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Whole-cell modeling is “the ultimate goal” of computational systems biology and
“a grand challenge for 21st century” (Tomita, Trends in Biotechnology, 2001, 19(6),
205–10). These complex, highly detailed models account for the activity of every
molecule in a cell and serve as comprehensive knowledgebases for the modeled
system. Their scope and utility far surpass those of other systems models. In fact,
whole-cell models (WCMs) are an amalgam of several types of “system” models.
The models are simulated using a hybrid modeling method where the appropriate
mathematical methods for each biological process are used to simulate their
behavior. Given the complexity of the models, the process of developing and
curating these models is labor-intensive and to date only a handful of these
models have been developed. While whole-cell models provide valuable and
novel biological insights, and to date have identified some novel biological
phenomena, their most important contribution has been to highlight the
discrepancy between available data and observations that are used for the
parametrization and validation of complex biological models. Another
realization has been that current whole-cell modeling simulators are slow and
to run models that mimic more complex (e.g., multi-cellular) biosystems, those
need to be executed in an accelerated fashion on high-performance computing
platforms. In this manuscript, we review the progress of whole-cell modeling to
date and discuss some of the ways that they can be improved.
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1 Introduction

Biology once was considered a data poor science. That era has long passed. Today, thanks
to revolutionary advances in sequencing and other high-throughput analytical techniques,
staggering amount of biological data is being collected (Marx, 2013). Soon the cost of storing
and analyzing the biological data could be more concerning than the cost of generating it
(Fritz et al., 2011; Berger et al., 2013; Jagadish et al., 2014; Stephens et al., 2015). Further
complicating the challenge, the data that is being generated is highly heterogeneous. The data
is also variable. At times, measurements from the same biosystem but from different groups,
or even the same group but on different days or on different instruments could disagree with
one another. Therefore, data processing and integration from widely diverse databases have
become important tasks during in silico systematic analyses (Bajcsy et al., 2005; Shamim
et al., 2010).

OPEN ACCESS

EDITED BY

Michael Blinov,
UCONN Health, United States

REVIEWED BY

Zaida Ann Luthey-Schulten,
University of Illinois at Urbana-
Champaign, United States
Markus Covert,
Stanford University, United States

*CORRESPONDENCE

Ali Navid,
navid1@llnl.gov

RECEIVED 18 July 2023
ACCEPTED 19 October 2023
PUBLISHED 07 November 2023

CITATION

Georgouli K, Yeom J, Blake RC and
Navid A (2023), Multi-scale models of
whole cells: progress and challenges.
Front. Cell Dev. Biol. 11:1260507.
doi: 10.3389/fcell.2023.1260507

COPYRIGHT

© 2023 Georgouli, Yeom, Blake and
Navid. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Cell and Developmental Biology frontiersin.org01

TYPE Review
PUBLISHED 07 November 2023
DOI 10.3389/fcell.2023.1260507

https://www.frontiersin.org/articles/10.3389/fcell.2023.1260507/full
https://www.frontiersin.org/articles/10.3389/fcell.2023.1260507/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2023.1260507&domain=pdf&date_stamp=2023-11-07
mailto:navid1@llnl.gov
mailto:navid1@llnl.gov
https://doi.org/10.3389/fcell.2023.1260507
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2023.1260507


2 Whole-cell models

French polymath René Descartes in his Discourses put forth the
idea that the world behaves like a clockwork machine and therefore
it can be understood by dividing it into smaller pieces and studying
the individual components (Descartes, 1984). Molecular biology
investigations followed this idea for most of 20th century. But while
reductionist studies dominated the field and provided invaluable
insights into workings of specific processes in various model
organisms, the Aristotelian view that “the totality is not, as it
were, a mere heap, but the whole is something besides the parts”
(Cohen and Reeve, 2000) always had advocates among biologists.
These detractors observed the emergent behavior of whole systems
and argued that the observations that structures of systems
organized and controlled the performance of the component
parts refuted the reductionist basis of many studies since they
failed to account for critical system-level orchestrations. For a
long time, holistic analyses were impossible due to absence of
system-level data. That shortcoming has now been overcome and
the ready availability of various types of omics data have led to a
renaissance in the field of systems biology (Figure 1).

Soon after first genomes became available, computational
system-level models were developed. Genome-scale models of
metabolism (GEMs) are among the most widely used system-
level models. Metabolism was chosen as one of the first
bioprocesses to be examined on a system-level thanks to tireless
efforts of biochemists and microbiologists who for generations
conducted extensive targeted mechanistic analyses of enzymes
and pathways (Hill, 1970; Schilling et al., 1999; Papin et al., 2003;
Cornish-Bowden, 2013; Johnson, 2013) and bioinformaticians who
processed and deposited this information in numerous databases.

Coupling of GEMs with constraint-based reconstruction and
analysis (COBRA) methods such as popular Flux Balance Analysis
(FBA) has provided a wealth of general information regarding
fundamental organization and function of metabolic pathways
(e.g., (Almaas et al., 2004; Almaas et al., 2005)) while on a
biosystem specific level it has shed light on the metabolic
capabilities of the modeled organisms, their environmental niches
and the robustness of their metabolism to environmental and
genetic perturbations.

The popularity of these constraint-based modeling approaches
stems from the fact that they utilize the data that is readily available
(annotated genomes, empirical measurements of growth, nutrient

uptake, and byproduct excretion) and circumvent the issue of dearth
of kinetic data that plague generation of system-level kinetic models.
Some system-level kinetic models have been developed e.g., (Klipp,
2007; Bordbar et al., 2015; Jamei, 2016), but they usually tend to
account for the activity of significantly fewer genes than COBRA
models due to a lack of detailed kinetic data for all cellular processes.
There have been many methods developed that use Bayesian
parameter estimation to predict reasonable thermodynamic and
kinetic values to constrain COBRA models e.g., (Liebermeister and
Klipp, 2006a; Liebermeister and Klipp, 2006b; Stanford et al., 2013)
and subsequently there have been a number of attempts to add
kinetic information to FBA models (e.g., (Jamshidi and Palsson,
2008; Adadi et al., 2012; Stanford et al., 2013; Chowdhury et al.,
2015; Pozo et al., 2015; Khodayari andMaranas, 2016; Sánchez et al.,
2017; Shameer et al., 2022)). Despite this progress, currently the vast
majority of FBA models do not contain kinetic information.

Given their wide range of uses many upgrades to FBA methods
have been made to incorporate heterogenous omics data into them.
Many methods have been developed that constrain COBRA models
with omics data other than genome (e.g., (Becker and Palsson, 2008;
Chandrasekaran and Price, 2010; Zur et al., 2010; Jensen and Papin,
2011; Fang et al., 2012; Navid and Almaas, 2012; Sánchez et al., 2017;
Bekiaris and Klamt, 2020; Hadadi et al., 2020; Di Filippo et al.,
2022)). Several methods have also been developed that analyze
multi-omics data using machine learning models prior to their
incorporation into FBA models (Kim et al., 2016; Zampieri et al.,
2019; Lewis and Kemp, 2021; Sahu et al., 2021). In one case, FBAwas
embedded into artificial neural networks resulting in a hybrid
mechanistic-machine learning model that allows quantitative
predictions of medium uptake fluxes based solely on medium
composition (Faure et al., 2023). This development could greatly
improve our ability to develop condition- and species-specific GEMs
using data that are more readily available and easier to access.

There are also models available that account for the sequence-
specific synthesis of gene products, their function and all catalyzed
biochemical processes (Thiele et al., 2012; Ma et al., 2017). However,
despite all these advances in COBRAmodeling, all GEMmodels and
upgraded variants do not fully account for activity of every known
biological molecule and process. It is also important to account for
the structure of the cell since most molecular processes use it to
collocate into interacting modules at multiple scales (Betts and
Russell, 2007). While GEMs for eukaryotes bin the reactions of
metabolic reconstructions into different cellular compartments, they

FIGURE 1
Timeline of some of the important milestones in development of whole-cell models.
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do not explicitly account for clustering of molecules and proteins
within prokaryotes or organelles in a manner that could explain
observed interacting units. Additionally, most GEMs contain many
sources or sinks of energy and metabolites which hinder accurate
and detailed description of mechanisms associated with homeostasis
in a system (Roberts, 2014). Whole-cell models aim to overcome
these limitations.

Whole-cell models, as with other “system-level” models aim to
predict cellular phenotypes from genotype and biochemical and
biophysical characteristics of the environment. Where WCM
supersedes the other modeling efforts is the ambitious goal of
incorporating the function of each gene, gene product, and metabolite
in the modeled system (Karr et al., 2015). Thus, WCMs serve as nearly
comprehensive knowledgebases for the modeled system. They allow in
silico experiments that can lead to prediction of novel biological
phenomena, identification of gaps in our knowledge, generation of
new hypotheses and design of new studies (Tomita, 2001). The
models can be easily updated with new information which can be a
quick way of ascertaining the significance of new discoveries. Also, in this
golden age of machine learning, regression techniques can be used to
examine large heterogenous biological datasets and with a relatively high
degree of accuracy predict phenotypes (Guzzetta et al., 2010; Smith et al.,
2020; Guo and Li, 2023); in fact WCMs are the ideal complementary
models to the black box nature of machine learning models and can
provide a mechanistic underpinning to the predicted phenotypes.

2.1 Whole-cell model of Mycoplasma
genitalium

The first whole-cell model, one that can reasonably claim to
incorporate the activity of nearly all molecules in a system, was
developed for the small bacteriumM. genitalium (Karr et al., 2012).
M. genitalium is a facultative anaerobic pathogen that can cause
sexually transmitted diseases. In men it causes nongonococcal
urethritis and in women it could cause a variety of ailments
including cervicitis, endometritis, pelvic inflammation, infertility,
and even unfavorable birth outcomes.

AlthoughM. genitalium (MG) does have somemedical significance,
themain reasonwhy it was chosen as the first organism for development
of a WCMwas that it has one of the smallest known genomes (~580 kb
and 480 coded proteins) (Fraser et al., 1995). Also, compared to other
genomes, including well studied model organisms like E. coli, MG’s
genome contains significantly fewer genes of unknown function. Despite
its small size and complexity, the development of theMGmodel was still
a monumental undertaking and was a very labor-intensive process. The
model contains 1900 parameters from over 900 publications and is
nearly 3000 pages of Matlab code. It divides the activity of all annotated
MG gene products into 28 subcellular processes. To ensure the most
accurate representation and simulation, the most appropriate
mathematical modeling method was used for each subcellular
process. To link all these disparate models together, the developers
devised a hybridmodeling approach where all 28mathematical modules
are linked to a subset of other modules via 16 cell variables. Metabolism
in the MG WCM uses similar metabolic reconstructions as GEMs;
however, the internal fluxes of the reactions are dynamically constrained
bymultiplying the amount of catalyzing enzyme present in the system (a
variable in the WCM) by its catalytic constant (kcat).

The simulation starts with an initial set of values for these variables.
All the modules then run for a set period (e.g., 1 s) and afterwards the
value of each cell variable is updated based on input from all the
modules that link to it (Figure 2). Once the variables have been updated,
the modules are run again using the new values. The process continues
until a preset biological objective has been accomplished. Given the
complexity of the problem, the amount of data that needed to be
transferred back and forth between variables and modules, and the
inefficiency of the solver, the simulation time for the originalMGmodel
was slow (~1 day for 1 cell cycle). The model provided some interesting
insights into working of MG and predicted some novel phenotypes.

In cases where experimental results and model predictions
disagreed, gaps in our knowledge were identified and some
parameter values were corrected (Karr et al., 2012). This type of
model-driven knowledge gap filling and correction is a strong suit
ofWCMs. For example, theMGWCMwas used in a follow upwork by
Sanghvi and coworkers (Sanghvi et al., 2013) to compare the WCM
predicted growth rates for all non-lethal single-gene deletions with
experimental data. In cases of quantitative disagreement betweenmodel
predictions and experimental measurements, the authors examined the
“molecular pathology” of each gene-deleted strain and identified gene
targets which during the genome annotation process had been wrongly
assigned a function or had a missing function that was not included in
the model. In some other cases they identified alternate metabolic
pathways that could compensate for loss of a gene product. Finally,
given the more quantitative nature of WCM (in comparison to FBA
models) due to their incorporation of kinetic data into their metabolic
simulations; the authors were able to use the quantitative differences
between model predictions and experiments to predict appropriate
kinetic parameters for several critical enzymes. The predicted values
were experimentally validated. Comparing the new measured values
with the literature data that originally was used to train the MGWCM
showed significant differences, in some cases up to four orders of
magnitude.

The ability of WCMs to reliably predict in a quantitative manner
the in vivo dynamics of a system; information that cannot easily be
measured but is invaluable for assessing the state of a system and
guiding efforts to alter it, makes WCMs critical tools for biological
engineering projects. For example, WCMs can provide invaluable
information about how incorporating synthetic gene circuits in an
organism could alter the working of the system and how internal
processes that are almost always unaccounted for in silico models can
divert the system behavior away from desired outcome. In this vein,
Purcell et al. (2013) used theMGWCM to examine the effects of adding
genes into MG. They also examined how codon usage affects gene
expression and in agreement with results from E. coli (Kudla et al.,
2009). They found no difference in expression rates. Recently (Rees-
Garbutt et al., 2020) have used theMGWCMwithin a design-simulate-
test framework to predict a minimal genome that (if biologically
correct) could be smaller than JCVI-Syn3.0minimal genome bacterium.

3 Progress

3.1 Whole-cell model of Escherichia coli

While the development of MG whole-cell model (WC-MG) was
a monumental achievement and has been used to highlight the
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immense potential ofWCM for a variety of important uses,WC-MG
has limited utility for common uses of in silico models such as
predicting targets or outcomes for bioengineering. To have that
ability, the logical next organism to be modeled needed to be the best
studied bioengineering chassis organism, namely, E. coli. To that
end, a hybrid multi-math, multi-scale model for E. coli has been
developed (WC-EC) (Macklin et al., 2020). It incorporates the
function of over 40% of the well-annotated genes in E. coli
genome (1,214 genes). Although the model does not account for
activity of every gene product in E. coli, the model is significantly
larger than the WC-MG (>10,000 mathematical equations
and >19,000 parameters). This is not surprising given that
E. coli’s genome is an order of magnitude larger than MG’s and
E. coli has nearly 50 times more molecules. E. coli’s metabolism and
regulatory mechanisms are also significantly more sophisticated
than those for MG. Another advantage of WC-EC over WC-MG
is that 100% of former’s parameters are derived from experimental
measurements compared to less than 30% of the WC-MG
parameters. The WC-EC, in addition to omics data, is informed
by a large amount of kinetic data. This data was collected from
1,200 hand-curated papers after reviewing 12,000 papers in the
BRENDA (Schomburg et al., 2002; Chang et al., 2009) database. The
fact that all the parameters in WC-EC are empirically measured
allowed its use for examining the cross-consistency between the
disparate data sources that were used for its parameterization. The
results of analyses showed that most of the data used for the
development of WC-EC were consistent with predicted
behaviors. However, parameter sets that were not consistent
resulted in discrepancies that were alarming. For example, the
incorporated data for rate of activity by ribosomes and RNA
polymerases were too low to result in measured growth rates.
Another interesting finding was that some essential genes are not

transcribed during division cycles and yet cells proliferate. This latter
finding is a strong reminder that besides the catalytic capability and
concentration of an enzyme, the time course of its production and
eventual degradation can also have a significant effect on the
robustness of a system to environmental and genetic perturbations.

After the publication of WC-EC, its creators have initiated the
E. coliwhole-cell modeling project (Sun et al., 2021). The project aims to
expand on the published WC-EC model and ultimately develop the
most detailed model E. coli ever. The project invites input and
collaboration from the scientific community to accelerate the
development process. As part of this effort, updated versions of
WC-EC have been developed. One update (Ahn-Horst et al., 2022)
incorporates additional growth rate control regulations such as global
regulator guanosine tetraphosphate, as well as dynamics of amino acid
biosynthesis and translation. The additions significantly improve the
WC-EC’s ability to simulate dynamics of cellular responses as a
response to environmental perturbations. Another update (Choi and
Covert, 2023) added accurate tRNA aminoacylation, codon-based
polypeptide elongation, and N-terminal methionine cleavage
mechanisms to WC-EC which permits better examination of
inconsistencies between different types of measurements. The
updated model was used to verify that in vitro tRNA
aminoacylation measurements are insufficient for cellular proteome
maintenance. The model predicted a positive feedback mechanism that
regulates arginine synthesis.

3.2 Whole-cell model of Saccharomyces
cerevisiae

Saccharomyces cerevisiae’s (SC, Brewer’s yeast) genome was the
first eukaryotic genome to be sequenced (Goffeau et al., 1996). SC is

FIGURE 2
Assembly process for whole-cell models.
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an extremely important organism economically. It is genetically
tractable and has been engineered through a plethora of homologous
recombination techniques. Overall, SC is the best studied single cell
eukaryotic organism. Given this distinction, SC was the obvious best
choice for developing the first whole-cell model of a multi-
compartmented organism. The yeast whole-cell model (WM_
S288C) (Ye et al., 2020) was developed by expanding upon an
earlier FBA model of the organism (Österlund et al., 2013). It
incorporates products of 6,447 genes (100% of genome),
975 metabolites and 6,156 reactions. Overall, it includes
26 cellular processes. Unlike WC-EC, not all incorporated
parameters were available from yeast experiments. So instead,
measurements from other organisms were used. The WM_
S288C’s predictions were validated against experimental results
and when compared against predictions from its progenitor FBA
model they showed significant improvement (e.g., precision of
accurately predicting essential genes WM_S288C 70%, FBA
model 28%). The developers used the model to conduct an
extensive study of roles of various molecules in the system. They
ascertained the function of 1,140 essential genes, thus providing a
mechanistic understanding of vulnerable processes under different
conditions. They also gained new insights into function of non-
essential genes, namely, that these genes can regulate nucleotide
concentrations and thus affect cellular growth rates.

3.3 Vivarium

As noted earlier, whole-cell models integrate a diverse set of
intracellular processes using numerous simulation methods. When
developing the first whole-cell model, accuracy and completeness
were primary considerations. Speed of simulation was a secondary
consideration. However, (Karr et al., 2012), did attempt to speed up
the whole-cell simulation by executing multiple pathway sub-
models simultaneously for the agreed simulation time interval
using multiple CPU cores with one per pathway in Matlab
(Gunawardena, 2012). This attempt exposed a few significant
challenges to speeding up simulations of hybrid models. Firstly,
the time interval for all pathways is restricted by the smallest time
interval needed by any individual pathway. Secondly, the level of
parallelism is limited by the number of pathways. Thirdly, the
pathways tend to be extremely heterogeneous in terms of the
computational work needed to advance within the selected time
interval. Consequently, simulating the same interval for different
pathways may require vastly different computing times, making the
parallelization essentially ineffective.

To answer some of these problems, Vivarium (Agmon et al.,
2022), a platform for integrative multi-scale modeling, has been
developed. It provides an interface for combining existing models in
the nested hierarchies of multiple scales via a discrete event
simulation engine. This eases the software engineering task of
combining smaller pathways into a larger whole-cell model.
Vivarium makes it easier to combine multiple pathways together
and thus allows larger models and more computational parallelism.
Vivarium offers utilities to partition molecular species shared
between pathways based on expected demand in such a way that
mass is conserved. In this way, individual pathways can run
independently from each other within a time interval. Vivarium

can also leverage the message-passing of the Pythonmultiprocessing
module to exploit the inherent parallelism in the model across
multiple cores and multiple processors. While the original version of
Vivarium faced some of the same limitations as the original WCM
models—linked timesteps, parallelism by pathways, and uneven
computational load between pathways but updates have been
made and are on the way that answer some of these issues
(Skalnik et al., 2023).

3.4 Unbalanced growth and non-steady-
state metabolism

In all WCMs developed so far, metabolism is solved using
updated variants of FBA method that account for each enzyme’s
abundance and catalytic rate constant. Typical FBA models use a
rigid biomass reaction where a single set of stoichiometric
coefficients define the ratio of reactants that are used for
production of a set amount of biomass and a fixed set of
coefficients to define the other byproducts of cell maintenance
and replication (Orth et al., 2010). This balance growth
assumption is valid for most conditions, particularly if one must
assume a long-term analysis. However, for the development of
WCMs where FBA models are integrated in a hybrid format to
interact with dynamic simulations of bioprocesses with significantly
shorter timescales, this assumption is problematic. To overcome this
flaw, (Birch et al., 2014), developed two variations of FBA called
flexible FBA (flexFBA) and time-linked FBA (tFBA) that when run
simultaneously within WCMs improve the accuracy of model
predictions. In flexFBA, the fixed ratios of biomass reactants have
been removed in the objective function. This eliminates the classical
assumption of balanced growth. In tFBA the ratios between the
reactants and byproducts in the biomass equation are no longer
fixed and thus the common steady-state growth constraint of
classical FBA is eased. Using these methods for WCM allows for
“short time” FBA which allows integration of output from different
types of mathematical models.

3.5 Colony-scale whole system modeling

Phenotypic heterogeneity in a microbial community,
particularly those that persist for more than one generation can
have a significant impact resilience of a system to environmental
changes and threats. Bacterial persistence, the phenomenon where
genetically identical bacterial colonies behave heterogeneously to
introduction of antibiotics is known to play a key role in
development of antibiotic resistance in bacteria (Gefen and
Balaban, 2009). The heterogenous differences could stem
molecular processes, such as stochastic expression of antibiotic
resistance genes (Akiyama and Kim, 2021). Mechanistic WCMs
are ideal tools for gaining a system level understanding of these
phenomena. But to gain a colony level perspective requires
simulating many cells interacting with one another via a shared
environment. Vivarium allows such multi-scale simulations and
Skalnik et al. (2023) have used it to alter WC-EC model and develop
the first colony level holistic model. The model was then run in
parallel using cloud computing to study the emergence of antibiotic
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resistance in E. coli when treated with two antibiotics with different
modes of action.

4 Challenges

Despite all the advances and progress in the development of
WCMs over the last decades, there are still persistent fundamental
challenges that hinder not only the development of new models but
also any efforts to develop computational tools for accelerating
model simulation. In this section, we will discuss these challenges
and propose possible solutions.

4.1 Data collection

As the aim of WCMs is to accurately and comprehensively
predict the cell behavior, a huge amount of biological data is needed
for model parameterization and validation. This need increases with
the complexity and size of the cell (Babtie and Stumpf, 2017). The
main challenge with efforts at gathering the needed data is ensuring
that the publicly available data is in a useable format. This will allow
easy identification, extraction, and aggregation of high-quality data.
Unfortunately, the high dimensionality, the heterogeneity, and the
lack of sufficient annotation of the data pose important challenges
regarding their interpretation, and reusability. These challenges have
led to calls for standardization of databases, simulation softwares
and overall modeling standards (Waltemath et al., 2016).

Fortunately, a variety of tools and databases have been
developed to facilitate the data collection and aggregation
process. These tools also ease the burden of additional curation
of data. For example, there are many repositories providing
pathway/genome information such as BioCyc (Karp et al., 2017),
BiGG (Schellenberger et al., 2010; King et al., 2015a), WholeCellKB
(Karr et al., 2013), KEGG (Kanehisa and Goto, 2000; Kanehisa et al.,
2004; Kanehisa et al., 2016) and BRENDA (Schomburg et al., 2002;
Chang et al., 2009). In addition, there are databases that include
experimental data for a specific organism, such as EcoCyc (Keseler
et al., 2011; Keseler et al., 2017) where interestingly in its latest
version (Karp et al., 2023) there is a bidirectional connection with
the E. coli whole-cell modeling project that can be used for
importing data from EcoCyc to parametrize the WCM and
updating the WCM with EcoCyc’s latest mechanistic
information. Human curation of data collected on bioprocesses is
key to developing accurate WCMs and to this end visualization of
metabolic maps can provide extremely valuable insights for data
integration. Network visualization tools such as Escher (King et al.,
2015b; Rowe et al., 2018) and Pathview (Luo and Brouwer, 2013; Luo
et al., 2017) can be used for this task. However, these tools rely on
pre-drawn maps and cannot support inputs of large networks with
multi-type models.

In cases when data have not been deposited in any database,
literature text mining tools for extracting biological data like
Integrated Network and Dynamical Reasoning Assembler
(INDRA) (Gyori et al., 2017; Bachman et al., 2023), BioQRator
(Kwon et al., 2014) and PubTator (Wei et al., 2013) can help with
data collection and curation efforts. However, despite these
resources, there are still a few problems that need to be addressed.

Some parameters still remain unknown or of poor quality. This
is because while we have been generating massive amounts of omics
data, we have badly neglected measuring data needed for building
kinetic models. While there are databases such as BRENDA (Chang
et al., 2009) that contain some kinetic parameters such as catalytic
turnover rates and substrate-protein affinity coefficients, there is
wide variability between measured values even for the same
organisms. Sometimes, the only available data is from an
organism that might be in a different phyla or even biological
kingdom.

Another problem that is a major issue with all system-level
biological modeling efforts is inaccurate assignment of function to
gene products. It has been shown that different annotation tools can
assign widely different functions for the same proteins, particularly
for proteins of non-model organism (Griesemer et al., 2018).
WCMs’ ability to reconcile kinetic parameters is another
significant means in our toolbox for overcoming the errors
prevalent in the data we use for model parameterization. Given
that WCMs integrate large heterogenous sets of data, they can be
used to examine the incorporated data and through cross-validation
improve the accuracy of model parameters. These types of data
cross-validation and correction have already been shown to be a
strength of WCMs (Sanghvi et al., 2013; Macklin et al., 2020).

Finally, we have been mostly overlooking the activities of
“underground” metabolic processes in our models. Underground
metabolic processes are biochemical reactions that occur due to
promiscuity of enzymes. In our biological network reconstructions,
we usually only include the canonical function for a protein and
associated reactions if the proteins are enzymes. We typically ignore
low flux reactions that occur when proteins interact with alternate
metabolites. While the activity of underground metabolism under
most conditions is very low, under extraordinary conditions their
reaction rates can significantly increase and lead to evolution of new
pathways and adaptation to new environments (Notebaart et al.,
2018). Omission of underground metabolic processes from WCMs
could affect the accuracy of model predictions, particularly when
examining the behavior of a system under stress.

A promising solution to the problem of poor quality or missing
parameters can be use of sophisticated machine learning techniques.
Using big biological datasets with state-of-the-art methods like deep
learning approach for symbolic regression (Petersen et al., 2019),
where interpretable models can be generated by inferencing the
optimal format of equations and parameters from given data, could
predict some of these values.

4.2 Data and model integration

Combining heterogenous data together is a labor-intensive
process, though advances are being made that make it easier to
use disparate data and assemble it into a large model. The biomodels
database (Juty et al., 2015; Malik-Sheriff et al., 2020) is one such
database that captures reaction and metabolic pathways for many
different cellular models. The model physiome project (Hunter et al.,
2006) offers another. An ideal way of accelerating the process of
WCM development is to import extant models and use them as
submodels in WCMs. Chelliah et al. (2015) and Pan et al. (2021)
have offered means to automatically and programmatically link
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disparate submodels together into one cohesive whole. Bouhaddou
et al. (2018) make the case that it is important to distribute the tools
and thus conditions needed for a study can be “unit-tested” like
software subroutines. In this way each individual model can be
checked for errors and results can be reproduced in isolation before
assembled into a larger whole. Other groups agree about the need for
greater reproducibility for computational models (Papin et al., 2020;
Niarakis et al., 2022). Developments of tools like Memote (Lieven
et al., 2020) for standardizing the GEMs and FROG ensemble of
analyses for ensuring reproducibility of published models (Tatka
et al., 2023) have significantly increased confidence in the quality of
models that will be incorporated in future WCMs.

Though advances are being made in automatically assembling
disparate data together, researchers must take care tomake sure each
data source is appropriate for the task at hand. This requires an
extensive literature search with proper data provenance to ensure
each pathway and parameter is appropriately sourced and justified.

Once this data is assembled, deciding how best to simulate the
model is no small task. From a software engineering standpoint,
reference code implementations from different research teams are
usually completely incompatible with each other. This requires
recoding and translating, which is why having reproducible
results are so important. Model definition languages like SBML
(Hucka et al., 2018), CellML (Lloyd et al., 2004), and Modelica
(Fritzson and Engelson, 1998) offer an advantage here because they
separate the model definition from its numerical implementation,
which simplifies composing different cellular models from different
sources.

From a mathematical/numerical analysis standpoint, it can
be difficult to decide how to integrate the different models into
one cohesive whole that can offer numerically sound
predictions. How the hybrid modeling process deals with the
different time scales for the various types of mathematical
models is a major challenge. For example, FBA models do not
follow a time-varying process at all—they assume that the system
operates at steady state and instantaneously adjusts to changes in
order to optimize some biological objective. Ordinary
differential equations (ODEs) and stochastic differential
equations (SDEs) give continuous approximations of the
evolution of high-concentration chemical concentrations
within a component. There are well-established best practices
on how to simulate ODEs/SDEs accurately, but best practices
like simulating all the equations together with a global adaptive
timestep fall at odds with WCM’s practical need to modularize
and separate different subcomponents from each other. For low-
concentration chemical pathways, simulation methods like
discrete chemical kinetics are preferred (Gillespie et al., 2007;
Gillespie et al., 2013). Putting these disparate mathematical
models together is hard, and care must be taken to ensure
that artificial numerical artifacts are not introduced in the
process. Here are some examples of difficulties that can arise
when combining multiple different mathematical models.

• Each numerical method has different time stepping
requirements. It is unclear how one determines which
method controls the global timestep.

• The frequency of synchronization between different numerical
mathematical models is unknown.

• In cases when ODE method is extremely stiff and requires
miniscule timesteps the simulation can grind to a halt.

• The method for synchronizing continuous models like ODE/
SDE with discrete chemical kinetics is unknown.

• When the concentration of a molecule gets too low in an ODE
model there is a need to switch to discrete chemical kinetics.
Current hybrid modeling method cannot handle this switch.

• At times it will be necessary for models to evolve
independently from each other while at other times they
need to be tightly coupled and must be solved together.
This requires an evolving architecture of links between
submodels and system variables which currently is
unavailable.

None of these problems have simple solutions. It is up to the
individual research teams to find the modeling format that provides
the most accurate predictions and useable models. However, this
level of variance could drastically lower the reusability of the models
for other studies.

Aside from physical and mathematical scaling problems, from a
computational viewpoint, solving the different types of models can
be quite intense. FBA simulators require linear programming
solvers, which have O(n3) computational requirements (i.e., every
time the size of the model doubles, you need eight times the
computational resources). As models get larger, it is unclear how
one can spread this work across many processors to speed up the
simulation. ODE/SDE solvers are usually extremely efficient, but
whole-cell modeling is an inherently multi-physics and multiscale
problem, with stiff processes that evolve/oscillate on a microscale
timescale interacting with processes that evolve on a timescale of
days. How do you synchronize these disparate timescales efficiently,
and how do you separate the workflow onto multiple processors
without incurring too much communication overhead? Discrete
chemical kinetics require timing and tracking every chemical
reaction in a cell. As concentration increases, your timestep
becomes prohibitively small. How do you keep these systems
from dominating the computational running time as they
interact with high-concentration ODE models? How do you split
these discrete chemical reactions onto multiple processors to help
distribute the computational load?

4.3 Slow simulators

Although development of Vivarium (Agmon et al., 2022) has
helped with some of the issues that plague simulation speed of
complex whole-cell models, it is still limited to running on a single
CPU with multiple cores although in principle it can extend to
support distributed memory systems. Nevertheless, load balancing
remains challenging while limiting the speedup.

While it might be possible to answer some of the problems
associated with simulation of complex systems by building
accurate reduced models (e.g., (Gates et al., 2021; Avanzini
et al., 2023)), alternative solutions have been proposed.
Goldberg et al. (2016) envision highly parallel whole-cell
simulations by clustering species and reactions into groups
that interact infrequently with each other and by simulating
them in the parallel discrete event simulation (PDES) paradigm
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(Jefferson et al., 1987). PDES enables further parallelism
otherwise difficult to leverage via speculative execution and
rollback management (Jefferson et al., 1987). This requires
elaborate implementation and is currently under development.

Other potential remedies include parallelization of
individual sub-models, especially the computationally
demanding ones. Among the modeling approaches used in
whole-cell models, stochastic simulation algorithm (SSA)
(Gillespie, 1976; Gillespie, 1977) implements the most
detailed model of discrete biochemical reaction events. SSA is
necessary for accurately simulating statistically correct
trajectories of species especially with low constituent counts.
As more and more kinetic data become available for developing
more accurate models, SSA can be used to simulate larger
reaction networks. However, its computational cost is
prohibitive for the scale of whole-cell models, even for the
smallest organisms.

A popular approach to speed up an SSA simulations is to
simultaneously execute multiple independent realizations of a
simulation (Klingbeil et al., 2011; Sanft et al., 2011).
Unfortunately, this approach is not directly beneficial to whole-
cell modeling as it couples SSA-based models with other types of
models for a simulation run.

However, there exist a variety of SSA methods (Gillespie,
1977). Especially, the next reaction method (NRM) (Gibson and
Bruck, 2000) exposes opportunities for parallel processing. It
employs a dependency graph to identify the coupling between
reactions via their commonly referenced species (biomolecules
in WCMs), and to selectively update the propensity and the time
of the next occurrence of each reaction impacted by the fired one
(Gibson and Bruck, 2000). Such updates can be processed
independently of each other (Yeom et al., 2021). The degree
of parallelism here is bounded by the number of system updates,
i.e., the number of reactions involving the species consumed or
produced by the reaction fired as well as the cost reduction in
updating the priority queue. Some species may be shared by
many reactions. This will result in a non-trivial number of
updates, exposing the performance optimization opportunity.
Goldberg et al. theorizes a PDES-based approach to parallelize
SSA for distributed memory systems (Goldberg et al., 2020).

The cost of a single update itself may not be significant and
dedicating a processor to that may not be beneficial. Therefore,
an existing approach partitions the reaction network into
multiple subnetworks and updates them simultaneously with
one processor per group of reactions of each subnetwork via
OpenMP (Yeom et al., 2021). Partitioning a network of highly
skewed degree distribution for load balancing is known to be
challenging (Gonzalez et al., 2012; Yeom et al., 2014). In the
bipartite-graph abstraction of biochemical networks, a reaction
node represents a computation, and a species node does a state.
The edge indicates the dependency of the computation on the
states. If a state is referenced by different reactions across
multiple subnetworks over distributed memory systems, state
replication, maintained by a means of coherent updates, may
help mitigate the message passing cost. When parallelized for
shared memory systems, the state must be accessed in a
coordinated fashion among different processors to maintain
consistency (Yeom et al., 2021). For balancing compute loads

across processors, partitioning must consider the distribution of
aggregate reaction update rates of subnetworks, which
dynamically evolve through the course of simulation. This
presents another challenge for load balancing and may
require re-partitioning.

There exist works that parallelize SSA using accelerator
hardware (Indurkhya and Beal, 2010; Komarov and D’Souza,
2012; Manolakos and Kouskoumvekakis, 2017). However, these
approaches assume only the mass-action type reactions (van der
Schaft et al., 2013) and leverage it for parallelization. These do not
support general forms of reaction rate formula to accommodate
diverse modeling practices in the field, or do not support the
community standard model description, such as SBML, to its full
reaction expression capacity (Bornstein et al., 2008; Sayikli and
Bagci, 2011; Erdem et al., 2022).

ODE is another common simulation method used inWCM, and
there exist solver packages that speed up by distributed memory
parallelism using MPI along with node-level acceleration using GPU
or OpenMP (Fidler et al., 2019; Balos et al., 2021; Städter et al., 2021;
Elrod et al., 2022).

5 Conclusion

The field of whole-cell modeling is growing. Since the
publication of the first WCM a decade ago a handful of models
for important research, industrial, and medicinal model systems
have been developed. Other than the ones mentioned above earlier,
WCMs have been developed for JCVI-syn3A (Thornburg et al.,
2022) and human epithelial cells (Ghaemi et al., 2020). Given the
difficult and very labor-intensive process of developing WCMs, this
is a remarkable achievement and a testament to how scientists view
the potential of these models. The creation of these models has led to
the development of whole-cell structural models (Maritan et al.,
2022; Stevens et al., 2023) and even multicellular whole community
models (Skalnik et al., 2023).

There are still several problems that need to be addressed before
the use of these models becomes as common as usage of genome-
scale models of metabolism. These include problems with data
collection, model integration and parallel simulation of hybrid
models. However, advances thus far are a good indication that
these obstacles will soon be overcome.
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