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Introduction

Haemonchus contortus (barber’s pole worm), is one of the most economically important
pathogenic nematodes that attacks small ruminants, such as sheep and goats, representing a
global animal health issue through drastic losses in livestock. The life cycle of this nematode
is comprised of six stages, namely, eggs, first to fourth stage larvae (L1, L2, L3 and L4) and
adults (Veglia, 1915). In Haemonchus contortus and related nematodes, infective L3s are
ingested by the host and enter the rumen where larval exsheathment occurs that marks the
transition from the free-living to the parasitic stages of these parasites (Rogers, 1960).
Molecular and omics driven studies targeting this key transition phase can help us
understand the developmental physiology of this model nematode which can be used to
develop both biological and biotechnological control strategies in the future.

There have been earlier transcriptomic and expressed sequence tag (EST) studies
describing the differences in transcription between free-living infective (iL3) and
parasitic (xL3) third-stage larvae of H. contortus (Cantacessi et al., 2010; Laing et al.,
2013; Schwarz et al., 2013). However, a major knowledge gap remains amongst the available
RNA-seq data sets for this parasitic nematode (Jex et al., 2019). However, all these studies
applied the common laboratory practice of the utilization of sodium hypochlorite as the
desheathment agent. Recently, a closed in vitro parasite culture system that effectively
mimics rumen conditions to effectively stimulate exsheathment without chemical
interventions has been reported (Bekelaar et al., 2018; Palevich et al., 2022; Palevich
et al., 2023a). Briefly, this system involves an increase to rumen temperature (39°C) and
a strictly anaerobic environment of predominantly carbon dioxide (CO2). The larval
exsheathment method used in this study for an RNA-seq approach, has recently been
validated as an adaptable technique for multi-omic’ applications of H. contortus (Palevich
et al., 2022). The aim of our study was to provide the scientific community a detailed time-
series transcriptomic description of natural larval exsheathment of H. contortus, a valuable
resource for future multiomics functional studies investigating larval exsheathment and
parasite development.

Value of the data

• Time-series RNA-seq dataset using an in vitro system that effectively reproduces the
natural rumen environment fills the remaining gap of the H. contortus developmental
transcriptome.
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• Three distinct expression profiles revealed post-trigger
application and identification of the exact time interval that
marks the rapid and irreversible population shift in larval
exsheathment.

• The presented transcriptomic resource can guide future gene
discovery research and the identification of novel compounds
with broad-spectrum efficacy that can be used to either trigger
premature exsheathment or inhibit the process all together.

Data

Haemonchus contortus is a serious threat in small ruminants
causing serious animal production issues worldwide. To improve
our understanding of the fundamental genetics of larval
exsheathment, the transcriptomes of 100 samples of H. contortus

L3’s at different stages of the in vitro exsheathment process
(i.e., 49 time points over 24 h) have been sequenced (RNA-seq)
using the Illumina NovaSeq6000 technology. We applied an RNA-
seq approach to conduct a time-series transcriptome profiling of
infective larvae pre- and post-exsheathment trigger application of
the barber’s pole worm. Samples were collected, RNA isolated using
TRizol method and stranded mRNA sequencing was carried out
using the Illumina NovaSeq6000 platform (Macrogen, Inc.). RNA
integrity number (RIN) for all samples were >7 with a total number
of 5,918,887,284 clean reads generated. Duplicate runs were
performed for all time points (except pre-treatment and t =
0 samples that were performed in triplicate) and raw sequences
were submitted to Sequence Read Archive (SRA) with data
deposited under the GenBank BioProject accession number
PRJNA517503. Detailed information regarding BioSample and
SRA accession numbers and other related statistics are provided

FIGURE 1
Overview of the study design and experimental procedure. A closed in vitro system that effectively reproduces the two basic components of an
anaerobic rumen environment (CO2 and 39°C) was used to trigger exsheathment (xL3) in Haemonchus contortus third-stage infective larvae (iL3) in O2-
free CO2 saturated saline solution (A). Scanning electron micrographs of the exsheathment process with scale bars adjusted according to magnification
of each image. Time-series RNA-seq analysis of Haemonchus contortus larval exsheathment (B). Comparison of the total numbers of clean
sequencing reads versus total population exsheathment of L3 larvae. Total reads represent the sum of both unique and duplicate read pairs. Mean of the
total exsheathment percentage (±SEM) at each time point across replicates. Top 100 differentially transcribed genes (DTGs) post exsheathment trigger
application (C). Standardised relative abundances of inferred gene transcripts (Value) indicating low to high (red to green) relative gene expression
(logFC≥2, FDR≥0.05) at each time point, and single linkage clustering. Three distinct profiles of expressionwere observed within the time-series RNA-Seq
data: ‘prolonged/constant’ (pink), ‘oscillating’ (cyan, ≤25 min) and ‘ramped’ (purple, ≥28 min) expression for the majority of time intervals.
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in Supplementary Table S1. Transcripts were mapped against the
reference H. contortus NZ_Hco_NP v1.0 genome (Palevich et al.,
2019b; Palevich et al., 2023b) using STAR v.2.7.1a (Dobin et al.,
2013).

The transcriptome data has revealed significant differences in
the overall gene expression profiles of the parasite populations at

different stages of the exsheathment process. A comparison of the
total numbers of sequencing read pairs at each time point reveals a
dramatic decrease at the 28-min interval (Figure 1B). This transition
indicates a strong negative correlation between the total numbers of
exsheathed H. contortus L3 larvae (xL3) and sequencing read pairs
observed with respect to the total population of exsheathed xL3’s

FIGURE 2
Time-series functional profiling of larval exsheathment in Haemonchus contortus. For each transcriptomic dataset, only the top level-A (A) and
corresponding level-B (B) KEGG pathways are depicted. The total sequencing reads assigned to KEGG categories are averages across each time point.
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over time for these samples, that was strongest at the 28-min interval
indicating the rapid and irreversible population shift in
exsheathment.

Overall, a total of 863 significantly (logFC≥2, FDR≥0.05)
differentially transcribed genes (DTGs) post trigger application
with three distinct patterns or profiles of expression observed
(Figure 1C). A large proportion of these DTGs are predicted to
encode hypothetical proteins or proteins that are yet to be
characterized (Palevich et al., 2018), and genes that were only
upregulated at the final 720 and 1,440 min (12 and 24 h) time
intervals. Further, a significant decrease in the total sequencing
read counts assigned to Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways was also observed at the 28-min interval
(Figure 2). Across all time points, the categories ‘signal
transduction’ and ‘carbohydrate metabolism’ were the two most
abundant B-level KEGG functions (Figure 2B). The presented time-
series RNA-seq dataset of natural larval exsheathment in H.
contortus can be used for applications such as gene discovery or
comparison with genomes and/or transcriptomes of other parasitic
nematodes of veterinary importance to understand the molecular
mechanisms driving their parasitism.

Materials and methods

Nematode production and procurement

Pure cultures of H. contortus third-stage larvae (L3) were
maintained by regular passage through five otherwise parasite-
free lambs housed indoors at the AgResearch’s Grasslands
campus (Figure 1A). L3 were cultured in fresh faecal material
containing eggs collected into faecal bags on infected
sheep. Faeces were pooled and mixed with vermiculite then
placed in trays, moistened with tap water (at 20°C), covered and
cultured for 10 days at 22°C–24°C. A modified Baermann technique
was used to clean and separate the larvae from faeces (Viglierchio
and Schmitt, 1983). Briefly, approximately 150 g of faeces was
enclosed in paper facial tissues and suspended over a large
conical measuring flask filled with unchlorinated water. The
samples were incubated for 20 h and larvae washed by their
movement through the apparatus. The faeces were then removed
and the liquid carefully siphoned to a remaining volume of about
20 mL. The resulting L3s and volume were examined in a counting
chamber (Whitlock S.F.E.L.O., Australia; volume 2 mL)
at ×100 magnification and stored in tap water at 10°C until
required. A single batch of larvae were used for all experiments
to account for any batch-related confounding factors with larval
viability and motility checked microscopically prior to any further
experimentation.

The provenance of genomic DNA was verified with a 100%
similarity identity to the representative chromosome-level genome
of the anthelmintic-susceptible H. contortus field strain (Palevich
et al., 2019a; Palevich et al., 2019b; Palevich et al., 2020), by
automated Sanger sequencing of the second internal transcribed
spacer (ITS-2) of nuclear ribosomal DNA following PCR
amplification from genomic DNA.

In vitro larval exsheathment, sample
collection and electron microscopy

Prior to in vitro testing, pooled L3 cultures were cleaned using
autoclaved phosphate buffered saline (1× PBS) solution (137 mM
NaCl, 2.7 mM KCl, 8 mM Na2HPO4, and 2 mM KH2PO4, pH 7.4)
and acclimated overnight to room temperature by gravity migration
filtration through nylon mesh (pore size 20 μm). Larval viability and
motility were checked microscopically and quantified using a
Petroff-Hausser chamber (Hausser Scientific) according to the
manufacturer’s instructions.

In this study, we triggered larval exsheathment using a
modification of the method described by Bekelaar et al., 2018, in
a ‘closed’ in vitro system that effectively and reproducibly simulates
the physiological conditions of the rumen (39°C and high CO2

concentration) as previously described (Palevich et al., 2022;
Palevich et al., 2023a). Briefly, anaerobic 1× PBS solution was
mixed in boiling dH2O and cooled to room temperature under a
continuous flow of O2-free CO2. Once cooled, the PBS solution was
transferred to 100 mL serum bottles in 70 mL aliquots and flushed
with CO2 for 1 h. The bottles were sealed with butyl rubber bungs
and aluminium crimp caps before being autoclaved at 121°C for
20 min. Larval cultures were transferred anaerobically
(approximately 300,000 L3/sample) using a O2-free CO2-flushed
3 mL syringe and wide bore hypodermic needle (16 G thickness and
length of 1–1/2 inch, BD), into aluminium-wrapped and pre-
warmed serum bottles containing 70 mL of autoclaved PBS and
incubated anaerobically at 39°C with gentle horizontal shaking at
75 rpm for up to 24 h in darkness.

Exsheathment of L3 larvae (xL3) was determined retrospectively
by either complete or partial loss of the sheath and was measured by
additional sub-sampling of each replicate beginning at t = 0 min up
to 24 h after incubation at 39°C and CO2 anaerobic conditions. At
each time point, contents were thoroughly mixed before 1 mL was
transferred anaerobically to a 24-well plate and exsheathment
enumerated. The numbers of xL3s in each subsample was
quantified via 300-fold dilution of sample to another 24-well
plate containing dH2O to yield approximately 300 larvae per
replicate. Larvae were killed by the addition of 1 drop of 3%
helminthological iodine solution (Lugol’s solution) and
exsheathment enumerated. Samples were collected anaerobically
from each time point, snap-frozen in liquid nitrogen and stored
at −80°C until further processing.

Scanning electron microscopy (SEM) was performed as
previously described (Palevich et al., 2019b; Palevich et al., 2022).
Briefly, cryopreserved worms were gently spun, washed 3x in PBS
and fixed in SEM primary fixative (3% glutaraldehyde, 2%
formaldehyde in 0.1 M Phosphate Buffer pH 7.2) for 2 days at
room temperature. Samples were dehydrated in a graded ethanol
series, i.e. 25%, 50%, 75%, and 95% for 10–15 min each and 2× in
100% ethanol for 1 h, then Critical Point (CP) dried using liquid
CO2 and mounted onto an aluminium specimen support stub using
double-sided adhesive tape. Samples were sputter coated with gold
(200 s) and observed using a FEI Quanta 200 Environmental
Scanning electron microscope with energy dispersive x-ray
spectroscopy (EDAX) module.

Frontiers in Cell and Developmental Biology frontiersin.org04

Palevich et al. 10.3389/fcell.2023.1257200

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1257200


Total RNA extraction, library preparation and
RNA-Seq

Snap-frozen samples containing 100 µL of packed wormswere lysed
using an 18 V drill loaded with a disposable RNAase-free polypropylene
Micro-Pestle (Qiagen) until themix is ground to a fine white powder. To
the ground sample 250 µL of pre-warmed (40°C) TRizol (Life
Technologies) was added and mixed thoroughly according to the
manufacturer’s instructions, snap-frozen in liquid N2 and the
homogenization of snap frozen samples in TRizol was repeated for
five rounds in total to ensure complete disruption of the sample. To the
homogenized sample, 750 µL of pre-warmed TRizol and 0.1 volume of
chloroform were added, thoroughly mixed and centrifuged at 20,000× g
for 10 min at 4°C. The upper aqueous phase was transferred into a new
Eppendorf tube and an equal volume of isopropanol and 0.1 volume of
3M sodium acetate (pH 5.5) were added and gently mixed, and the
mixture was stored at −20°C overnight. The RNA pellets were
precipitated with ethanol, re-suspended in nuclease-free water (Life
Technologies) and DNase I treated. RNA yield and quality were
assessed using the Bioanalyzer 2,100 with the RNA 6000 Nano assay
reagent kit from Agilent (Santa Clara, CA) and stored at −80°C. NGS
sequencing libraries were generated from 1 μg of total RNA using
TruSeq Stranded RNA Sample Prep Kit (Illumina) according to the
manufacturer’s protocol. The resulting cDNA libraries were then paired-
end sequenced (2 × 100 bp) using the NovaSeq6000 instrument
(Macrogen, Inc.), to produce 2,959,443,642 read pairs in total with
an average of 29,594,436 per sample.

Functional annotation and differential
expression analysis of time-series RNA-seq
data

Complete paired-end sequences were obtained and converted into
FASTQ files (forward and reverse) using bcl2fastq (Illumina) package
from Macrogen. Adaptor sequences, minimum length (36 bp), bad
fraction (>10%) and low-quality bases with PHRED scores (Q) ≤ 20,
were removed and paired-end reads cleaned using Trimmomatic v0.4
(Bolger et al., 2014). The reads were mapped against the reference ofH.
contortus NZ_Hco_NP v1.0 genome (Palevich et al., 2019b; Palevich
et al., 2023a) using STAR version v2.7.1a (Dobin et al., 2013). The
counts were compiled and tabulated, and a differential expression was
performed using the DESeq2 v1.30.2 package (Love et al., 2014) with
default parameters. A differentially transcribed gene (DTG) was defined
as a transcript with an absolute log fold change ≥2 and an FDR of less
than 0.05. The “top” DGTs were chosen by their ranking in absolute
fold change and displayed a consistent level expression for the majority
of time intervals. The sample features, GenBank BioSample and
Sequence Read Archive (SRA) accession numbers for the time-series
exsheathment transcriptomes of H. contortus are listed in
Supplementary Table S1.

Possible protein coding regions within the genome-based
transcripts were identified using the TransDecoder program
v5.5.0 implemented in TRINITY v2.14.0 (Grabherr et al., 2011). The
protein-coding regions were searched against the NCBI NR protein
sequence database using the blastp function of DIAMOND v2.0.6
(Buchfink et al., 2015) with the output format of XML being
specified. The results were imported into OmicsBox v1.4.11 (https://

www.biobam.com), where the Blast2GO (Conesa et al., 2005)
annotation functions were used with default settings. InterProScan
v5.50–84.0 (Jones et al., 2014) and EggNOG-Mapper v1.0.3 with
EggNOG v5.0.0 (Huerta-Cepas et al., 2018) were further used with
default settings to annotate the predicted proteins. For analysis of
KEGG biological pathways, gene abundance tables were generated
by alignment of the sequencing reads to the NCBI NR database
using the blastx function of DIAMOND v2.0.6 (Buchfink et al.,
2015) aligner. The results were “MEGANised” using the tools
provided with MEGAN6 Ultimate Edition (Huson et al., 2016) and
loaded into the MEGAN software to assign putative functions to the
DIAMOND alignment files for level A and B KEGG categories
(Supplementary Table S2).
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