Peti-
Peterdi, 2010). Succinate can function as an oncometabolite in
tumorigenesis and cancer progression, and it can also induce
post-translational modifications (PTMs) of proteins through
succinylation (Mills and O’Neill, 2014; Mills et al., 2021). This
review offers a comprehensive analysis of the roles played by
succinate and the changes in SDH expression or activity that are
linked to modifications in immune cell function during hypoxic
conditions. Alongside summarizing the pathways leading to
succinate accumulation, our objective is to elucidate potential
therapeutic targets by focusing on succinate metabolism in the
context of inflammation, IR injury, and cancer.

2 Succinate and SDH in metabolism

2.1 Biogenesis of succinate

Succinate, or butanedioic acid, was initially isolated and identified
from amber through the process of dry distillation by Georgius
Agricola, a German chemist, in 1,546 (Tretter et al., 2016). One of
the most significant scientific breakthroughs of the 20th century was
the elucidation of the TCA cycle, also known as the citric acid cycle, by
Hans Adolf Krebs. In 1937, Krebs established that the succinate-
fumarate-malate-oxaloacetate pathway constituted a vital component
of the TCA cycle, with the inclusion of citrate, isocitrate, and α-
ketoglutarate (α-KG) (Raju, 1999). For decades, the TCA cycle has
been extensively employed in the microbial synthesis of citrates,
glutamates, and succinates (Vuoristo et al., 2016). In the TCA
cycle, succinate is synthesized through the catalytic action of
succinyl-CoA synthetase from succinyl-CoA. Subsequently,
succinate is promptly converted to fumarate by the enzyme SDH.
In summary, succinate and SDH are of paramount importance in
ATP generation and serve as pivotal cyclic pathways in metabolism,
functioning as a reservoir for catabolic processes and as a point of
origin for various anabolic processes (Chinopoulos, 2013).

2.2 Roles of SDH in the TCA cycle and ETC

Succinate and SDH exhibit a robust interconnection within the
TCA cycle and electron transport chain (ETC.). SDH, referred to as

complex II, facilitates the integration of two significant pathways
within mitochondria, namely, the oxidation of succinate to fumarate
as a vital constituent of the TCA cycle and the transformation of
ubiquinone to ubiquinol in the mitochondrial, ETC. Both processes
are indispensable for oxidative phosphorylation, which is
responsible for ATP generation to sustain biogenesis (Gill, 2012;
Tretter et al., 2016).

The structure of SDH is characterized by its intricate
composition of multiple subunits, namely, SDHA, SDHB, SDHC,
and SDHD. In addition, SDHAF1 and SDHAF2 function as
assembly factors for the associated assembly process (Moosavi
et al., 2019). Notably, SDHC and SDHD possess hydrophobic
properties that enable their anchoring in the inner mitochondrial
membrane (Her and Maher, 2015). Conversely, SDHA and SDHB
extend into the matrix. SDHA is covalently linked to a flavin adenine
dinucleotide (FAD) prosthetic group and harbors the binding site
for succinate. In the presence of succinate, SDHA facilitates the
oxidation of succinate to fumarate by bringing succinate into close
proximity with the isoalloxazine ring of FAD (Hagerhall, 1997).
SDHB serves as a connecting link between SDHA and SDHC and
SDHD. Within SDHB, three Fe-S centers are present, which
facilitate the transfer of electrons from succinate to ubiquinone
for utilization in the aerobic and energy-generating respiratory chain
in eukaryotic mitochondria and various prokaryotes (Yankovskaya
et al., 2003). The Fe-S centers, as subunit components of SDH, offer
new perspectives for the development of candidate vaccines aimed at
inducing anti-embryonation and anti-fecundity immunity (Yu et al.,
2007). The SDH complex is comprised of two ubiquinone-binding
sites (Yankovskaya et al., 2003; Sun et al., 2005). Residues originating
from SDHB, SDHC, and SDHD, which are situated in close
proximity to the matrix side of the inner mitochondrial
membrane, contribute to the formation of the high-affinity
binding sites, thereby enhancing their efficiency (Silkin et al.,
2007; Szeto et al., 2007). Conversely, the low-affinity binding site,
located nearer to the intermembrane space of the inner
mitochondrial membrane, is formed by SDHC and SDHD (Her
and Maher, 2015). Consequently, the oxidation of succinate to
fumarate by SDH results in the generation of flavin adenine
dinucleotide, reduced (FADH2). In the, ETC., only SDH
(complex II) is completely encoded in nuclear deoxyribonucleic
acid (DNA), and electrons from succinate oxidation are transferred
to ubiquinone in the, ETC (Vuoristo et al., 2016).

Moreover, ATP can also be generated through substrate-level
phosphorylation (SLP). Succinyl-CoA and adenosine diphosphate
(ADP) [or guanosine diphosphate (GDP)] undergo catalysis by
succinyl-CoA synthetase, resulting in the production of succinate,
CoASH, and ATP [or guanosine triphosphate (GTP)]. This
metabolic process, referred to as SLP, is predominantly utilized
in mitochondria to generate ATP (Johnson et al., 1998). Notably,
SLP in the TCA cycle, facilitated by succinyl-CoA ligase (SUCL),
operates independently of the respiratory chain and the
mitochondrial proton motive force. This ATP production
mechanism is in addition to oxidative phosphorylation
(OXPHOS) and adenylate kinase (AK) reactions (Bruns and
Regina, 1977; Johnson et al., 1998; Nobumoto et al., 1998;
Panayiotou et al., 2014; Komlodi and Tretter, 2017). In hence,
comprehending the significance of SDH and succinate in
metabolic processes can offer novel perspectives for the
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formulation of therapeutic approaches aimed at addressing
inflammation, IR injury, and cancer (Hagerhall, 1997).

3 Succinate as a metabolic signal in
immuno-inflammatory response

Significant research findings intriguingly indicate that succinate
may serve as a novel category of regulators in inflammation, acting
as crucial signals to modulate the inflammatory process (Mills and
O’Neill, 2014; Tannahill et al., 2013; Grimolizzi and Arranz, 2018;
Palsson-McDermott and O’Neill, 2013). Succinate is increasingly
recognized as a significant signal in the immuno-inflammatory
response.

3.1 Stabilization of HIF-1α in inflammation

In hypoxic inflammatory microenvironments, the activation of
immune cells, including macrophages and DCs, induces a metabolic
shift towards glycolysis (Mills and O’Neill, 2014; Tannahill and
O’Neill, 2011). This metabolic shift towards glycolysis in activated

immune cells is thought to have a significant impact in low oxygen
conditions, such as hypoxic inflammatory sites. The accumulation of
succinate has the potential to enhance inflammatory signaling and
greatly influence the immuno-inflammatory response. Various
potential sources may contribute to the accumulation of
succinate. Firstly, these studies have provided confirmation that
succinate accumulation resulting from SDH mutations has the
ability to stabilize HIF-1α in activated macrophages, particularly
when the activity of the prolyl hydroxylase domain (PHD) enzyme is
inhibited. This stabilization subsequently leads to the production of
the proinflammatory cytokine interleukin 1β (IL-1β) through the
signaling of HIF-1α (Mills and O’Neill, 2014; O’Neill and Pearce,
2016; Tannahill et al., 2013; Zhang et al., 2021; Peace and O’Neill,
2022; Williams and O’Neill, 2018) (Figure 1). In addition, it has been
observed that succinate accumulation can also occur in
lipopolysaccharide (LPS)-activated macrophages through the
process of glutamine metabolism, which facilitates the anaplerosis
of α-KG into the TCA cycle (Rubic et al., 2008) (Figure 1).
Subsequently, the “GABA shunt” pathway can lead to the
accumulation of succinate, as it is stimulated by the increased
levels of γ-aminobutyric acid (GABA) and its transporters
induced by LPS (Figure 1). This pathway can be hindered by

FIGURE 1
Succinate accumulation pathways in immune cells, inflammation, IR injury and tumor. The activation ofmacrophages by LPS induces TLR4 signaling,
which subsequently initiates the accumulation of succinate. This accumulation of succinate in activatedmacrophages stabilizes HIF-1α, particularly in the
presence of inhibited PHD enzyme activity, thereby resulting in the production of IL-1β through HIF-1α signaling. In DCs, the stimulation of succinate and
LPS leads to an increase in the expression of IL-1β and TNF-α. In the context of tumorigenesis, mutations in the SDH gene lead to the accumulation
of succinate, which in turn stabilizes HIF-1α, thereby promoting tumor growth and exacerbating inflammation through the upregulation of glycolytic
enzymes and IL-1β. Simultaneously, succinate accumulation inhibits tumor cell growth and survival. This accumulation of succinate can occur through
two pathways: glutamine metabolism, which promotes the replenishment of α-KG in the TCA cycle, or the “GABA shunt” pathway, which is activated by
elevated levels of GABA and its transporters induced by LPS. The inhibition of GABA-T can effectively prevent the accumulation of succinate. The
transformation of isocitrate into succinate within the glyoxylate shunt is facilitated by ICL, and this process can lead to an increase in succinate levels.
Furthermore, the accumulation of succinate can be attributed to the suppression of SDH activity, which can be triggered by various factors including
hypoxia or reduced levels of NAD+ induced by LPS. SIRT1 suppresses glycolysis and inflammation. Conversely, the inactivation of SIRT3 has been
observed to heighten the activation of NLRP3 inflammasome. ICL, isocitrate lyase; NAD+, nicotinamide adenine dinucleotide; SIRT, Sirtuin; LPS,
lipopolysaccharide; SDH, succinate dehydrogenase; TCA cycle, tricarboxylic acid cycle; α-KG, α-ketoglutarate; DC, dendritic cell; TNF-α, tumor necrosis
factor α; IL-1β, interleukin 1β; PHD, prolyl hydroxylase domain; HIF-1α, hypoxia-inducible factor-1α; SCS, succinyl-CoA synthetase; GABA, γ-aminobutyric
acid; GABA-T, γ-aminobutyric acid transaminase; TLR4, toll-like receptor 4. IR injury, ischemia/reperfusion injury; NLRP3, NOD-like receptor family, pyrin
domain containing 3.
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vigabatrin which inhibits an essential enzyme of the GABA shunt,
resulting in a reduction in succinate accumulation (Figure 1).
Additionally, the inhibition of GABA transaminase (GABA-T), a
critical enzyme of the GABA shunt, with vigabatrin can effectively
prevent succinate accumulation (Tannahill et al., 2013; Ren et al.,
2019) (Figure 1). Finally, succinate accumulation can arise from the
inhibition of SDH activity during hypoxia and various other
pathways. In addition to hypoxia, FAD-induced decrease in
nicotinamide adenine dinucleotide (NAD+) levels caused by LPS
also hampers SDH activity (Wang et al., 2021) (Figure 1). NAD+

demonstrates multiple anti-inflammatory properties through the
activation of sirtuins, a group of NAD+-dependent deacetylases.
Specifically, sirtuin 1 (SIRT1) suppresses glycolysis and the activity
of proinflammatory transcription factors such as nuclear factor-κB
(NF-κB) and HIF-1α (Schug et al., 2010; Misawa et al., 2013), while
also promoting autophagy-related gene function and oxidative
metabolism. Conversely, the inactivation of SIRT3 has been
observed to heighten the activation of the NOD-like receptor
family, pyrin domain containing 3 (NLRP3) inflammasome
(Schug et al., 2010; Misawa et al., 2013) (Figure 1).

Succinate additionally governs the immune functions of
immune cells, specifically pertaining to immune cell migration,
cytokine production, and augmentation of the ability of antigen-
presenting cells (APCs) to elicit adaptive immune responses (Peace
and O’Neill, 2022). For instance, succinate has been found to
induce migration of monocyte-derived dendritic cells (MoDCs)
in vitro and act as a chemokine, thereby promoting migration to
draining lymph nodes in succinate-treated DCs (Rubic et al., 2008;
Haffke et al., 2019). Succinate has been found to facilitate the
production of cytokines through synergistic interactions with
certain ligands, including tumor necrosis factor-α (TNF-α)
(Rubic et al., 2008). Furthermore, succinate stimulation with
LPS has been shown to increase the expression of IL-1β in
murine bone marrow-derived dendritic cells (BMDCs), in
addition to TNF-α (Williams and O’Neill, 2018) (Figure 1). In
addition to promoting cytokine generation, succinate can also
enhance the ability of APCs to induce immune responses that
result in inflammatory outcomes. Multiple studies have provided
evidence of succinate’s capacity to hinder tumor growth, which will
be further expounded upon in the subsequent section (Dalla Pozza
et al., 2020). Of greater significance, the manipulation of succinate
metabolism holds potential as a microbiological therapy in host-
microbe interactions (Wei et al., 2023). These findings suggest that
the manipulation of succinate metabolism could be employed to
devise innovative therapeutics for the prevention and treatment of
inflammation.

3.2 Succinate and SUCNR1 signaling during
inflammation

There have been numerous studies demonstrating the
interaction between the ligand-receptor pair succinate receptor
1 (SUCNR1) (formerly known as GPR91) and succinate, beyond
its role as a metabolic signal in inflammation by stabilizing HIF-
1α (de Castro Fonseca et al., 2016; Ristic et al., 2017).
Wittenberger et al. initially discovered several G-protein
coupled receptors, including SUCNR1 (Wittenberger et al.,

2001). He et al. later identified succinate as a selective ligand
of SUCNR1 (He et al., 2004). SUCNR1 was initially identified and
studied in the renal system, subsequently revealing significant
expression levels in the hepatic, splenic, and intestinal tissues (He
et al., 2004; de Castro Fonseca et al., 2016; Gilissen et al., 2016).
SUCNR1 expression has been observed in white adipocytes,
hematopoietic progenitor cells (Rubic et al., 2008), as well as
various blood and immune cell types (Macaulay et al., 2007;
Hakak et al., 2009; de Castro Fonseca et al., 2016; Krzak et al.,
2021). Succinate induces the activation of SUCNR1, which
subsequently initiates signaling cascades via multiple
pathways. Comparable to Gβ and Gγ signaling cascades,
succinate stimulation results in the mobilization of calcium
ions (Ca2+), accumulation of inositol trisphosphate (IP3), and
phosphorylation involving extracellular regulated kinase (ERK)
(He et al., 2004; Robben et al., 2009; Gilissen et al., 2016)
(Figure 2). Gaining a comprehensive understanding of the
signaling pathways triggered by the interaction between
SUCNR1 and succinate can offer novel perspectives for the
advancement of therapeutic approaches targeting specific
diseases, particularly those associated with chronic
inflammation.

Recent studies have provided evidence indicating the
involvement of SUCNR1 in multiple succinate-dependent
inflammatory processes in vivo. Firstly, it was observed that
SUCNR1-deficient mice exhibited heightened migration of DCs
in comparison to their wild-type counterparts. Secondly, the
absence of SUCNR1 in DCs resulted in the absence of cytokine
elevation, thereby supporting the notion that succinate functions
as a conventional signal to enhance the antigen-presenting
function of APCs. Lastly, solid organ transplantation from
SUCNR1-deficient mice exhibited prolonged graft survival when
compared to that from wild-type mice (Rubic et al., 2008).
Peruzzotti-Jametti et al. have presented significant evidence
demonstrating that the inhibition of SUCNR1 leads to a
reduction in carrier-mediated succinate uptake. This suggests
that the signaling of SUCNR1 promotes the expression of
plasma membrane Na+-dependent dicarboxylic acid
transporters, which facilitate the transportation of succinate
across the membrane. These findings introduce intriguing
possibilities regarding the involvement of succinate in the
paracrine/autocrine regulation of disease development
(Peruzzotti-Jametti et al., 2018). To sum up, the aforementioned
findings have indicated that SUCNR1 plays a pivotal role in the
immune-inflammatory response triggered by succinate.
Consequently, the modulation of SUCNR1 signaling presents a
promising therapeutic strategy for the management of
inflammatory disorders.

3.3 Succinate and succinylation in signal
transduction

Succinylation, a PTM mechanism, entails the incorporation of a
succinyl group onto a protein residue, predominantly lysine
residues, thereby influencing the functionality of amino groups
(Hirschey and Zhao, 2015; Alleyn et al., 2018; Sreedhar et al.,
2020; Chinopoulos, 2021). Recent investigations have
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concentrated on the succinylation modification, wherein succinyl
CoA can form an amide bond with protein lysine (Zhao et al., 2023).
The identification of elevated succinate levels in numerous proteins
involved in the regulation of diverse cellular and biological processes
underscores the significance of succinylation as a crucial biological
function (Xie et al., 2012; Park et al., 2013; Hirschey and Zhao,
2015). The catalytic processes involved in succinylation mediated by
multiple enzymes, remain poorly understood. Consequently, there is
ongoing research aimed at elucidating these fundamental
mechanisms in order to facilitate the development of innovative
therapeutic interventions and associated pharmaceuticals.
Numerous investigations have demonstrated that succinylation
can occur in organisms through both enzymatic and non-
enzymatic means. In fact, the majority of is known to occur
through non-enzymatic processes, as extensively documented in
the literature (Sreedhar et al., 2020; Shen et al., 2023; Zhao et al.,
2023), particularly by Matthew D Hirschey et al., who have
demonstrated the higher chemical reactivity of succinyl-CoA
compared to other acyl-CoA species (Wagner et al., 2017). Non-
enzymatic succinylation appears to be influenced by various factors,
including the concentration-dependent levels of reactants within
mitochondria, while the catalysis of enzymatic succinylation may be
regulated by succinyl CoA. Enzymatic succinylation may be
promoted via α-ketoglutarate dehydrogenase complex (KGDHC)
and E1k [α-Ketoglutarate Dehydrogenase (KGDH)] beyond

succinyl CoA (Yang and Gibson, 2019) (Figure 2). Succinylation
is consistently mediated by KGDHC in the cytosol and nucleus.
Enzymatic TCA cycle steps like succinyl-CoA synthetase (SCS) can
also regulate succinyl-CoA levels, which then non-enyzmatically
drive succinylation (Li et al., 2015; Carrico et al., 2018; Gut et al.,
2020). The carnitine palmitoyltransferase 1A (CPT1A) G710E
mutant has been observed to enhance cell proliferation in the
presence of metabolic stress, while CPT1A increases lysine
succinylation without any changes in succinyl CoA levels in
mammalian cells (Kurmi et al., 2018; Wang et al., 2019). This
finding suggests that the lysine succinyltransferase activity of
CPT1A may succinylate downstream substrate proteins, thereby
facilitating proliferation (Kurmi et al., 2018; Sreedhar et al., 2020). In
contrast to the established mechanism of succinyl-CoA non-
enzymatic lysine succinylation, the mechanism promoted by
CPT1A remains controversial and has not been shown in vivo
(Sreedhar et al., 2020; Shen et al., 2023). At best, this mechanism
would account for a minor fraction of succinylation (Sreedhar et al.,
2020). The potential impact of concentration-dependent acyl-CoA
distribution on succinylation in certain tissues has been identified
(Weinert et al., 2013). This finding implies that the tissue-specific
regulation of acyl-CoA concentrations offers novel therapeutic
strategies for modulating succinylation in certain diseases.
Furthermore, the regulation of de-succinylation plays a crucial
role in controlling various catalytic processes across all cellular

FIGURE 2
The regulation of succinylation, desuccinylation and the signal of SUCNR1. Enzymatic succinylation is facilitated by succinyl CoA and can be
enhanced by KGDHC in the cytosol. CPT1A has the ability to augment lysine succinylation without altering succinyl CoA levels. The levels of SIRT5 have an
impact on desuccinylase activity, resulting in modifications in succinylation. Desuccinylation catalyzed by SIRT7 primarily occurs in the nucleus and plays
a crucial role in the response to DNA damage and cell survival. Succinate in the extracellular microenvironment can transmit signals through GPR91,
thereby sustaining cytokine production and activating DCs. The comprehension of enzymatic succinylation and desuccinylation pathways and
mechanisms elucidates the potential of succinate metabolism as a therapeutic approach for the treatment of diverse diseases, such as inflammation, IR
injury and cancer. KGDHC, α-ketoglutarate dehydrogenase complex; CPT1A, carnitine palmitoyltransferase 1A; SIRT, Sirtuin; SUCNR1, succinate receptor
1; GPR91, G protein-coupled receptor 91; ERK, extracellular regulated kinase; IP3, inositol trisphosphate; PIP2, phosphatidylinositol (Fulcher and Katelaris,
1991; O’Neill and Pearce, 2016) bisphosphate; PLCβ, phospholipase Cβ; Ca2+, calcium ion; DC, dendritic cell.
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compartments, with succinylation potentially exhibiting a balanced
reciprocal relationship. Notably, the levels of NAD+-dependent
SIRT5 have been found to influence dynamic changes in
desuccinylase activity (Figure 2). Certain studies have provided
evidence indicating that the inhibition of SIRT5 results in an
elevation of succinylation in particular proteins, thereby
contributing to the development and progression of cancer (Park
et al., 2013). SIRT7, on the other hand, acts as a histone
desuccinylase that is functionally associated with chromatin
compaction and the maintenance of genome stability (Li et al.,
2016) (Figure 2). The process of desuccinylation catalyzed by
SIRT7 predominantly occurs within the nucleus and plays a
crucial role in the DNA damage response and the survival of
cells (Li et al., 2016).

As previously stated, the maintenance of a delicate equilibrium
between succinylation and desuccinylation processes is of utmost
importance for the regulation of physiological functions (Wang and
Lin, 2021). Disruption of this equilibrium can lead to the
development of various diseases, including inflammatory
disorders, IR injury, and cancer (Choudhary et al., 2014; Sabari
et al., 2017; Yang et al., 2017). The intricate involvement of SIRT5 in
the process of carcinogenesis is currently under investigation by
researchers (Yang et al., 2017) (Figure 2). It has been proposed that
desuccinylation events facilitated by SIRT5 may play a role in the
initiation and progression of tumorigenesis. The inhibition of
SIRT5 has demonstrated a reduction in cell proliferation and
tumor growth, implying that hyper-succinylation may exert
similar effects on tumor growth by modulating SIRT5 (Li et al.,
2015; Xiangyun et al., 2017). Furthermore, mounting evidence
suggests that lysine succinylation is abnormally elevated during
cancer development, indicating that succinylation regulates tumor
energy metabolism (Song et al., 2017). Mutations in isocitrate
dehydrogenase isoform 1 that impede SDH result in an elevated
level of succinyl-CoA, thereby promoting cancerous metabolism (Li
et al., 2015). The augmentation of succinylation under hypoxic
conditions may potentially counteract the effects of IR injury in
both cardiac and cerebral tissues. The proficient regulation of
succinylation holds promise for unveiling novel therapeutic
strategies for managing IR injury and potentially facilitating
transplantation procedures (Murphy and O’Neill, 2018). In
summary, comprehending the tissue-specific mechanisms
implicated is imperative for the advancement of pharmacological
interventions targeting succinylation and de-succinylation in
hypoxia-related ailments such as inflammation, IR injury, and
cancer.

4 Succinate and SDH in IR injury

IR injury is commonly observed when the blood supply to a
solid organ, such as the heart, brain, lung, or kidney, is disrupted,
subsequently followed by reperfusion in specific pathological
conditions like heart attack, ischemic stroke, kidney IR injury,
or organ transplantation (Kula-Alwar et al., 2019). The underlying
mechanism of this injury primarily involves the generation of ROS
by mitochondria, which triggers a cascade of events including
aberrant immune responses, accumulation of succinate, and
cellular harm (Yellon and Hausenloy, 2007; Murphy and

Steenbergen, 2008; Burwell et al., 2009; Eltzschig and Eckle,
2011; Timmers et al., 2012) (Figure 1). During the state of
ischemia, the absence of oxygen induces a reduction in
mitochondrial respiration and a rise in the accumulation of
succinate. Subsequent reperfusion prompts the swift oxidation
of the accumulated succinate by SDH. Reverse electron
transport (RET) through mitochondrial complex I allows some
of the electrons in the mitochondria to break away from, ETC,
leading to an inadequate reduction reaction of oxygen, which in
turn drives the production of ROS that inflict oxidative harm upon
cellular constituents such as lipids, proteins, and DNA (Figure 1).
This oxidative damage serves to intensify the inflammatory
response, thereby precipitating tissue injury and dysfunction.
The significance of succinate and SDH’s involvement in the
pathogenesis of IR injury underscores the potential of targeting
succinate metabolism as a therapeutic strategy for the prevention
and treatment of this condition (Panconesi et al., 2022). The
development of pharmaceuticals that specifically target
succinate metabolism may offer a novel approach to address the
clinical challenge posed by IR injury.

SDH is a key enzyme involved in succinate formation during
ischemia and its oxidation upon reperfusion (Davidson et al.,
2019). Malonate, a competitive inhibitor of SDH, has emerged as
a candidate therapy for selective SDH inhibition to reduce
reperfusion injury. The protective effect of malonate was
demonstrated using the malonate prodrug dimethyl malonate,
which was effective when administered before and throughout
ischemia (Chouchani et al., 2014). Adequate studies have shown
that IR injury can be regulated through the accumulation of
succinate during ischemia, which is subsequently re-oxidized by
SDH to generate mitochondrial ROS (Chouchani et al., 2014).
Succinate, therefore, acts as a metabolic signal of IR injury,
responsible for generating mitochondrial ROS (Figure 1).
Blocking ischemic succinate accumulation resulting from
oxidation can abolish IR injury (Pell et al., 2016). Similar
studies have demonstrated that preventing succinate from
oxidation may decrease IR injury and increase tolerance in the
process of liver transplantation (LT) from steatosis liver donors
(Evans et al., 2008). By targeting succinate metabolism, malonate
may provide additional therapeutic strategies for heart damage
underlying chronic heart failure (Pell et al., 2016). In addition to
malonate, it has been determined that ginsenoside Rb1 possesses
the ability to mitigate myocardial IR injury by inhibiting the
production of ROS originating from mitochondrial complex I
according to a proteomic analysis (Jiang et al., 2021). The
cerebral IR injury results in the ischemic accumulation of
succinate, which subsequently induces Cdc42 succinylation
and inhibits the proliferation of neural stem cells (Huang
et al., 2023).

However, despite promising results in vitro and animal models,
translation to human trials has proved challenging, with high failure
rates due to low drug exposure at the target site or clinical safety
issues. Translation failure in IR injury is likely caused by delivery
difficulties or insufficient knowledge of the pathological
mechanisms, leading to inappropriate drug targets. Therefore,
further research is needed to develop effective and safe
therapeutic strategies for targeting succinate metabolism in IR
injury (Dambrova et al., 2021).
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5 Succinate and SDH in tumor

Metabolites originating from the TCA cycle and respiratory
enzymes, specifically succinate and SDH, have been found to have a
significant impact on the initiation and progression of tumorigenesis
(Mullen and DeBerardinis, 2012; Dalla Pozza et al., 2020; Kes et al.,
2020). Notably, alterations in SDH activity leading to the
accumulation of succinate, such as SDH mutations, have been
observed (Dalla Pozza et al., 2020). Furthermore, extensive
investigation has been conducted to elucidate the role of
succinate in the development of cancer, encompassing its
capacity to induce epigenetic and metabolic modifications, as well
as its influence on cell migration, invasion, and angiogenesis.

5.1 Succinate and SDH in cancer-immune
cycle

Succinate has garnered growing recognition for its multifaceted
involvement in both immune and cancer-related processes, in
addition to its established role in immuno-inflammatory
responses. The cumulative evidence from numerous
interconnected studies has consistently demonstrated that
succinate possesses the capacity to regulate tumorigenesis within
specific intrinsic microenvironments. Consequently, succinate is
now acknowledged as a classical tumorigenic signal, alongside its
well-established association with inflammation (Huang and Millar,
2013; Jiang and Yan, 2017).

SDH mutations and associated succinate pathways have been
demonstrated to contribute to tumorigenesis (Bardella et al., 2011).
Specifically, mutations in the SDH gene have been observed to
expedite tumor development and can be detected in tumor tissues
and cells (Pasini and Stratakis, 2009; Gaude and Frezza, 2014). The
SDH enzyme plays a crucial role in the TCA cycle by facilitating the
conversion of succinate to fumarate. Mutations in the SDH gene
have been identified in various tumors, establishing SDH as a
recognized tumor suppressor (Bardella et al., 2011; Wallace,
2012; Wu and Zhao, 2013; Jiang and Yan, 2017). However,
mutations in this gene can result in succinate accumulation,
which in turn stabilizes HIF-1α and fosters tumor growth (Selak
et al., 2005) (Figure 1). Hence, it is imperative to engage in a
comprehensive examination of succinate accumulation in the
context of cancer. Succinate accumulation can manifest through
diverse pathways that contribute to the development of tumors and
immune responses. The regulation of SDH activity plays a crucial
role in the buildup of succinate. Notably, the presence of a mutation
in the gene responsible for encoding SDH in certain cancer types has
been observed to diminish SDH activity, resulting in succinate
accumulation and subsequent augmentation of mitochondrial
ROS generation (Drose, 2013) (Figure 1). Hence, the functional
deficiency of subunits in SDH resulting from mutation and
carcinogenesis has garnered significant attention in numerous
studies on metabolism (Tomitsuka et al., 2010). Furthermore, the
function of SDH is reliant on the presence of oxidized FAD and
NAD+ as cofactors (Gill, 2012). However, under conditions of
hypoxia where these cofactors are predominantly in their reduced
forms, SDH function is hindered, leading to the accumulation of
succinate in the cancer-immunity cycle (Jiang and Yan, 2017). It is

noteworthy to mention that the accumulation of succinate in
M1 macrophages is closely associated with the activation of toll-
like receptor 4 (TLR4) signaling. Upon activation by LPS,
TLR4 signaling is triggered, resulting in the disruption of the
Krebs cycle (O’Neill and Pearce, 2016) (Figure 1). This
disruption subsequently leads to metabolic reprogramming and
the accumulation of succinate. Previous research has
demonstrated that LPS-activated macrophages induce succinate
accumulation by inhibiting the activity of the PHD enzyme,
thereby stabilizing HIF-1α (Figure 1). The stabilization of target
genes responsible for encoding glycolytic enzymes and the pro-
inflammatory cytokine IL-1β, which can impede tumor cell growth,
enhance tumor survival, and intensify inflammation, is facilitated by
this process (O’Neill and Pearce, 2016; Selak et al., 2005; Liu et al.,
2016; Aspuria et al., 2014) (Figure 1). Succinate, in aggregate, may
possess two distinct functions in the development of tumors, either
promoting or hindering tumor growth. Nevertheless, thus far, SDH
has exclusively demonstrated its involvement in suppressing tumor
growth and advancement.

In the context of the cancer-immune cycle, succinate has the
potential to exert an influence on the immune responses of various
immune cells, including APCs and T cells. Notably, succinate has
been observed to enhance the antigen presentation capacity of DCs
by eliciting an adaptive response and impeding tumor growth
(Palucka and Banchereau, 2012). Furthermore, upon
encountering a sequence of stimuli originating from antigens,
heightened activation of antigen-specific T cells can result in the
secretion of cytokines such as TNF-α and interferon-γ (IFN-γ)
during immune activation (Cortese et al., 2014) (Figure 1). These
cytokines possess the ability to impede the progression of cancer
cells and extend the survival of patients (Hadrup et al., 2013; Jiang
and Yan, 2016).

5.2 Succinate and SDH in tumorigenesis

Po-Lin Tseng et al. have provided evidence indicating an
inverse correlation between the malignancy of hepatocellular
carcinoma (HCC) and the expression level of SDHB.
Specifically, a higher degree of malignancy in HCC is associated
with a lower expression of SDHB, which is significantly associated
with advanced tumor stage and unfavorable prognosis (Tseng
et al., 2018). Furthermore, in mouse models, experimental
interventions involving the silencing and overexpression of
SDHB have demonstrated the potential feasibility of regulating
HCC growth and metastasis. Thus, the downregulation of SDHB
expression in human HCC leads to a metabolic shift from aerobic
respiration to glycolysis and the induction of the Warburg effect,
ultimately facilitating tumor malignancy (Tseng et al., 2018).
Studies have demonstrated that the reduction in SDH activity,
resulting from the silencing of one of its subunits, promotes HCC
cell proliferation and metastasis both in vitro and in vivo by
increasing ROS and subsequently activating NF-κB signaling (Li
et al., 2019). These findings suggest that SDH could potentially be
targeted for therapeutic intervention in the treatment of HCC due
to its tumor-suppressive role.

In addition to its association with HCC, the most closely
correlated association with SDH is hereditary paraganglioma/
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phaeochromocytoma syndrome (HPGL/PCC), which is
characterized by the presence of germline loss-of-function
mutations in SDH genes (Brière et al., 2005). Various

mechanisms of carcinogenesis have been suggested, as patients
with HPGL/PCC have been found to harbor germline mutations
in SDHB, SDHC, and SDHD (Eniafe and Jiang, 2021; Takács-Vellai

TABLE 1 Several compounds affecting SDH activity have been tested for their anticancer properties, IR injury and anti-inflammatory effects.

Compound Target Mechanism of
action

Functions in cancer Diseases Ref

α-TOS SDHC&SDHD Interacting with both
proximal (Qp) and distal

(Qd) UbQ sites

Inducing cancer cells apoptosis
via ROS

Colon cancer, breast cancer,
prostate cancer, lung cancer,
mesotheliomas, melanomas

Neuzil et al. (2001); Malafa et al.
(2002); Weber et al. (2002); Kline

et al. (2004); Tomasetti et al. (2004);
Quin et al. (2005); Stapelberg et al.
(2005); Malafa et al. (2006); Neuzil
et al. (2006); Wang et al. (2007);

Dong et al. (2008); Dong et al. (2009)

MitoVES SDH Qp site Inducing cancer cells apoptosis
via ROS

Breast carcinoma, colon
cancer

Dong et al. (2011a); Dong et al.
(2011b)

3-BP HK Causing cancer cells death by
the fast depletion of ATP

Advanced cancers
Fibrolamellar

Ko et al. (2004); Mathupala et al.
(2006); Pereira da Silva et al. (2009);
Ko et al. (2012); Pedersen (2012);
Rodrigues-Ferreira et al. (2012)SDH Inhibiting SDH activity HCC

3NP SDH Inducing ROS and apoptosis Neuroblastoma, PD, HD Huang et al. (2006); Gomez-Lazaro
et al. (2007)

TTFA SDHC&SDHD Interfering with the
UbQ-binding site

Inducing apoptosis and trigger
superoxide/hydrogen peroxide

and increase Ca2+ levels

Leishmania spp infection Mehta and Shaha (2004)

Troglitazone SDH Interfering with SDH activity;
Inducing cancer cell cycle arrest,
differentiation, and apoptosis

Liposarcomas, prostate
cancer, colorectal cancer

Demetri et al. (1999); Hisatake et al.
(2000); Gupta et al. (2001);

Kopelovich et al. (2002); Koeffler
(2003); Soller et al. (2007); Wei et al.

(2009)

Atpenins SDH UbQ Interfering with the UbQ site,
prevents reduction of UbQ and

induces ROS

IR injury Miyadera et al. (2003); Horsefield
et al. (2006); Wojtovich and Brookes
(2009); Ralph et al. (2011); Quinlan

et al. (2012)

LND SDHC&SDHD Transferring electrons
from the iron sulfur
clusters to ubiquinone

Inducing ROS and cancer cell
death

Melanoma Guo et al. (2016)

DT-010 Complex II Inducing ROS generation,
cytotoxicity and promoting cell

arrest

Breast cancer Wang et al. (2016)

Chrysin Complex II Inhibiting SDH activity and
increasing ROS generation
associated to apoptosis

CLL Salimi et al. (2017)

Dimethyl malonate SDH Inducing ROS with calcium
dysregulation and ATP

depletion via inhibiting SDH

IR injury (heart attack,
ischemic stroke), tissue

damage, and inflammation

Chouchani et al. (2014); Xu et al.
(2018); Kula-Alwar et al. (2019)

Ginsenoside Rb1 Complex I Inhibiting ROS production Myocardial IR injury Jiang et al. (2021)

3-BrPA SDH Decreasing SDH expression;
Cancer cell cycle arrest and
apoptotic induction via

suppressing aerobic glycolysis

HCC, PC, endometrial
cancer, Staphylococcus

aureus infection; metastatic
prostate cancer

Liu et al. (2009); Pereira da Silva et al.
(2009); Cardaci et al. (2012); Birsoy
et al. (2013); Byrne et al. (2014);
Chapiro et al. (2014); Yadav et al.
(2017); Abdel-Wahab et al. (2019);
Pichla et al. (2019); Visca et al.

(2019); Sun et al. (2020); Yu et al.
(2021)

Compound 968,
CB-839 and JQ1

Succinate Inhibiting glutaminase
1 and BET

Suppressing the growth of the
SDHB knockout cells

Colon cancer Kitazawa et al. (2017); Godel et al.
(2021)

α-TOS, α-tocopheryl succinate; SDH, succinate dehydrogenase; ROS, reactive oxygen species; MitoVES, mitochondrially targeted vitamin E succinate; 3-BP, 3-Bromopyruvate; HK, hexokinase;

ATP, adenosine triphosphate; 3NP, 3-nitropropionic acid; TTFA, thenoyltrifluoroacetone; LND, lonidamine; DT-010, a conjugate of danshensu (DSS) and tetramethylpyrazine (TMP); 3-BrPA,

3-bromopyruvate; IR, injury, ischemia/reperfusion injury; PD, Parkinson’s disease; HD, Huntington’s disease; HCC, hepatocellular carcinoma; PC, pancreatic cancer; BET, bromodomain and

extra-terminal; CLL, chronic lymphocytic leukemia; Compound 968 and CB-839, glutaminase 1 inhibitor; JQ1, a BET, inhibitor.

Frontiers in Cell and Developmental Biology frontiersin.org08

Zhang and Lang 10.3389/fcell.2023.1266973

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1266973


et al., 2021). In addition to HPGL/PCC, a multitude of
neuroendocrine and non-neuroendocrine neoplasms, such as
gastrointestinal stromal tumors (GISTs), renal tumors, and
thyroid tumors, have been discovered to exhibit a significant
correlation with SDH gene mutations, alongside HPGL/PCC. The
growing body of research highlights the tumor suppressor function
of SDH and the oncogenic role of succinate as a metabolite in the
progression of cancer (Neppala et al., 2019; Ibrahim and Chopra,
2020; Yong et al., 2020). The current research focuses on
investigating the genetic and molecular mechanisms that lead to
succinate accumulation as a result of SDHmutations, and how these
mutations initiate neoplasm invasion and metastasis. Additionally,
variants of SDH genes have been identified in thyroid C-cell
hyperplasia and papillary thyroid cancers, independent of SDH
mutations. Nevertheless, the importance of succinate and SDH in
the development of cancer has been firmly established, resulting in
the classification of succinate as an oncometabolite and SDH as a
tumor suppressor.

6 Succinate and SDH as cancer
biomarkers and treatment strategies

As previously stated, succinate serves as an oncometabolite,
suggesting that the identification of these oncometabolites in
cancer specimens from patients holds the potential to facilitate
cancer detection, tumor screening, and comprehensive follow-up
during the early phases of cancer (Semeraro et al., 2018).
Furthermore, mass spectrometry and nuclear magnetic
resonance technologies present promising methodologies that
clinical practitioners can use to identify the buildup of
succinate. Moreover, the utilization of immunohistochemistry
(IHC) presents an opportunity to assess oncometabolites as
potential cancer biomarkers in individuals afflicted with cancer
(Yong et al., 2020). The abnormal expression of SDH, specifically
the loss of the B subunit (SDHB), is implicated in the pathogenesis
of neuroendocrine tumors as a prognostic factor, likely due to the
accumulation of succinate in cancer (Hwang et al., 2014; Milione
et al., 2017). A 2020 review by Dalla Pozza et al. provided a
comprehensive summary of the detection of succinate and SDH
as cancer biomarkers across various tissues (Dalla Pozza et al.,
2020).

The deregulation of Complex II has the potential to result in
an overabundance of ROS, which can induce apoptotic cell death
in a manner specific to tumors. Consequently, numerous
compounds that impact SDH activity have been examined for
their potential as anticancer agents (Kluckova et al., 2013;
Hwang et al., 2014) (Table 1). These compounds exhibit the
ability to selectively target cancer cells by promoting apoptosis
mediated by ROS, while preserving normal cells. Nevertheless,
further investigation is necessary to comprehensively
comprehend the underlying mechanisms and ascertain the
effectiveness and safety of these compounds as potential
anticancer treatments.

The identification of diverse pathways contributing to succinate
accumulation presents promising avenues for the regulation of
succinate levels and the modulation of tumorigenesis. The
manipulation of succinate levels holds potential for the

development of innovative cancer therapies. By comprehending
the underlying molecular mechanisms governing succinate
accumulation and its consequential impact on tumorigenesis, it
becomes feasible to devise novel therapeutic approaches that
specifically target succinate metabolism in malignant cells. These
therapeutic interventions have the potential to enhance patient
prognoses and offer efficacious treatment alternatives for diverse
cancer types. Further investigation is warranted to comprehensively
elucidate the precise involvement of succinate in cancer and to
devise targeted therapeutic approaches that proficiently modulate its
concentrations.

7 Conclusion and future perspectives

Historically, succinate and SDH have been recognized as
pivotal contributors to ATP generation in the context of
mitochondrial energy metabolism. Nevertheless, it has become
evident that comprehending their extensive involvement in IR
injury, immuno-inflammatory responses, and tumorigenesis could
offer innovative and potent insights into disease control
(Grimolizzi and Arranz, 2018). The diverse mechanisms
involving succinate and SDH in the process of neoplasm
invasion and metastasis imply that the identification of
succinate as an oncometabolite could serve as a valuable
diagnostic indicator for tracking tumors, whereas SDH, acting
as a tumor suppressor, may present a promising target for
anticancer treatment. Nevertheless, despite the potential of
succinate accumulation and abnormal succinylation expression
as diagnostic markers, the majority of existing studies have been
conducted in laboratory settings, and it is crucial to validate ideal
and efficacious molecular markers in vivo. On the other hand,
despite the evident effectiveness of numerous compounds in vitro
and animal models in targeting succinate to prevent ischemia-
reperfusion injury and tumorigenesis, the translation of these
findings from laboratory experiments to clinical application is
fraught with challenges. Primarily, the attainment of the necessary
concentrations of these compounds for protective and preventive
purposes may present difficulties. Additionally, the development
of strategies to enhance the delivery of succinate metabolism-
targeting therapies to cells will be crucial in overcoming these
obstacles (Gupta et al., 2021). The precise timing of targeted
therapy administration holds significant importance in
mitigating adverse reactions and ensuring optimal drug
concentration within the affected tissue. Additionally,
comprehending the pharmacokinetics of succinate-based
medications during administration is crucial for establishing
appropriate drug delivery schedules. Moreover, attaining
selectivity towards specific tissues is imperative to prevent off-
target effects. Overcoming these challenges is indispensable for the
successful transition of succinate-based therapeutics from
experimental settings to clinical application in the foreseeable
future.

To summarize, there has been a comprehensive discourse on
the role of succinate and SDH in the aforementioned areas of
interest. Future investigations should persist in exploring potential
diagnostic and therapeutic strategies that focus on succinate
metabolism for inflammation, ischemia-reperfusion injury, and
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tumors. Additional research is imperative to validate the
associations and underlying mechanisms between succinate and
SDH in metabolic alterations as signaling pathways in the
regulation of immune cells, potentially paving the way for
innovative therapeutic interventions.
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