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Background: Heart failure (HF) is a complex and heterogeneous manifestation of
multiple cardiovascular diseases that usually occurs in the advanced stages of
disease progression. The role of neutrophil extracellular traps (NETs) in the
pathogenesis of HF remains to be explored.

Methods: Bioinformatics analysis was employed to investigate general and single-
cell transcriptome sequencing data downloaded from the GEO datasets.
Differentially expressed genes (DEGs) associated with NETs in HF patients and
healthy controls were identified using transcriptome sequencing datasets and
were subsequently subjected to functional enrichment analysis. To identify
potential diagnostic biomarkers, the random forest algorithm (RF) and the least
absolute shrinkage and selection operator (LASSO) were applied, followed by the
construction of receiver operating characteristic (ROC) curves to assess accuracy.
Additionally, single-cell transcriptome sequencing data analysis identified key
immune cell subpopulations in TAC (transverse aortic constriction) mice
potentially involved in NETs regulation. Cell-cell communication analysis and
trajectory analysis was then performed on these key cell subpopulations.

Results: We identified thirteen differentially expressed genes (DEGs) associated
with NET through differential analysis of transcriptome sequencing data from HF
(heart failure) samples. Utilizing the Random Forest and Lasso algorithms, along
with experimental validation, we successfully pinpointed four diagnostic markers
(CXCR2, FCGR3B, VNN3, and FPR2) capable of predicting HF risk. Furthermore,
our analysis of intercellular communication, leveraging single-cell sequencing
data, highlightedmacrophages and T cells as the immune cell subpopulations with
the closest interactions with neutrophils. Pseudo-trajectory analysis sheds light on
the differentiation states of distinct neutrophil subpopulations.

Conclusion: In this study, we conducted an in-depth investigation into the
functions of neutrophil subpopulations that infiltrate cardiac tissue in TAC
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mice. Additionally, we identified four biomarkers (CXCR2, FCGR3B, VNN3, and
FPR2) associated with NETs in HF. Our findings enhance the understanding of
immunology in HF.

KEYWORDS

bulk RNA sequencing, heart failure, neutrophil, single-cell RNA sequencing, neutrophil
extracellular traps (NET)

Introduction

As the immune system’s first line of defense against infections,
neutrophils play a critical role. They regulate the immune response
through three mechanisms: phagocytosis, degranulation, and the
release of NETs (Papayannopoulos, 2018). NETs are a significant
component of the innate immune response. They entrap and
eliminate pathogenic microorganisms, including viruses, bacteria,
fungi, and protozoa, to prevent their wider spread in vivo (Carmona-
Rivera et al., 2019). NETs are assembled from cytolytic and granular
proteins, which are arranged on a dense chromatin scaffold. The
formation of these structures results in the release of high
concentrations of toxic proteins, which are lethal to entrapped
microorganisms. The primary mode of NET release from
neutrophils is through a cell death process known as NETosis.
The multifaceted function of NETs in the immune system
highlights their importance as an effective strategy against
infectious diseases.

Recent research has shown that NETs play a crucial role in
human immune responses, and their involvement in pathologies
such as systemic lupus erythematosus (Kraaij et al., 2018;
Papayannopoulos, 2018; Frangou et al., 2019a; Frangou et al.,
2019b), rheumatoid arthritis (Khandpur et al., 2013; O’Neil
et al., 2023; Sakkas et al., 2014; de Bont et al., 2020), and
cystic fibrosis (Skopelja et al., 2016; Gray et al., 2018; Guerra
et al., 2020; Morán et al., 2022) has been extensively studied.
However, a growing body of literature also highlights their
contribution to HF. Studies have found that cardiac pressure
overload triggers NETosis, which can lead to a decrease in left
ventricular ejection fraction (LVEF) in wild-type (WT) mice
(Martinod et al., 2017). In Seipin/Bslc2 knockout mice, an Asian
lean diabetic model, the formation of interstitial fibrosis
associated with NETs exacerbates left ventricular sclerosis and
further contributes to HF during its progression wang (Wang
et al., 2019). While current research predominantly targets
cardiomyocytes, fibroblasts, and other immune cell subsets as
therapeutic targets, the potential contribution of non-resident
immune cell subpopulations, such as neutrophils in cardiac
tissue, to the development of HF remains poorly understood.
Therefore, further investigation and development of the role of
neutrophils in HF progression are necessary to better
understand their potential therapeutic value.

The rapid development of Bulk RNA sequencing technology and
single-cell sequencing technology has facilitated the discovery of
new diagnostic and prognostic markers for diseases. In this study, we
downloaded HF-related datasets from the GEO database and
employed bioinformatics to screen for NET-related diagnostic
markers in HF. Our analysis of intercellular communication,
based on single-cell sequencing data, revealed that macrophages

and T cells are the immune cell subpopulations with the most
prominent interactions with neutrophils. Additionally, through
pseudo-trajectory analysis, we gained insights into the
differentiation status of various neutrophil clusters. These
findings provide new insights into the role of NETs in HF and
have significant implications for the development of targeted
treatments and prevention strategies.

Materials and methods

Dataset and preprocessing

The RNA-seq datasets analyzed in this study were retrieved from
the GEO database (https://www.ncbi.nlm.nih.gov/geo/) and
consisted of 131 samples from 2 separate datasets. Of these, the
GSE145154 dataset comprised 67 samples (52 HF cases and
15 healthy controls), while the GSE116250 dataset had
64 samples (50 HF cases and 14 healthy controls). The
GSE145154 dataset was utilized as the training dataset, while the
GSE116250 dataset was used as the validation dataset. It is worth
noting that the 69 initial biomarkers of NETs included in this study
were obtained from prior research studies (Zhang et al., 2022)
(Supplementary Table S1).

Identification of NETs-related differential
genes

To identify differentially expressed genes (DEGs) associated
with NETs, we conducted differential analysis on the training
dataset samples utilizing the “Deseq2” package (version 1.38.2)
(Anders and Huber, 2010). The established thresholds were set at
p-value <0.05 and |logFC|>1. After intersecting DEGs with NETs
genes, a final set of 13 NETs-related differential genes were obtained
between HF and control samples.

Identification of NETs-related diagnostic
biomarkers

To pinpoint key NETs-related biomarkers, we harnessed the
Random Forest (RF) algorithm and the LASSO regression model.

LASSO is a widely-used regression method for selecting
variables to improve prediction accuracy, implemented through
the “glmnet” R package (version 4.1), we selected the optimal λ
value and removed genes that displayed partial collinearity to reduce
potential bias. In contrast, the RF algorithm, a supervised
classification method relying on decision trees, was executed
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using the “randomForest” R package (version 4.7). We evaluated
error rates for tree counts ranging from 1 to 500 and determined the
optimal number of trees by selecting the configuration with the
lowest error rate. Furthermore, we gauged the feature importance
scores for each gene, identifying candidate biomarkers as those with
importance values exceeding 2 for subsequent analysis.

Enrichment analysis

In our study, we employed the “clusterprofiler” R package
(version 4.6.0) to conduct Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analyses (Yu et al., 2012). GO analysis is
considered the gold standard for large-scale functional
enrichment studies, as it covers various biological processes,
molecular functions, and cellular components (The Gene
Ontology Resource, 2019). Additionally, we utilized the KEGG
database, which provides comprehensive information on
genomes, biological pathways, diseases, and drugs (Kanehisa
et al., 2023). Significant enrichment was defined as a critical
p-value threshold of <0.05, and the results of the functional
enrichment analysis are visually represented using bar charts.

Single-cell data source and preprocessing

We processed the dataset GSE122930 using the “Seurat” R
package (version 4.3.0) (Butler et al., 2018). Initial quality control
involved the removal of cells based on the following criteria
(Papayannopoulos, 2018): cells with fewer than 200 genes or
more than 5,000 genes (UMI >0) (Carmona-Rivera et al., 2019),
cells with more than 20,000 UMI, and (Frangou et al., 2019a) cells
with over 12.5% mitochondrial UMI count. Subsequently, the data
were log-normalized using default parameters. We selected the
894 most variable genes using the “FindVariableGenes” function
and scaled the data using the “ScaleData” function to remove
unnecessary sources of variation. Principal Component Analysis
(PCA) was performed using the “RunPCA” function, and the
number of principal components was determined visually using
the “ElbowPlot” function. We constructed a shared nearest neighbor
(SNN) plot for the first 15 principal components with the
“FindNeighbors” function and clustered the cells using the
“FindClusters” function, setting the “Resolution” parameter to
0.6. For visualization, we utilized the “RunUMAP” function to
create UMAP plots. To identify marker genes in each cluster, we
employed the “FindAllMarkers” function, setting the parameter
“min.pct” to 0.2 and the “thresh.use” parameter to 0.2.
Additionally, we used the “celltypist” to assist in cellular
annotation (Domínguez Conde et al., 2022), followed by manual
annotation for further refinement.

Trajectory analysis of single cells

We used the CytoTRACE R package (version 0.3.3) to help
predict the direction of cell differentiation (Gulati et al., 2020). For
our single-cell trajectory analysis, we employed the R package

Monocle2 (version 2.16.0) (Qiu et al., 2017). We initially
identified clusters corresponding to cancer stem cells and
epithelial cells, and subsequently loaded these clusters into the R
environment. To facilitate the analysis, we created an object using
the “newCellDataSet” function. Within the trajectory analysis, we
harnessed the “FindVariableGenes” gene set to perform pseudo-
temporal sorting of all cells within the target cell subpopulation.
Next, we reduced the dimensions of the dataset using the
“reduceDimension ()” function, utilizing the parameters
“reduction_method = “DDRTree” and “max_components = 2.”
For visualization purposes, we employed the “plot_cell_
trajectory” function to generate a spanning tree of cells. Finally,
we utilized the “differentialGeneTest” function to identify genes that
exhibited significant changes over pseudotime [q-value <10̂(-5)],
and we visualized the expression changes of the top 100 genes over
pseudotime using the “plot_pseudotime_heatmap” function.

Cell-cell communication analysis

We utilized CellChat, a tool that quantitatively infers
intercellular communication networks from scRNA-seq data (Jin
et al., 2021). Based on a database of mouse ligand-receptor
interactions and pattern recognition techniques, CellChat can
detect intercellular communication at the pathway level and
calculate the communication network of aggregated cells. Use
default settings for all parameters.

Transverse aortic constriction (TAC)

Male 8-week-old adult wild-type (WT) C57BL/6J mice were
procured from Charles River Laboratory (Charles River, China).
Briefly, after randomizing the mice into groups, consisting of three
mice in the TAC group and three mice in the SHAM group, the mice
were anesthetized using isoflurane and underwent a transthoracic
thoracotomy. Following the exposure of the aortic arch, a suture was
passed through the aortic arch positioned between the right
innominate artery and the left common carotid artery.
Subsequently, the aortic arch was ligated to a 27-gauge needle,
and the needle was carefully withdrawn upon the completion of
ligation. Mice in the sham-operated group underwent identical
procedures but were not subjected to ligation. Following the
surgical intervention, the mice were placed on a heating pad for
recovery and closely monitored. Four weeks after either the sham or
TAC surgery, the mice were anesthetized using an overdose of
pentobarbital (100 mg/kg, Sigma-Aldrich), and their hearts were
extracted through an open-chest procedure for subsequent
molecular analysis.

RNA isolation and real-time quantitative PCR
(qRT-PCR)

Total RNA was extracted from cardiac tissue using Freezol
reagent (Vazyme, R711), following the manufacturer’s
instructions. Subsequently, qRT-PCR analysis was conducted on
the QuantStudio™ 5 Real-Time PCR Detection System using
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ChamQ SYBR qPCR Master Mix (Low Rox Premixed) (Vazyme,
Q331-02) and gene-specific primers. PCR analysis was performed
on the QuantStudio™ 5 Real-Time PCR Detection System, with the
following thermal cycling conditions: initial denaturation at 95°C for
1 min, followed by denaturation at 95°C for 10 s, annealing at 60°C
for 30 s, and a total of 40 cycles. The relative expression levels of
individual genes were quantified by the 2̂(−ΔΔCt) method and
normalized to the endogenous expression of glyceraldehyde-3-
phosphate dehydrogenase (GAPDH). The sequences of the
specific primers utilized for qRT-PCR in this study are provided
in the below table.

Statistical analysis

The validation of key gene expression differences between the
experimental and control groups in both the training and validation
datasets was conducted using the Wilcoxon rank sum test.
Additionally, the qRT-PCR validation results were analyzed
employing Student’s t-test. A significance threshold of p <
0.05 was applied to determine statistical significance. Data
analysis and graph generation were performed using R software
version 4.1.0 (http://www.R-project.org) and GraphPad Prism 8
(GraphPad Software, San Diego, CA, United States).

Gene name Forword primer (5′→3′) Reverse primer (5′→3′)

Mpo AATATGGCACGCCCAACAAC TCTCCCACCAAAACCGATCAC

Vnn3 GCTGTGGGTTCAATGGACACT CTGCCAGCTTGATTGCACTCT

Cxcr2 GTAATTCTGGCCCTGCCCAT CAGGATACGCAGTACGACCC

Fcgr4 GAGGTCCATATGGGCTGGCTA CTTGCCTTTGCCGTTCTGTAA

Fpr2 CATTTGGTTGGTTCATGTGCAA AATACAGCGGTCCAGTGCAAT

Gapdh AGGTCGGTGTGAACGGATTTG TGTAGACCATGTAGTTGAGGTCA

FIGURE 1
Identification of differentially expressed NETs-related genes. (A) Volcano plot of DEGs in GSE145154. (B) A Venn diagram of GSE145154 DEGs and
NETs-related genes.(C) Expressions of differentially expressed NETs-related genes. (D–E) The enrichment pathway analysis of NETs-related DEGs.
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FIGURE 2
Identification of neutrophil subpopulations associatedwith NETs.(A)UMAP plots of 17,918 cells from 7mouse heart samples.(B)UMAP plots showing
the distribution of cells in SHAM1w, SHAM4w, TAC1w, and TAC4w heart samples.(C) Proportion of each cell subpopulation in different experimental
groups.(D) Markers for different cell subpopulations.(E) UMAP plots of 1,451 neutrophils versus some monocytes from 7 mouse heart samples.(F) UMAP
plots showing the distribution of neutrophils versus some monocytes in SHAM1w, SHAM4w, TAC1w, and TAC4w heart samples.(G) Violin plots
showing markers for different neutrophil subpopulations.(H) Violin plots demonstrating the number of genes in different neutrophil subpopulations.(I)
AUCELL quantifies NET activity in different neutrophil subpopulations.(J) Violin plot demonstrating NETs scores in different neutrophil subpopulations.(K)
Bar graph demonstrating the results of enrichment analysis of different neutrophil subpopulations.
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Results

Identification of differentially expressed
NETs-related genes

To explore the role of NETs-related genes in HF pathogenesis, we
conducted an analysis using the GSE145154 dataset, which consisted of
52 HF patient samples and 15 control samples. Following differential
analysis between the two groups, we identified 1998 differentially
expressed genes (DEGs), with 1,559 genes upregulated and
429 downregulated in the HF group compared to the control group
(Figure 1A). We intersected the list of DEGs with known NETs-related
genes, identifying a subset of 13 genes (Figure 1C; Supplementary Table
S2). We also visualized the expression of these genes among different

groups by heat map (Figure 1B). Through gene ontology (GO)
enrichment analysis of the differentially expressed NETs-related
genes, we found their involvement in leukocyte, myeloid leukocyte,
and mononuclear cell migration. Additionally, the Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway analysis suggested the
activation of signaling pathways related to NET formation,
phagosome, and Staphylococcus aureus infection (Figures 1D, E).

Identification of neutrophil subpopulations
associated with NETs

To investigate the status of infiltrating neutrophils in both heart
failure and normal cardiac tissues, we conducted a comprehensive

FIGURE 3
Trajectory analysis of neutrophils. (A–C)CytoTRACE predicts the cell differentiation potential of neutrophil subpopulations. (D)Distribution status of
different neutrophil subpopulations in pseudotrajectory analysis. (E)Overall trajectory analysis of neutrophil subpopulations. (F) Independent distribution
status of different neutrophil subpopulations in pseudotrajectories. (G) Distribution of key genes in trajectories and heatmap of gene enrichment analysis
at different stages. (H) Dynamic expression profile of NETs activity. (I) Cell proportions of neutrophil subpopulations in different experimental
subgroups.
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search within the GEO database. Subsequently, we acquired the
GSE122930 dataset, which comprises 7 mouse hearts. This dataset
includes two samples at 1 week post-TAC, two at 4 weeks post-TAC,
one at 1 week post-SHAM, and two at 4 weeks post-SHAM, aligning
with the objectives of our study. After rigorous quality control and
meticulous screening, we identified a total of 10 distinct cell
subpopulations from an initial pool of 17,918 cells, which were
subsequently subjected to downstream analysis (Figures 2A, D).
Importantly, when compared to the sham-operated mice, our cell
scale plots revealed a substantial increase in neutrophil infiltration in
mice observed 4 weeks after TAC (Figure 2C). Subsequently, the two
neutrophil-related subpopulations (Neutro/Mono and Neutrophil)
were extracted individually. Unsupervised clustering was then
performed again, identifying three distinct cell clusters: Neutro/
Mono (638 cells), Neutrophil 1 (409 cells), and Neutrophil 2
(404 cells) (Figures 2E,G). Additionally, the violin plot illustrates
the number of genes expressed within these three cell
subpopulations, with Neutro/Mono exhibiting the highest gene
expression and Neutrophil 1 showing the lowest (Figure 2H). To
gain insights into the diffrences between these neutrophil
subpopulations, we quantified the activity of the NETs pathway
using the AUCELL method, revealing that Neutrophil 1 displayed
significantly higher activity in NETs-related gene sets in comparison
to Neutrophil 2 and Neutro/Mono (Figures 2I, J). Furthermore, the
results of our enrichment analysis shed light on the distinct
functions of these three neutrophil-associated subpopulations
(Figure 2K). Specifically, Neutro/Mono appeared to be linked
with myeloid cell differentiation, Neutrophil 1 exhibited
associations with the regulation of neutrophil chemotaxis, and
Neutrophil 2 displayed a role in the positive regulation of
leukocyte differentiation. Notably, all three cell subpopulations
exhibited enrichment for terms related to T cell activation.
Additionally, we conducted an assessment of the overall
distribution of cell populations within both normal and disease
groups within the dataset, employing UMAP plots, and provided
characterization for each cell population utilizing known cell
markers (Figures 2B, F).

Trajectory analysis of neutrophils

We assessed the differentiation capacity of neutrophil-associated
cell subpopulations using CytoTRACE. Neutro/Mono exhibited the
highest predicted differentiation potential, while Neutrophil1 was
predicted to have the lowest differentiation capacity (Figures 3A–C;
Supplementary Table S3). This suggests that the Neutro/Mono cell
subpopulation may play a role in initiating the differentiation of the
neutrophil population. To further elucidate these findings, we
integrated this result with pseudotrajectory analysis. Our analysis
revealed that Neutrophil1 was positioned at the end of the
differentiation trajectory, Neutrophil2 was located at the pre-mid
differentiation stage, and Neutro/Mono was situated at the pre-
differentiation stage (Figures 3D–F). This suggests that
Neutrophil1 may represent mature neutrophils, whereas
Neutrophil2 represents immature neutrophils. We also generated
a heatmap illustrating the key genes involved at each stage of the
neutrophil differentiation process, along with the results of
enrichment analysis at different stages (Figure 3G). Additionally,

curve graphs were used to visualize the NETs activities of different
cell subpopulations along the pseudotemporal ordering, with
Neutrophil1 exhibiting the highest activity (Figure 3H).

Finally, we combined the results of the pseudotrajectory analysis
to demonstrate changes in the proportions of different neutrophil-
associated subpopulations in various experimental subgroups
(Figure 3I). Given that one mouse heart sample was lost due to
sample wetting failure 1 week after SHAM surgery in the original
study, resulting in a smaller number of cardiac tissues in the SHAM
group compared to the TAC group, we focused on the changes in cell
proportions in TAC1w and TAC4w. This period represents a critical
transition from cardiac hypertrophy to heart failure. During this
period, the proportion of Neutrophil1 cells slightly increased, while
the Neutro/Mono cell proportion significantly increased. This
suggests that bone marrow hematopoiesis remained active during
this time. In contrast, the proportion of Neutrophil2 cells
significantly decreased, indicating that this period allows for the
differentiation of more young neutrophils into mature neutrophils.

Cell communication analysis

We performed CellChat analysis to identify key cell
subpopulations and receptor-ligand pairs involved in interactions
with neutrophils. Initially, we explored the communication patterns
among all immune cell subpopulations and their interactions with
neutrophils in TAC mice. Our findings indicated that macrophages
were the most active communicating cell subpopulation in TAC
mice (Figure 4A). Both macrophages and T cells displayed close
communication with neutrophil-associated clusters (Figure 4B).
Furthermore, the overall number of immune cell subpopulations
and the strength of intercellular communication were increased in
TAC mice compared to the sham-operated mouse group
(Figure 4C).

To gain insights into the specific signaling pathways associated
with neutrophils, we examined the communication between
neutrophil-associated subpopulations and other cellular
subpopulations, considering neutrophils as receptors and senders,
respectively. We focused on understanding the communication
between neutrophils and macrophages, taking into account cell
subpopulations and experimental groupings. Combining these
results with our trajectory analysis, we observed a progressive
increase in chemokine expression in neutrophils during
maturation, particularly in the hearts of mice in the TAC group
(Figure 4D). Previous reports in the literature have indicated that
neutrophils are the first immune cells recruited in large numbers
into the myocardium after pressure overload. They produce
cytokines and chemokines to attract splenic-derived macrophages
to migrate into cardiac tissues. Consequently, we paid particular
attention to the communication with macrophages when neutrophil
1 served as a sender. Our findings revealed that the Ccl6-Ccr2
receptor-ligand pair exhibited the closest communication. Studies
show resident CCR2+ cardiac macrophages promote neutrophil
infiltration into injured myocardial tissue (Li et al., 2016).

Moreover, we also focused on the communication between
neutrophils and T cells. The results of our previous enrichment
analysis suggested that all three types of neutrophil-associated
subpopulations might be related to T cell activation. We
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observed a significant number of H2-Cd8 receptor-ligand pairs in
the communication signals when neutrophils served as senders
(Figure 4E). Cd8, acting as a co-stimulatory molecule, interacts
with MHC I molecules to enhance TCR recognition of MHC-
antigen peptide complexes (H2 molecules in mice), thereby
promoting T-cell activation. However, when combined with
trajectory analyses, most of the receptor-ligand pairs either
disappeared or showed reduced intensity during the transition
from Neutro/Mono to mature neutrophils. This implies that the
ability to activate T cells may not be specific to neutrophils.

Screening of NETs-related biomarkers in HF
using machine learning

In the training set GSE145154, we employed two machine
learning algorithms to identify the featured genes from among
the candidate key genes in heart failure patients. In the Lasso
regression analysis, we inputted the 13 NETs-related genes and
performed a 10-fold cross-validation (Figures 5A, B). We used
lambda, determined based on the minimum binomial deviation,

as the criterion, ultimately identifying five candidate genes.
Additionally, we utilized the RF machine learning algorithm to
rank these 13 genes based on their importance variables. Genes with
a MeanDecreaseGini greater than 2 were extracted (Figures 5C, D).
Through taking the intersection of genes from the LASSO and
random forest algorithms, the study found five common signature
genes, namely, CXCR2, FCGR3B, VNN3, FPR2, and MPO (Figures
5E; Supplementary Table S4).

Validation of key biomarkers

In this study, we utilized subject working characteristic curves to
assess the diagnostic value of five key biomarkers in HF. Our results
indicate that HF patients had elevated expression levels of all key
genes (Figures 6B, D). In the training set GSE145154, all pivotal
genes showed an AUC greater than 0.700, excluding MPO, and
VNN3 had the highest diagnostic value with an AUC of 0.774
(Figure 6A; Supplementary Table S5). In the validation set
GSE116250, the diagnostic value of the identified key genes was
further confirmed, all of the key genes demonstrated significant

FIGURE 4
Cell Communication Analysis. (A) The number of interactions among immune cell subpopulations in the hearts of TAC mice. (B) Communication
condition between neutrophils and other cell clusters. (C) Number and strength of interactions between SHAM group and TAC group. (D–E) Receptor-
ligand pairs of different neutrophil subsets interacting with macrophages and T cells.
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diagnostic value except for Mpo, which had an AUC greater than
0.700 (Figure 6C; Supplementary Table S6). Lastly, we analyzed
the expression of these biomarkers in mouse cardiac immune
cells. We found that while VNN3 was undetectable in the
immune cell population, the other four genes were expressed
(Figure 6E). Among these genes, Mpo exhibited predominant
expression in ILC2 cells, whereas Fpr2 and Cxcr2 displayed
higher expression levels in neutrophil 1 compared to other cell
types. Fcgr4, on the other hand, was expressed in neutrophils,
monocytes, and macrophages, with slightly higher expression in
Neutrophil2 compared to other cells (Figure 6F). To validate
these findings, we examined the expression of these five genes in
both TAC mice and SHAMmice. The results revealed that Cxcr2,
Fpr2, and Vnn3 exhibited significantly higher expression in TAC
mice compared to the control group (Figures 6G, I, J). However,
Mpo expression was too low to be reliably quantified, and
Fcgr4 did not show any significant differences between the
groups (Figure 6H; Supplementary Table S7).

Discussion

The treatment of HF is a significant challenge for experts and
researchers, given its complex pathogenesis and irreversible nature
(Wang et al., 2017). Historically, innovative drugs such as ACE
inhibitors have been the primary method of treating HF. However,
recent studies suggest that immune cells, particularly neutrophils,
may play a role in the disease’s progression. In mice with ANGII-
induced HF, DNaseI administration resulted in the clearance of
NETs and reduced cardiomyocyte death (Tang et al., 2022).
Furthermore, neutrophil depletion was shown to reduce TAC-
induced hypertrophy and inflammation, thus preserving cardiac
function (Wang et al., 2019). While there is some direct
experimental evidence implicating NETs in the progression of
HF disease, our current understanding of this aspect remains
limited, highlighting the need for further research in this area.

This study employed a comprehensive analysis by combining
single-cell sequencing and bulk transcriptome sequencing to

FIGURE 5
Screening of NETs-Related Biomarkers in HF Using Machine Learning. (A) Map of the regression coefficients of the 9 genes in LASSO model. (B)
6 hub genes screened by 10-fold cross-validation in the LASSO regressionmodel. (C) The influence of the number of decision trees on the error rate. (D)
TheGini Coefficient Method Achieved in Random Forest Classifier Results. (E) VennDiagram Illustrating theOverlap of TwoMachine Learning Screens for
Genes.
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elucidate the biological significance of NETs in HF from multiple
perspectives. Using two machine learning algorithms, LASSO and
random forest, the study identified five NET-related biomarkers in
HF patients: CXCR2, FCGR3B, VNN3, FPR2, and MPO, and
experimental verification confirmed that the expression of the
first four of these genes was significantly elevated in heart
failure mice.

Among these biomarkers,FcγRIIIb is a glycosphingolipid (GPI)-
anchored receptor exclusively expressed on neutrophils and plays a
crucial role in the activation of NETs released by neutrophils (David
et al., 2005). Previous studies have reported that the kinases Syk and
TAK1 are involved in the signaling pathway that leads to the formation
of NETs upon FcγRIIIb stimulation in neutrophils (Fonseca et al.,
2018). CXCR2 is a prominent chemokine receptor expressed on
neutrophils. Studies have demonstrated that CXCR2 and its
downstream pathways through IL8 agonism mediate the classical
pathway of NETosis (Chen et al., 2021). Moreover, the CXCL1-
CXCR2 axis mediates cardiac hypertrophy and remodeling in HF

model mice by regulating monocyte infiltration (Wang et al., 2018).
FPR2 is a multifunctional G protein-coupled receptor with a 7-
transmembrane structural domain (Dahlgren et al., 2020). Previous
studies have reported that FPR2 can reduce hyperosmolarity-induced
NETosis, which helps alleviate dry eye (Tibrewal et al., 2014). In acute
HF, Fpr2 triggers increased infiltration of immature and inactive
neutrophils in the heart (Kain et al., 2019). VNN3 is a secreted and
membrane-bound exoenzyme involved in the conversion of
pantothenic acid and cysteamine. A previous study utilizing blood
transcriptome-based molecular signatures identified VNN3 as a
potential diagnostic biomarker for ST-segment elevation myocardial
infarction. Out of the five NET-related genes, we discovered that
CXCR2, FPR2, and FCGR4 demonstrated significantly higher
expression in Neutrophil 1 as compared to Neutrophil 2. This
finding corroborates our observations in the mouse single-cell dataset.

The single-cell sequencing data used in this study were derived
from previous studies, but our study differs from the original
analysis. The original study classified neutrophils into two classes

FIGURE 6
Validation of key biomarkers. (A) ROC curves were conducted for evaluations of the diagnostic potential of candidate genes in the
GSE145154 dataset. (B) The pod plot showed gene expression differences between HF and normal groups in GSE145154 (a wilcoxon rank sum test was
uesd). “***,” “**,” “*” represent p < (0.001, 0.01, 0.05).(C) ROC curves were conducted for evaluations of the diagnostic potential of candidate genes in the
GSE116250 dataset. (D) The pod plot showed gene expression differences between HF and normal groups in GSE116250 (a wilcoxon rank sum test
was uesd). “***,” “**,” “*” represent p < (0.001, 0.01, 0.05). (E) TheUMAP plot illustrates the distribution of key genes across subpopulations of immune cells
in the mouse heart. (F)The dot plots displayed the expression of key genes across various subpopulations of immune cells. (G–J) qRT-PCR to verify the
expression of key genes (3 mice per group, a Student’s t-test was used). “***,” “**,” “*” represent p < (0.001, 0.01, 0.05).
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of cells by unsupervised clustering and identified CXCR2 as a gene
specifically expressed in Neutrophil1, but failed to further discuss
the function and significance of neutrophils. In our present study, we
harnessed advanced cellular annotation tools to achieve precise
annotation of key cellular subpopulations. Subsequently, we
employed various methods to uncover distinct functions within
neutrophil subpopulations, delve into the intricacies of neutrophil
differentiation, and identify pivotal receptor-ligand pairs regulating
intercellular interactions. These findings significantly contribute to
our understanding of neutrophils in the context of heart failure.

The present study is subject to limitations, one of which is the
relatively low number of neutrophils obtained from single-cell
sequencing data. This could be attributed to several factors, such
as the fact that neutrophils are not resident in cardiac tissue and only
migrate to sites of injury or inflammation to perform their functions.
Moreover, neutrophils have lower levels of gene expression and are
more sensitive to the experimental environment, which may affect
their ability to be captured by single-cell sequencing methods. It is
challenging to obtain a sufficient population of neutrophils in single-
cell sequencing studies without specifically targeting this cell type.
Therefore, future experimental studies are still required to confirm
our findings.

Conclusion

In this study, we conducted an in-depth investigation into the
functions of neutrophil subpopulations that infiltrate cardiac tissue
in TAC mice. Additionally, we identified four biomarkers (CXCR2,
FCGR3B, VNN3, and FPR2)associated with NETs in HF. Our
findings enhance the understanding of immunology in HF.
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