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The asymmetric localization of biomolecules is critical for body plan development.
One of the most popular model organisms for early embryogenesis studies is
Xenopus laevis but there is a lack of information in other animal species. Here, we
compared the early development of two amphibian species—the frog X. laevis and
the axolotl Ambystoma mexicanum. This study aimed to identify asymmetrically
localized RNAs along the animal-vegetal axis during the early development of A.
mexicanum. For that purpose, we performed spatial transcriptome-wide analysis
at low resolution, which revealed dynamic changes along the animal-vegetal axis
classified into the following categories: profile alteration, de novo synthesis and
degradation. Surprisingly, our results showed that many of the vegetally localized
genes, which are important for germ cell development, are degraded during early
development. Furthermore, we assessed the motif presence in UTRs of degraded
mRNAs and revealed the enrichment of several motifs in RNAs of germ cell
markers. Our results suggest novel reorganization of the transcriptome during
embryogenesis of A.mexicanum to converge to the similar developmental pattern
as the X. laevis.
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Introduction

Asymmetric distribution of biomolecules and asymmetric cell division is a crucial
mechanism during stem cell division and the development of body tissues and internal
organs. Moreover, it plays a critical role in the early development of many animal species.
Maternal determinants such as proteins and RNAs (coding and non-coding), are
asymmetrically distributed within the oocyte and early embryos. Thus, cell division often
results in two unequal daughter cells with distinct fates. This phenomenon has been observed
mainly in fish—Danio rerio (Howley and Ho, 2000)—and anuran amphibians—Xenopus
laevis (Forristall et al., 1995; Kloc and Etkin, 1995; Sindelka et al., 2018; 2010) or Rana pipiens
(Nath et al., 2005)—but interestingly there is no evidence of determinants localization in
early mammalian embryos (Vinot et al., 2005). Likewise, our knowledge on the early
development of other non-mammalian vertebrates, such as urodeles amphibians is still
limited. In one of these urodeles, the Mexican axolotl (Ambystoma mexicanum), the
maternal asymmetrical localization of several genes during the early development has
been described (Vaur et al., 2003; Bachvarova et al., 2004). However, the whole
transcriptome analysis, which could have the potential to reveal the similarities and
differences between embryos of two close amphibian orders, is still missing. Therefore,
we performed the comparison of RNA localization during the early development of the frog
X. laevis (order Anura) and the axolotl A. mexicanum (order Urodela).
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The anuran amphibian, like X. laevis, lays a copious number
of large sized eggs (~1.3 mm) which show a clear delineation of
two hemispheres. The animal hemisphere is typically dark due to
pigment granules and contains the germinal vesicle, while the
vegetal hemisphere is light and full of yolk proteins and contains
important organelles such as the endoplasmic reticulum, Golgi
apparatus and mitochondria (Dumont, 1972). Eggs of urodele
amphibians, like A. mexicanum, are typically larger (~2 mm) and
also show a clear animal and vegetal hemisphere (Schreckenberg
and Jacobson, 1975; Bordzilovskaya and Dettlaff, 1979). In
amphibians, the hemispheric distinction occurs during
oogenesis, and simultaneously asymmetric distribution of
maternal RNAs and proteins is established. The gradient
formation of maternal molecules is the first step in the
establishment of the animal-vegetal (A-V) axis, which is
important for the development of the germ layers. In X. laevis,
the blastomere fate mapping shows that the animal part of the
embryo contributes to the ectoderm formation, the vegetal part
into endoderm structures and the equatorial segment into
mesodermal structures (Moody, 1987a; Moody, 1987b). To
study Urodeles gastrulation, cell lineage tracing was performed
in A. mexicanum (Lundmark, 1986), but comparatively thorough
blastomere fate mapping of early embryos has never been done.
On the other hand, the fate mapping in related urodele
Pleurodeles waltl shows a similar blastomeres contribution to
the formation of body structures as in X. laevis (Delarue et al.,
1997). However, it is still unknown to what extent the gross
similarities in blastomere fate-mapping reflect similarities in the
distribution of molecular components along the A-V axis.

In our laboratory, we focus on the identification of asymmetrically
distributed biomolecules in oocytes and early embryos of many animal
species. Recently, we identified about 15000 maternal transcripts
asymmetrically localized along the animal-vegetal axis in X. laevis
oocytes (Sindelka et al., 2018). These mRNAs were classified into
four localization profile groups: extremely animal, animal, vegetal
and extremely vegetal. We identified most of the mRNAs in the
animal hemisphere—94%. The extremely animal group contains
2.8% mRNAs, which are important mainly in transcription and
translation regulation. While animal localization is probably formed
through diffusion, the localization in extremely animal sections seems to
be caused by the yet undiscovered active transport mechanism. In the
vegetal and extremely vegetal sections, we identified 1.3% and 0.2% of
the total mRNAs respectively.

Previous studies have shown the presence of three distinct pathways
for vegetal RNA localization. The first one is called the early pathway
(also known as METRO) and is used mainly for the localization of germ
plasm determinants such as nanos1 (Forristall et al., 1995; Kloc and
Etkin, 1995; Zhou andKing, 1996), dazl (Houston et al., 1998) and ddx25
(MacArthur et al., 2000). During early oogenesis, mRNAs diffuse from
the nucleus to be entrapped by the mitochondrial cloud (in fish, called
Balbiani body). Later the whole structure is transported towards the
vegetal pole to be anchored in the narrow region of the oocyte vegetal
cortex (Forristall et al., 1995; Chang et al., 2004). The localization
through the late pathway takes place at later stages of oogenesis. This
pathway includes mainly mRNAs essential for the germ layer
development, such as gdf1 (also called Vg1) (Melton, 1987; Forristall
et al., 1995; Kloc and Etkin, 1995; Deshler et al., 1997) and vegt (Lustig
et al., 1996; Stennard et al., 1996; Zhang and King, 1996). The late

pathway components are localized to the vegetal region by a
microtubule-dependent mechanism and then anchored in the wide
region of the vegetal cortex. In addition, the existence of mRNAs
sharing some characteristics of both major pathways led to the
categorization of the new intermediate pathway. Examples of such
mRNAs include dnd1 (Horvay et al., 2006), grip2 (Clauβen et al.,
2011) and plin2 (Chan et al., 1999).

In anuran amphibians and teleost fish, the primordial germ cells
(PGCs) are produced from germ plasm determinants that migrated to
the vegetal hemisphere during oogenesis. (Mahowald and Hennen,
1971; Whitington and Dixon, 1975; Heasman et al., 1984; Knaut et al.,
2000). This mechanism of PGCs formation, known as preformation,
involves germ plasm repression of transcription of somatic genes in the
primordial germ cells (PGCs) leading to germ line segregation
(Venkatarama et al., 2010). Another mechanism of PGCs
determination, epigenesis (also called induction), is found in M.
musculus, and involves the production of PGCs through the
induction of pluripotent cells of early gastrula by extracellular signals
in a germ plasm-independent manner (Tam and Zhou, 1996). Germ
plasm has never been observed in urodele oocytes or eggs and therefore
it is believed that the germ line of these amphibians is also most
probably determined by epigenesis (Johnson et al., 2001).

In teleost fish, such as D. rerio, the maternal determinant gradients
along the animal-vegetal axis are established during oogenesis similarly
to amphibians. Surprisingly, these gradients are disrupted shortly after
fertilization in the RNA translocation phenomenon, which is
indispensable for germline and germ layer development. This is
observed for the vegetally localized germ plasm components (dnd1,
nanos1 and ddx4) which migrate to the animal pole after fertilization
(Howley andHo, 2000;Weidinger et al., 2003; Theusch et al., 2006). The
post-fertilization translocation is connected with the cytoplasm
segregation from the vitelloplasm resulting in the creation of a
blastodisc, that will give rise to the embryo (reviewed in Fuentes
et al., 2018). The process is accompanied with slow and fast
cytoplasmic flow. While the actin-dependent slow cytoplasmic flow
translocates vegetally localized dazl towards the animal pole, fast
cytoplasmic flow transports dorsal determinants (grip2a and wnt8a)
alongmicrotubules to the dorsal side of the embryo (Lu et al., 2011; Tran
et al., 2012; Ge et al., 2014;Welch and Pelegri, 2015). During cell division,
the cells at the base of blastodisc containing germ plasmmarkers adopt a
germ cell lineage fate (Hashimoto et al., 2004; Kosaka et al., 2007).

When the animal-vegetal axis is established the determination of
the left-right and dorsal-ventral axis can start. The first step in the
establishment of the dorsal-ventral axis occurs in X. laevis shortly after
fertilization. The sperm penetrates to the future ventral side and this
event leads to the process known as cortical rotation. The cytoplasmic
movement and cytoskeleton reorganization give rise to a grey crescent,
which is the base for the origin of the Niewkoop center and the
gastrulation induction center—The Spemann organizer (Vincent
et al., 1986; Vincent et al., 1987). The Spemann organizer is formed
through the crosstalk of two signaling pathways (Agius et al., 2000;
Nishita et al., 2000). For the activation of the Wnt pathway, it is
necessary to stabilize β-catenin on the dorsal side of the embryo. The
stabilizing factors are originally present in the vegetal hemisphere but
are transported to the dorsal side after the cortical rotation. Here,
stabilizing factors can act on β-catenin leading to the expression of
zygotic genes (siamois, twin) (Brannon et al., 1997; Laurent et al., 1997).
The second signaling pathway occurs shortly after fertilization. It is
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known that some vegetally localized mRNAs (vegt) are translated after
fertilization and proteins diffuse to the equatorial region of the egg.
These proteins regulate the gene expression of transforming growth
factor-beta (TGFβ) family members (Kofron et al., 1999) The
cooperation of β-catenin-activated genes and TGFβ family genes
direct the formation of Spemann organizer and initiate gastrulation
(Agius et al., 2000; Nishita et al., 2000).

While the role of asymmetric RNA distribution in the animal-
vegetal axis establishment has been confirmed, the induction of
dorsal-ventral and left-right axes appears to be independent on RNA
localization in X. laevis. In (Levin et al.,2002) revealed the
asymmetric distribution of mRNA H+-V-ATPase using in situ
hybridization and he outlined a possible role in left-right axis
induction, but this hypothesis has been disproven a few years
later. The single blastomere transcriptome analysis of 8-cell stage
Xenopus tropicalis embryos also revealed the absence of any RNA
pattern along the dorsal-ventral and left-right axis (De Domenico
et al., 2015). Moreover, in our laboratory, we analyzed the expression
of genes that have been previously connected with the dorsal-ventral
pattern (for example dvl2, dvl3, gsk3b, ctnnb1 and wnt11) and
confirmed the non-existence of RNA asymmetry (Flachsova
et al., 2013). These results indicate the involvement of other
biomolecules, such as proteins, in the establishment of these axes
in anurans.

Previously, we compared localization profiles of matured eggs
along the animal-vegetal axis among various model organisms (X.
laevis, D. rerio, A.mexicanum and Acipenser ruthenus) and revealed
the relatively low conservation in RNA localization (Naraine et al.,
2022). Here, we continue using urodele A. mexicanum to study the
spatiotemporal changes during early development in comparison to
anuran amphibians. We identified asymmetrically localized RNAs
along the animal-vegetal axis and revealed that many identified
RNAs show dynamic pattern changes in stages before the onset of
mid-blastula transition (MBT), the event of embryonic genome
activation. The detected changes were classified into two groups.
The first group contains genes that are transcribed de novo before
MBT, showing the gradual activation of the embryonic genome. In
the second group, there are genes whose transcripts are partially
degraded after fertilization. Surprisingly many degraded genes are
germ plasm markers suggesting preformation as a conserved
mechanism for vertebrates as mentioned in (Škugor et al., 2016).
Many of de novo or degraded transcripts shows altering profiles
during development. In addition, we foundmotifs conserved in PGC
transcripts of A. mexicanum and suggested its possible role in the
early development of urodeles.

Methods

Ethics approval

All experimental procedures involving model organism A.
mexicanum were carried out in accordance with the Czech Law
246/1992 on animal welfare. A. mexicanum animals were from
the colony of the Department of Zoology, Faculty of Science,
Charles University, Prague, Czech Republic, and all protocols
were approved by the Faculty of Sciences of Charles
University.

Embryos collection

A. mexicanum male and female adults were kept together in an
aquarium and after natural stimulation, the females laid eggs. Samples
were prepared in two independent experiments and using two
different females and males. The gel envelope was first removed
from the eggs using tweezers. Eggs were then collected and incubated
in sterile 1× Steinberg’s solution containing Pen-Strep (Sigma).
Embryos at the 1-, 4-, 64- and 1K-cell stages were embedded in
Tissue-Tek O.C.T. Compound (Sakura) with the animal pole oriented
at the top. All samples were then stored in the freezer at −80°C.

Sample preparation

Samples were subsequently incubated in the cryostat chamber
(Leica CM 1950, USA) at −24°C for 10 min and then cut into 30 μm
slices along the animal-vegetal axis as shown in Figure 1A. The slices
were pooled and equally distributed into 5 tubes. The tube labelling
corresponded to embryo orientation: A—extremely animal segment,
B—animal, C—central, D—vegetal, E—extremely vegetal.

RNA isolation and reverse transcription

The samples were homogenized in 300 μl of TRIReagent®

(Sigma-Aldrich, USA) and total RNA was extracted according to
the manufacturer’s protocol. LiCl precipitation was performed to
remove inhibitors present in the yolky vegetal hemisphere. The
concentration of RNA was measured using NanoDrop-2000
(ThermoFisher, USA) and sample quality was assessed using
5200 Fragment Analyzer (Agilent, USA).

The cDNA was prepared using 30 ng of total RNA and RNase-free
distilledwater (ThermoFisher, USA) in a volume of 5.5 μl and a reaction
mixture was added containing 0.5 μl of dNTPs (10 μM each,
ThermoFisher, USA), 0.5 μl of oligo-dT and random hexamer (1:
1 mixture, 50 μM each, ThermoFisher, USA), and 0.5 μl of RNA-
spike (TATAA biocentre, Sweden). The mixture was incubated for
5 min at 65°C and 10 min at 4°C. During the second step, the second
mixture was added containing 2 μl of 5xRT Buffer (ThermoFisher,
USA), 0.5 μl of RnaseOUT (ThermoFisher, USA) and 0.5 μl of Maxima
H Minus Reverse Transcriptase (ThermoFisher, USA). The reaction
proceeded as follows—10 min at 25°C, 30 min at 50°C, 5 min at 85°C
and cooling to 4°C. The cDNA was diluted to 100 μl using Tris-EDTA
buffer solution (Sigma-Aldrich, USA) and stored at −20°C.

Primer design and qPCR

qPCR was performed to detect the localization of known genes
(list of used primers is attached in Supplementary Table S1). PCR
primers were designed using Primer3 (Untergasser et al., 2012). The
expected length of qPCR products was 80–120 bp and the annealing
temperature was 60°C. Geneious prime (version 2021.2) was used to
increase the specificity of designed primers and to avoid targeting
RNA isoforms.

qPCR reaction mix with a total volume of 7 μl contained 2 μl of
cDNA, 0.29 μl of forward and reverse primers mix (1:1, 10 μM each),
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3.5 μl of 2x TATAA SYBR® GrandMaster® Mix (TATAA Biocenter,
Sweden) and 1.21 μl of RNase-free distilled water (ThermoFisher, USA).
qPCRwas performed usingCFX384Real-Time System (Bio-Rad,USA) as
follows: the initial denaturation for 3min at 95°C, 45 cycles of denaturation
for 15 s at 95°C, annealing at 60°C for 20 s and extension at 72°C for 20 s.
qPCR melting curves were analyzed to test the reaction specificity. qPCR
data were analyzed using workflow published in Sindelka et al., 2008.

Library preparation

We used 100 ng of a total RNA for library preparation. Ribosomal
RNA depletion was performed using Ribocop rRNA Depletion Kit
V1.3 (Lexogen, Austria). Libraries were prepared using NEBNext®
Ultra™ II Directional RNA Library Prep Kit for Illumina® (New
England Biolabs, USA). The number of PCR cycles was set at
12 cycles according to the initial RNA concentration. Library
concentration was measured with a Qubit 4 Fluorometer
(ThermoFisher, USA) and quality was assessed using a
5200 Fragment Analyzer (Agilent, USA). The pooled libraries were
sequenced using Illumina NextSeq 500, high-output 150 bp run.

Molecular cloning

The cDNA of grip2, dnd1, rbpms2 and AMEXTC_
0340000004005 was PCR amplified using primers
(Supplementary Table S2) designed for a full length cDNA.
PCR reaction mix contained 5x Phusion green HF buffer
(ThermoFisher, USA), 10 μM MgCl2 (ThermoFisher, USA),
10 μM dNTP3 (ThermoFisher, USA), Phusion Hot Start II DNA
Polymerase (ThermoFisher, USA), UltraPure dH2O (Invitrogen,
USA) and forward and reverse primers. PCR program run as
follows: initial denaturation at 98°C for 30 s, 39 cycles of
denaturation for 10 s, annealing at 55°C for 30 s and extension
at 72°C for 2 min.

The plasmid pBluescript II KS+ and amplified cDNAwere digested
using XhoI and NotI (New England Biolabs, USA). 5′-ends of DNA
were dephosphorylated using CIP (calf intestinal alkaline phosphatase,
New England Biolabs, USA) and then DNA insert was inserted into
vector DNA in a ligation reaction. Ligation mix contained T4 DNA
Ligase Buffer (New England Biolabs, USA), vector DNA, insert DNA,
RNase-free distilled water (ThermoFisher) and T4 DNA ligase (New
England Biolabs, USA). The mix was incubated overnight at 16°C.
Then, the reaction was stopped at 65°C for 10 min.

NEB 5-alpha competent E. coliwas used for a transformation (High
efficiency, # C2987I, New England Biolabs, USA) according to the
manufacturer’s protocol: High Efficiency Transformation Protocol
(C2987H/C2987I). After that, the individual clones were sequenced
to screen for the presence of the expected sequences. Correct plasmids
were purified using Plasmid Midi Kit (Qiagen, Germany).

Probes preparation and whole mount in situ
hybridization

Plasmids were linearized in the restriction digest reaction. The
mix contained 7 μg of plasmid DNA, NEB restriction enzyme (New

England Biolabs, USA) and 10x NEB buffer 3.1 (New England
Biolabs, USA). Mix was incubated overnight in a 37°C water
bath. Linear DNA was cleaned up using QIAquick PCR
Purification Kit (Qiagen, Germany). During the transcription
reaction, we mixed 2 μg of linear template, 4 μl of 5x
transcription buffer (Agilent, USA), 2 μl DIG RNA labelling mix
(Roche, Switzerland), 2 μl of the T7 polymerase (Agilent, USA) and
water in total volume of 20 μl. The mixture was incubated in a 37°C
water bath for 3 h. Then, the mix was cleaned using LiCl. Finally, the
RNA probe quality was tested using formaldehyde gel.

In situ hybridization was performed on whole mounts as
described previously (Soukup et al., 2021) with slight
modifications. Briefly, rehydrated A. mexicanum albino (d/d)
embryos were digested in 60 μg/ml Proteinase K in PBS, fixed in
4% formaldehyde + 0.2% glutaraldehyde for 30–120 min,
transferred into hybridization solution (50% formamide, 1x
Denhardt’s, 1 mg/ml yeast RNA, 0.1% Tween-20, 10%
dextran sulfate, 1x salt solution containing 0.2 M NaCl,
8.9 mM Tris-HCl, 1.1 mM Tris base, 5 mM NaH2PO4.H2O,
5 mM Na2HPO4 and 5 mM EDTA), and incubated overnight
in hybridization solution containing RNA probe (1:1,000–1:
100). Next day, the specimens were washed several times in
post-hybridization solution (50% formamide, 4 × SSC, 0.5%
Tween-20) and transferred via MABT buffer (100 mM maleic
acid, 150 mM NaCl, 0.1% Tween-20) into blocking solution (2%
blocking reagent, 20% sheep serum, in MABT buffer). Following
blocking, the specimens were incubated overnight in the
blocking solution containing alkaline phosphatase-conjugated
antibody against DIG (Roche, 1:3,000) at 4°C. The specimens
were washed several times in the MABT buffer. Following the
overnight MABT wash, the samples were transferred into
NTMT buffer (0.1 M Tris, 0.1 M NaCl, 0.05 M MgCl2, 0.1%
Tween-20) and incubated in BM Purple substrate (Roche) at 4°C
until desired signal developed.

RNA-seq data processing and analysis

RNA-seq reads were processed as previously described in Naraine
et al. (2022). Adaptor sequences and low quality reads were removed
using TrimmomaticPE (v. 0.36) (Bolger et al., 2014) using the
parameters, “HEADCROP:12 ILLUMINACLIP:~/TruSeq-PE3.fa:2:30:
10 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36.”
Mitochondrial RNA reads (GenBank id: AY659991.1) and any
remaining rRNA reads were removed using SortMeRNA (v. 2.1b)
(Kopylova et al., 2012). The reads were then pseudo-aligned to the A.
mexicanum transcriptome AmexT_v34 (Nowoshilow and Tanaka,
2020) using kallisto (v. 0.43.1) (Bray et al., 2016). The data were
deposited in the National Center for Biotechnology Information’s
Gene Expression Omnibus (GEO: GSE240796).

Raw counts were initially filtered to keep transcripts with
counts greater than 30 in at least one sample. DESeq2 (v.
1.32.0) (Love et al., 2014) was used to normalize the counts
using the median-of-ratios method followed by differential
expression analysis to determine differential localization of
transcripts along the animal-vegetal sections in the 1-cell, 4-cell,
64-cell, 1K-cell stages; changes in the sectional profile across all
stages; and changes in the total transcript across the stages. The
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median-of-ratios normalization method was used to focus
primarily on the extremely localized transcripts.

The following DESeq2 design models were used:

1) Alteration between the sections at the same stage:
a) design: ~replicate + position; reduced design: ~replicate

2) Alteration in the profiles across the different stages:
a) Transcripts with altered profiles: design: ~Stage + position +

Stage:position; reduced: ~Stage + position
b) Transcripts with altered magnitudes: design: ~Stage +

position; reduced: ~Stage
3) Alteration of the total transcript count between the different stages:

a) design: ~Stage; reduced: ~1; uses the sum of the normalized
counts for each sample as input counts

The Principal Component Analysis (PCA) of the top 500 variable
transcripts was assessed for the presence of any outlier samples.
Differentially localized transcripts (DLTs) were defined as those with
an adjusted p-value (padj) value less than 0.01 and also a total transcript
count greater than 20 within at least one stage. Human gene symbols
were assigned based on the previous ortholog analysis from Naraine
et al., 2022, whereby A. mexicanum gene symbols were either matched
against all known Homo sapiens gene symbols or derived from the
similarity between its protein sequences as compared against the H.
sapiens proteome using the reciprocal best alignment heuristic tool
Proteinortho (v. 6.0.9) (Lechner et al., 2011).

The spatial expression profiles of the DLTs were then
characterized into five discrete categories (extreme animal, animal,
central, vegetal, extreme vegetal) based on the parameters previously
described in Naraine et al., 2022. The central category represents a
new category of localized maternal transcripts that was observed
primarily in the eggs ofA.mexicanum andA. ruthenus (Naraine et al.,
2022). The other four profile parameters remained unchanged from
the previous publication describing sub-location in X. laevis (Sindelka
et al., 2018). DLTs that did not fit into these defined parameters were
labelled as unclassified. Profile changes in the DLTs across the whole
stages and within the stages were assessed using the degPatterns
function from DEGreport (v. 1.28.0) package (Pantano et al., 2023).
Profiles where the DLTs showed a fold change of 3x or 2x difference
between either the stages or the sections respectively were selected.
The validity of the profiles was verified using optCluster (v. 1.3.0) with
the “Diana” clustering algorithm (Sekula et al., 2017).

Gene ontology terms associated with the genes were obtained
using online software g:Profiler (access date: 14/02/23) using the
default parameters of the annotated human reference, multiple
testing correction using g:SCS threshold with a cutoff of 0.05
(Raudvere et al., 2019). Gene ontology terms clustering and
removal of redundant terms were done using Revigo (access date:
14/02/23) with the default parameters of the whole UniProt
reference database and SimRel semantic similarity measurement
(Supek et al., 2011).

Motif analysis

We analyzed the presence of motifs unique within the UTRs of
A. mexicanum PGC markers that might be responsible for its
degradation. This was done by comparing their 3′ and 5′UTRs

against shuffled versions of their sequences or the UTRs from X.
laevis PGC genes. We also analyzed for enrichment of motifs
within the vegetal and animal transcripts using the previously
observed vegetal and animal motifs that were detected in A.
mexicanum oocytes (previously published by Naraine et al.,
2022). Analyzing the 3′UTR sequences, we also checked for de
novomotifs that might be enriched selectively within the degraded
transcripts versus the de novo transcripts and also between the
animal and vegetal groups.

Motifs were detected using the STREME software (v. 5.5.2)
(Bailey, 2021) under the following conditions: p-value < 0.05 and
motif width = 6 to 25. The motif enrichment in primary sequences
compared with control sequences was assessed using AME
(e-value ≤ 0.05) (v. 5.5.2) (McLeay and Bailey, 2010). FIMO
software (p-value ≤ 0.0001) (v. 5.5.2) (Grant et al., 2011) was
used to scan the identified motifs against primary and control
sequences. Using FIMO we obtained information about motif
position within the sequences, and it was used to assemble a map
of the motif distribution.

The enrichment of the previously observed vegetal and animal
motifs from the paper (Naraine et al., 2022) was analysed against the
UTRs of the animal and vegetal transcripts observed during
embryogenesis. Significantly enriched motifs were deemed as
those that gave an AME e-value ≤ 0.05 and a 3x fold enrichment
in the vegetal UTRs versus the animal UTRs. In the case of the
occurrence of the same or very similar motifs, we selected the motif
with the lowest e-value.

Using only the PGC dataset, we continued with the analysis of
putative regulatory elements in the UTRs that might explain its
temporal degradation. To identify known protein binding sites and
RNA binding proteins (RBPs) within the 3′UTR, we used Scan For
Motif (access date: 16/03/23) with the datasets from TransTerm
(E-value <= 0.175 per thousand bases) and RBPDB (E-value <=
0.001) and selected results with E-value thresholds < 0.001 (Biswas
and Brown, 2014). The motifs recognized by these RBPs were
compared against the list of de novo motifs detected by STREME
using the comparison tool Tomtom (v. 5.5.2) (Gupta et al., 2007).
The position probability matrices for the motif of these RBPs were
downloaded from several online databases: CIS-BP-RNA (v. 0.6)
(Ray et al., 2013), RBPDB (v. 1.3.1) (Cook et al., 2011) and
oRNAment (access date: 12/06/23) (Benoit Bouvrette et al.,
2020). Within 3′ and 5′UTR, the BEAM software (v. 1.6.1.)
(Pietrosanto et al., 2018) was used to find RNA secondary
structures using a p-value threshold cutoff of 0.01. The
BEAGLE software (access date: 23/05/23) (Mattei et al., 2015)
was then used to identify a conserved secondary structure either
shared across all the A. mexicanum PGCs or unique to A.
mexicanum relative to the PGCs in X. laevis, using a p-value
threshold cutoff of 0.01. BRIO (p-value < 0.05) (Guarracino
et al., 2021) was used to identify known sequences and
structure RNA-binding motifs that are recognized by RBPs in
the UTRs of H. sapiens and M. musculus from PAR-CLIP, eCLIP
and HITS experiments. The AURA database (v. 2.7) was then used
to screen the identified RBPs for their selective preference to either
the 3′ or 5′ UTR regions (Dassi et al., 2014). For the discovery of
putative binding sites for miRNA within the 3′UTR of the PGC
markers, miRDB (v. 6.0) (Chen andWang, 2020) was used with the
human dataset as a reference.

Frontiers in Cell and Developmental Biology frontiersin.org05

Šimková et al. 10.3389/fcell.2023.1260795

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1260795


Results

Asymmetric distribution of maternal RNA in
early embryos

To describe RNA localization during early embryogenesis of A.
mexicanum, we collected the stage of a fertilized egg (1-cell stage), 4-,
64- and 1K-cell (early blastula), which are expected to be pre-
embryonic genome activation (MBT).

Embryos were sectioned along the animal-vegetal axis using the
TOMO-seq method (Figure 1A). The results were first analyzed
using PCA of the 500 most variable transcripts (Figure 1B).
PC1 showed high variability during early development, mainly
between the 1-cell stage and late embryos. PC2 revealed the clear
distinction among individual sections in all stages. The variability in
the sections decreased as the embryos progressed towards the later
stages, indicating a disruption or reduction in the original
asymmetrical gradients. Additionally the largest sectional
differences were observed between the D and E sections, while
minimal between the A and B sections.

The average number of coding genes identified at each stage was
28909 (using threshold >30 transcript counts in any sample). The
complete dataset containing genes with asymmetrical distribution are
listed in Supplementary Table S3. More than 2,200 DLTs (padj < 0.01,
using threshold >20 transcripts in at least one stage) with sectional
changes per stage were identified in embryos at 4, 64 and 1K-cell stages
and twice as many were identified at the 1-cell stage (4,076 DLTs). The
diagram in Figure 1C shows the overlap of the shared DLTs across the
stages with 1,216 shared in all analyzed stages. Most of the DLTs were
classified into one of the five localization categories: extremely animal,
animal, central, vegetal and extremely vegetal (Fig. 1Da). In extremely
animal and animal categories, we identified 284–675DLTs in each stage
(Fig. 1Db). Majority of DLTs are localized in vegetal or extremely
vegetal sections at the 1-cell stage—1,114 and 1,083. The number of
extreme vegetal DLTs dramatically decreased during development and
only 240 were found at the 1K-cell stage.

We performed RT-qPCR validation of a fewmembers within the
extremely vegetal and animal transcript categories. In the extremely
vegetal category, we confirmed the localization profile of grip2 and
dnd1 (Supplementary Figure S1A), and in the animal category, we
confirmed the localization of ankhd1 and akt2 (Supplementary
Figure S1B).

Sectional profile alteration during the early
development

In total 4,850 DLTs were observed to change their sectional
profile or its sectional amplitude across the analyzed stages. 781 of
these DLTs had a ≥2x fold change between a given section and
showed two profile alteration processes—alteration of vegetal
profiles and alteration of animal profiles (Supplementary Table S4).

Vegetal alteration
The vegetal alteration was observed for 673 DLTs and several

groups depicting different types of alterations were described
(Figure 2). A pronounced vegetal profile was created either at the
1K cell stage (22 DLTs, Figure 2A) or from the 4-cell stage (77 DLTs,

Figure 2B). Next group showed the vegetal profile already established
at the 1-cell stage (405 DLTs), while a uniformed/reduced distribution
during the other developmental stages (Figure 2C). In the last group,
the vegetal profile is also present at the 1-cell stage (Figure 2D).
However, in contrast to the slow progression towards the uniform
distribution, it was already established at the 4-cell stage (169 DLTs).

Due to the low number of genes in the mentioned groups or the
limited number of annotated genes, the GO enrichment analysis was
performed only on the third group (Vegetal at the 1 cell/Gradual
decrease in late stages; Supplementary Table S5). Enriched GO terms
were associated with biological processes affiliated with localization
and protein folding, andmolecular function in oxidoreductase activity
and protein binding.

Animal alteration
The animal profile alteration comprised of 108 DLTs which can

be classified into three groups (Figure 3). In the first group, the
transcript uniform distribution persisted until the stage of 64-cell,
after which at 1K-cell the animal profile was more visible (29 DLTs,
Figure 3A). DLTs in the second group were uniformly distributed
only at the 1-cell stage and later formed animal gradients (74 DLTs,
Figure 3B). The third group showed clear animal profile at the 1-cell
(5 DLTs, Figure 3C), but its animal distribution was disrupted
leading to homogenous distribution in the later stages.

GO enrichment was performed only on the second group
(Homogenous/slightly animal at the 1-cell stage, animal in late
stages) as it contained sufficient numbers of genes. The genes in this
group may play a role as the cellular components of the centrosome,
cytoplasm, and cytoskeleton. No molecular function or biological
process connected with the transcripts in this group was observed.

Transcript count alteration during the early
development

Alteration in transcript count caused by synthesis or degradation
was detected for 6,811 DLTs (padj <0.01, >20 transcripts in at least
one stage). Out of these, we observed 960 DLTs with at least 3-fold
change across individual stages (Supplementary Table S6). Two main
groups were created reflecting de novo synthesis and degradation.

Transcripts degradation detected using the TOMO-seq approach
was validated by RT-qPCR for 2 DLTs—plin2 and velo1
(Supplementary Figure S1C). De novo synthesis of mok and nynrin-
like was also validated by RT-qPCR (Supplementary Figure S1D).

De novo transcription in early embryogenesis
De novo transcription of 519 DLTs was detected in the analyzed

time points (Figure 4). 250 DLTs showed transcript increase right
after fertilization at the 4-cell stage (Figure 4A). Out of these DLTs,
19 established vegetal profiles during development (e.g., dusp1) and
14 created animal profiles after the 1-cell stage (e.g., prmt1)
(Supplementary Table S7).

The second wave of de novo transcription was observed at the
64-cell stage (193 DLTs, Figure 4B). Only 3 DLTs set up a vegetal
profile at the 1K cell stage and 1 DLT created an animal profile at the
1K cell stage (not annotated transcripts).

The third de novo transcription was detected at the 1K-cell stage
with 76 DLTs being synthesized at this time point. 6 DLTs showed
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preferential enrichment to the animal section (e.g., rpl12) and only
1 DLT was synthesized in the vegetal hemisphere at the 1K-cell stage
(not annotated transcript).

Gene ontology terms associated with transcripts synthesized at the 4-
cell stage proposed their role mainly in biological processes such as cell
regulation and biosynthesis. Although it was not possible to perform gene
ontology analysis on the remaining subgroups due to missing gene
annotations, several interesting genes were revealed. For example, we
identified several DLTs linked with ribosomal proteins at the 64-cell stage.

Transcript degradation during early embryogenesis
A 3-fold decrease in 441 DLTs was observed between the 1-cell

and 4-cell stages (Figure 5A). Out of these, 2 DLTs initially localized
in the animal hemisphere but later lost their localization pattern due
to degradation after the 1-cell stage (not annotated transcripts).
28 DLTs (e.g., sys1) were vegetal only at the 1-cell stage and their

profile became uniform at the 4-cell stage. 33 DLTs (e.g., sh3bp4)
were gradually degraded after the 1-cell stage and kept a slight
vegetal profile even at later stages (Supplementary Table S7). In
contrast, no significant degradation cluster was detected at the 64 or
1K-cell stages.

Gene ontology analysis supported the role of degraded DLTs
in many biological processes, such as cell regulation, localization
and development (Figure 5B). Moreover, the GO enrichment
analysis suggests a molecular function of DLTs in the binding of
specific molecules, such as proteins or RNAs (Supplementary
Table S5).

Degradation of PGC markers during A. mexicanum
development

A separate subgroup included genes that are known as the
PGC markers. In this group, we observed the degradation of

FIGURE 1
Asymmetric localization of maternal transcript in A. mexicanum early embryos. (A) Schematic representation of the workflow. (B) PCA of 500most variable
transcripts showhigh variability amongdevelopmental stages and embryo sections. (C) The diagramof sharedDLTs among developmental stages. (D)Number of
DLTs in each localization category. DLTs in the unclassified category represent those that did not fit into any of the five defined profiles.
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DLTs affecting profile pattern—from extremely vegetal to
slightly vegetal or homogeneous distribution (Figure 5C).
The transcript level of all PGC transcripts—dnd1, rbmps2-1,

rbpms2-2, grip2-1, grip2-2, nanos1, velo1-1 and velo1-
2—significantly decreased after the 1-cell stage (Figure 5C;
Supplementary Figure S2A). Even if some transcripts did not

FIGURE 2
Vegetal sectional profile alteration. During the early development of A. mexicanum, 4 groups of vegetal DLTs altering profiles were observable. (A)
Homogenous or slightly vegetal localization from the 1-cell stage until the 64-cell stage and vegetal localization at the 1K-cell stage. (B)Homogenous or
slightly vegetal localization at the 1-cell stage and vegetal localization from the 4-cell stage and later. (C) Vegetal localization at the 1-cell stage and from
the 4-cell stage until the 1K-cell stage the gradual decrease of transcript amount. (D) Vegetal localization at the 1-cell stage and from the 4-cell stage
the localization is homogenous or slightly vegetal. Line plots represent the averaged z-score expression for the genes with shared localization profiles.
Heatmap shows the z-score of the averaged relative expression across the replicates. DLTs represent genes that had a padj < 0.01 and greater than
20 transcripts per stage. DLTs were further filtered to show those that were 2x greater in either amplitude or relative to another section across the stages.
3 biological replicates were used. Embryos sections: A - extremely animal, B - animal, C - central, D - vegetal, E - extremely vegetal.
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meet the criteria to be included in the total transcript alteration
(3-fold change) or sectional profile alteration (2-fold change),
the profile change was pronounced enough to suggest that
vegetal degradation is occurring. To identify whether
degraded transcripts are present in PGC in later
development, we selected 3 genes from this group showing
vegetal degradation (rbmps2-1, grip2-1, dnd1) and 1 gene
(AMEXTC_0340000004005) with the opposite trend—zero
count at the 1-cell stage and de novo transcription mainly in
the vegetal hemisphere from the 4-cell stage—for in situ
hybridization. All transcripts were detected in the embryo at
around stage 33 in the presumptive germ line (Figure 5C) and
surprisingly also in the heart and pronephros (Supplementary
Figure S2B).

Motif enrichment in primordial germ cell
markers

For a deeper understanding of the PGC markers degradation
process, we performed motif analysis searching for any conserved
regulatory sequence within the 3′ and 5’ UTR sequences. Using data
from previous publication (Naraine et al., 2022) and Xenbase.org we
obtained UTRs of 5 transcripts in each organism (Listed in
Supplementary Figure S2A). There were no statistically
significant motifs enriched within the PGCs RNAs of the A.
mexicanum versus those from the X. laevis. However, this is
most likely due to the low number of genes used for the analysis
(~5 genes). Due to this limitation, FIMO was instead used to assess
whether the detected motifs were found exclusively or in a high

FIGURE 3
Animal sectional profile alteration. During the early development of A. mexicanum, 3 groups of animal DLTs altering profiles were observable. (A)
Homogeneous or slightly animal from 1-cell until the 64-cell stage and the creation of animal profile at the 1K-cell stage. (B) Homogeneous or slightly
animal at the 1-cell stage and animal at the 4-cell stage and later. (C) Animal localization at the 1-cell stage and homogenous or slightly animal localization
from 4-cell until the 1K-cell stage. Line plots represent the averaged z-score expression for the genes with shared localization profiles. Heatmap
shows the z-score of the averaged relative expression across the replicates. DLTs represent genes that had a padj < 0.01 and greater than 20 transcripts
per stage. DLTs were further filtered to show those that were 2x greater in either amplitude or relative to another section across the stages. 3 biological
replicates were used. Embryos sections: A – extremely animal, B – animal, C – central, D – vegetal, E – extremely vegetal.
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proportion within the UTRs of the A. mexicanum PGCs versus the
other models.

The de novo motif analysis within the 3′UTR of PGC marker
genes revealed 7 motifs enriched in the A. mexicanum compared
with either the X. laevis marker genes or the shuffled sequences
(Figure 6A). Most of the motifs were uridine rich. 5 of the identified
motifs were present exclusively in A. mexicanum but not in X. laevis.
Then, the motif presence was also estimated in the other model
organisms—M. musculus, H. sapiens, D. melanogaster, A. ruthenus
and D. rerio—and only 1 motif (Motif 6) was exclusive to A.
mexicanum. We observed no significant enrichment of these
7 motifs when comparing the de novo transcripts against the

degraded ones, or the vegetal sectional changes against the
animal sectional changes.

In total, we identified 10 motifs conserved within the 5′UTR of
PGC markers in A. mexicanum and none of them were present in X.
laevis or the shuffled sequences (Figure 6B). Most of the motifs were
enriched with either cytosine or guanosine. Two motifs (Motif 1 and
6)—had CAC core. All the motifs were scanned against PGC
sequences of the 4 model organisms and 4 motifs were unique
exclusively to A. mexicanum. We observed no significant
enrichment of these 10 motifs when comparing the de novo
transcripts against the degraded ones, or the vegetal sectional
changes against the animal sectional changes.

FIGURE 4
De novo transcription during early embryogenesis of A. mexicanum. (A) De novo transcription at the 4-cell stage and biological role of DLTs
proposed using gene ontology analysis. (B) De novo transcription at the 64-cell stage and RNA-seq gene examples. (C) De novo transcription at the 1K-
cell and RNA-seq gene examples. Box plots in the first column represent the averaged z-score expression for the averaged total transcript across the
stage replicates. Line plots in the second column represent the normalized counts for each replicate for a specific gene across the stages. DLTs
represent genes that had a padj < 0.01 and greater than 20 transcripts per stage. DLTs were further filtered to show those that were 3x greater in either
amplitude or relative to another section across the stages. 3 biological replicates were used. Embryos sections: A - extremely animal, B - animal, C -
central, D - vegetal, E - extremely vegetal.
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We used the Scan for motif software to identify putative RBP
sites within the 3′UTR of PGC markers. The analysis revealed
several RBPs which can affect RNA stability, degradation and
translation, such as PUM2, KHSRP and ZFP36. However, all the
RBPs affecting RNA stability were also detected in X. laevis PGC
markers (Complete list of RBPs in Supplementary Table S8). To

compare de novo motifs with motifs recognized by known RBPs
we used the Tomtom tool, which helped us to identify 2 motifs
which resembled previously discovered motifs. Motif 5 was
similar to RBFOX1 (UGCAUG) binding sites and motif 6 was
similar to PUM2 (UGUA) and ZFP36 (UUAUUUAWK)
(Figure 6A).

FIGURE 5
Transcription degradation during early embryogenesis of A. mexicanum. (A) The massive degradation was observed only after the 1-cell stage. Box
plot in the first column represents the averaged z-score expression for the averaged total transcript across the stage replicates. Line plot in the second
column represents the normalized counts for each replicate for a specific gene across the stages. DLTs represent genes that had a padj < 0.01 and greater
than 20 transcripts per stage. DLTs were further filtered to show those that were 3x greater in either amplitude or relative to another section across
the stages. 3 biological replicates were used. (B) Gene ontology analysis of degraded DLTs. (C) Degradation of PGC markers. Line plots show the
localization profile and total amount of selected PGC markers change during the development. Whole-mount in situ hybridization shows the gene
expression of 3 known PGCmarkers and 1 unknown gene within presumptive germ cells (arrow). Detection of PGC in A. mexicanum embryos at around
stage 33 using in situ hybridization. Lateral view, with A-Anterior, B-Posterior. Scale bar = 2 mm.
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BRIO software was used to search for known primary sequences
and secondary structures associated with RBP binding motifs within
the 3′ and 5′ UTRs of A. mexicanum PGC markers. We identified 5
(3′UTR) and 17 (5′UTR) RBPs binding motifs unique to A.
mexicanum compared with X. laevis (Supplementary Table S9).
Using the available resources, we selected 2 (3′UTR) and 9 (5′UTR)
proteins potentially playing a role in transcript degradation
(Figure 6C). BEAM was used to find structural motifs present in
the RNA secondary structure, but no motif was shared in all 5 A.
mexicanum PGC markers within 3′ or 5′UTR.

As it is known, miRNA can induce mRNA degradation or
translational repression (reviewed in O’Brien et al., 2018). Therefore,
we searched for miRNAs that may target the A. mexicanum PGC
transcripts using the online miRNA database miRDB. We discovered
41 miRNAs present only in A. mexicanum, but none of them was shared
in all PGC genes. Similarly, 50miRNAs were specific only forX. laevis but
were not shared in all its PGC genes (Supplementary Table S10).

Conservation of vegetal and animal motifs

Analysis was carried out to determine if previously conserved
animal and vegetal motifs detected in the oocyte of the A.
mexicanum (Naraine et al., 2022) can also be seen preferentially

enriched within the vegetal and animal transcripts during
embryogenesis. Motifs were scanned using FIMO against the
following datasets of developing A. mexicanum embryos: animal,
vegetal, sectional profile altering, stage altering de novo and
degraded DLTs.

Within the 3′ and 5’ UTR of transcripts from the A. mexicanum
embryos, we observed the enrichment of the previously detected
putative localization motifs that were found shared between both A.
mexicanum and X. laevis oocytes and also those that were unique
only for A. mexicanum oocytes (Supplementary Figure S3) (Naraine
et al., 2022). The conservedmotifs were detected only in the vegetally
localized DLTs of A. mexicanum embryos and were mostly enriched
with CAC or guanine-rich sequences.

The map of identified de novomotifs, miRNAs, RBPs and motifs
from previous publication (Naraine et al., 2022) was assembled for
selected PGC markers (Supplementary Figure S4).

Discussion

Localization of transcripts established in the mature egg during
oogenesis has a crucial role in asymmetric cell division during
embryo development. Previously we identified thousands of
DLTs in the maturating oocytes of X. laevis and A. ruthenus

FIGURE 6
Motif and RBP enrichment in PGC. (A) De novo motif analysis within 3′UTR of A. mexicanum. Enriched motifs were also scanned in other model
organisms. Sequences of motifs 5 and 6 probably can be bound by 2 known RBPS—PUM2 and RBFOX1. (B) De novo motifs analysis within 5′UTR of A.
mexicanum. Enriched motifs were also scanned in other model organisms. (C) Identification of RBP binding motifs using BRIO within 3′ and 5′ UTR of
A.mexicanum. The RBP presence was also assessed in other model organisms.
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(Iegorova et al., 2022) andmature eggs ofX. laevis, A. mexicanum, A.
ruthenus and D. rerio (Naraine et al., 2022). The comparison of the
evolutionary conservation of localized transcripts revealed many
differences among analyzed species such as a low correlation in
vegetal localization and dynamic changes in transcript levels. Based
on these results we proposed that the development of different
vertebrate species can be regulated in many ways.

To assess this, we performed a spatiotemporal analysis of
transcript localization in early embryos of the urodele amphibian
A. mexicanum and compared our results with available data from
the anuran X. laevis. The transcriptome analysis in four
developmental stages of A. mexicanum revealed very dynamic
changes in RNA profiles and uncovered three divergent
alterations—sectional profile alteration, de novo transcription and
degradation. Early embryonic development is dependent on
maternal RNA and protein storages in the absence of
transcription, after which during MBT the transcription from the
embryonic genome is initiated. In X. laevis, the MBT occurs after the
12th cycle of cell division, but in A. mexicanum, it can be either after
the 9th cycle (Lefresne et al., 1998) or the 12th cycle of cell division
(Jiang et al., 2017). Despite the first theories that transcription does
not occur before MBT, later it has been shown in many species (e.g.,
X. laevis (Yang et al., 2002; Skirkanich et al., 2011), M. musculus
(Bouniol et al., 1995; Aoki et al., 1997; Abe et al., 2018)) that a small
number of genes can be transcribed even shortly after fertilization.
In A. mexicanum, we identified more than 1.7% of maternal
transcripts transcribed during the period from the fertilized egg
until the early blastula (1K-cell) stage. Our findings support Jiang
et al., 2017 and determine the onset of MBT after the 12th cycle of
cell division. According to the GO analysis, de novo transcripts
synthesized during this period have a structural and functional role
in nascent cells. For example, pi4ka encodes kinase contributing to
cell membrane synthesis (Wong and Cantley, 1994) and epcam is
one of the main cell-to-cell adhesion molecules (Litvinov et al.,
1994). Moreover, we identified de novo synthesis of wee2, whose
zygotic expression was previously described in X. laevis. Leise and
Mueller, 2002 proposed the possible mitosis-inhibiting role of
Wee2 kinase in specific embryo tissues lacking proliferating cells.

The clearance of maternal transcripts before embryonic genome
activation is required to regulate early embryo development and prepare
the embryo for MBT. In X. laevis, deadenylation and transcript
degradation can be mediated via RBPs recognizing specific RNA
elements—deadenylation elements (Paillard et al., 1998) and AU-rich
elements (Voeltz and Steitz, 1998)—or through zygotic miRNA (Lund
et al., 2009; Koebernick et al., 2010). In A. mexicanum, we revealed the
degradation of more than 1.5% of maternal transcripts. Previously, the
degradation of several mRNAs (wnt1, wnt5a, wnt5b) during A.
mexicanum early development was noticed (Caulet et al., 2010), but
we are the first to describe the degradation in transcriptome-wide view in
this model. Degraded maternal transcripts are enriched for GO terms
related to cell cycle regulation, localization and the developmental
process. For example, we have detected degradation of actb, which
can be caused by actin disassembly at the cleaving egg (Field et al., 2019),
and ccna1, which regulates cell cycle control (G1/S and G2/M).
Degradation of the ccna1 may be due to cyclin A1 redundancy given
that the G1 phase is absent in the axolotl (Lefresne et al., 1998).
Previously, Hamatani et al., 2004 described massive degradation of
transcripts involved in the cell cycle also inM. musculus early embryos.

The PGC markers were previously identified to be localized to the
vegetal pole in the eggs of X. laevis and A. mexicanum (Naraine et al.,
2022), and have been corroborated by our research.While inX. laevis, the
vegetal localization is established through the mitochondrial cloud (Kloc
and Etkin, 1995), in A. mexicanum, this structure is probably absent and
the mechanisms of mRNA localization remain unknown (Ikenishi and
Nieuwkoop, 1978; Johnson et al., 2001). The interesting view on germ cell
development in urodele was proposed by Škugor et al., 2016. In A.
mexicanum, they described the functional loss of protein encoded by
velo1 which probably played an ancestral role in germ plasm assembly
and proposed its role in germline formation in the ancestors of
vertebrates. Therefore, they concluded that preformation is an
ancestral mechanism and the inductive germ line determination
occurred in vertebrates lacking germ plasm (e.g., urodeles, primates,
rodents) due to convergent evolution. Our results may support this
hypothesis because we detected the partial degradation of several PGC
markers shortly after fertilization. Johnson et al. (2001) described the first
appearance of dazl, another PGC marker, at stage 40 as well as the first
formation of primordial germ cells. Therefore, to confirm, that the
expression of PGCmarkers again starts after gastrulation (Johnson et al.,
2001), we decided to detect 3 PGCmarkers (grip2, dnd1 and rbpms2) and
1 vegetally localized unknown transcript using in situ hybridization.
While grip2 and dnd1 were previously detected in PGCs (Tarbashevich
et al., 2007; Koebernick et al., 2010), rbpms2was detected only in oocytes
and developing heart inX.laevis (Gerber et al., 1999; Zearfoss et al., 2004).
Indeed, all of them was localized in the region of A. mexicanum
presumptive germ cells at the stage 35 (Figure 5C), which is 5 stages
earlier than reported by Johnson et al. (2001).

To take a deeper look into the processes of partial degradation of
PGC markers, we analyzed their UTRs for a motif enrichment that
may cause the degradation. We identified 1 motif (Motif 6,
Figure 6A) within 3′UTR, which is exclusive for A. mexicanum
PGC. It is interesting that the motif possibly binds PUM2 and
ZFP36, which are RBPs involved in mRNA repression (Lai et al.,
1999; Lai et al., 2003; Van Etten et al., 2012). Therefore, we
concluded that this motif may potentially plays an important role
in the partial degradation of the PGC marker RNAs after
fertilization. Moreover, we identified 4 motifs exclusive in the
5′UTR of A. mexicanum PGCs mRNAs, but the role of these
motifs is not known. Also, we identified several RBPs, potentially
playing a role in degradation, which recognize binding sited within
3′UTR of PGCs mRNAs, but for these RBPs, the role in embryonic
developmental degradation has not yet been described.

To find motifs specific for degradation or de novo synthesis, we
searched motif enrichment within 3′ and 5′UTRs of maternal
transcript in the degradation/de novo group, but no significant
enrichment was observed. Moreover, we searched within animal
or vegetal groups, to find enriched motifs for localization, but we did
not find any significant enrichment. However, previously detected
motifs enriched within the UTRs of vegetal and animally transcripts
in the egg of the A. mexicanum (Naraine et al., 2022), revealed
5 motifs enriched within the 3′ and 5′UTRs of A. mexicanum
embryos. These motifs are enriched with CAC core, a known
localization motif, as well as some with guanine or cytosine-rich
sequences, which may be potentially new localization elements.

The final mechanism on how the transcript can be regulated
during early development is through profile alteration. We have
determined sectional profile alteration in both vegetal and animal
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hemispheres. The formation or disruption of the vegetal profile was
detected in a total of 2.3%DLTs. Out of these, 9%DLTs disrupt their
vegetal profile due to transcript degradation and 3.4% DLTs create
the profile due to de novo synthesis. The remaining 87.6% of
transcripts show less than 3x fold change count across stages.
Therefore, the sectional profile alteration for these remaining
transcripts can be caused by either lower levels of degradation/de
novo synthesis or active relocalization. GO term analysis performed
on a subgroup containing transcripts whose vegetal localization
gradually changed into uniform/slightly vegetal distribution,
revealed their functions mainly in localization and protein
folding. In X. laevis, for instance, Grip2 protein is indispensable
for proper PGCmigration (Kirilenko et al., 2008) and kif4, encoding
microtubule motor protein, is essential for somatic cell division and
its maternal paralog for meiotic division (Samwer et al., 2013; Ems-
McClung et al., 2019). GO terms associated with transcripts whose
vegetal profile rapidly changed into uniform/slightly vegetal
distribution after the 1-cell stage, revealed their connection
mainly with cellular components. As an example, man2b1 (Malm
and Nilssen, 2008) and fuca1 (Willems et al., 1999) encode
lysosomal enzymes and Sys1 protein is involved in protein
trafficking (Behnia et al., 2004).

The alteration in animal profile was detected in almost 0.4% ofDLTs.
Of the total number of DLTs altering the animal profile, 78.7% of DLTs
show less than 3x fold count change across individual stages. The animal
alteration caused by transcript degradation was detected only in 1.9%
DLTs, while de novo transcription was revealed in 19.4% DLTs.
Transcripts forming animal profiles after the 1-cell stage are enriched
for GO terms related to structural and functional components of the cell.
Examples include nek9, encoding serine/threonine kinase, which plays an
important role in mitotic spindle formation (Rapley et al., 2008) and
Rrp12 protein important for ribosome assembly (Oeffinger et al., 2004).

Overall, our findings describing the regulation of maternal
transcripts in early A. mexicanum embryos showed that after
fertilization, maternal transcripts undergo multiple dynamic
changes. These include alteration in localization or abundance
and suggest that even related amphibians, such as A. mexicanum
and X. laevis, can regulate their early development differently. The
most prominent difference is probably the partial degradation of
PGC markers, which indicates relevance for the differential
development of germ cell establishment in the two amphibian
orders. Our results support the necessity of cross-species
comparison for a better understanding of aspects of the
regulation of embryonic development.
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