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Background: Tanshinone IIA, derived from Radix Salviae Miltiorrhizae (Salvia
miltiorrhiza Bunge), constitutes a significant component of this traditional
Chinese medicine. Numerous studies have reported positive outcomes
regarding its influence on cardiac function. However, a comprehensive
comprehension of the intricate mechanisms responsible for its
cardioprotective effects is still lacking.

Methods: A rat model of heart failure (HF) induced by acute myocardial infarction
(AMI) was established via ligation of the left anterior descending coronary artery.
Rats received oral administration of tanshinone IIA (1.5 mg/kg) and captopril
(10 mg/kg) for 8 weeks. Cardiac function was assessed through various
evaluations. Histological changes in myocardial tissue were observed using
staining techniques, including Hematoxylin and Eosin (HE), Masson, and
transmission electron microscopy. Tunel staining was used to detect cell
apoptosis. Serum levels of NT-pro-BNP, IL-1β, and IL-18 were quantified using
enzyme-linked immunosorbent assay (ELISA). Expression levels of TLR4, NF-κB
p65, and pyroptosis-related proteins were determined via western blotting (WB).
H9C2 cardiomyocytes underwent hypoxia-reoxygenation (H/R) to simulate
ischemia-reperfusion (I/R) injury, and cell viability and apoptosis were assessed
post treatment with different tanshinone IIA concentrations (0.05 μg/ml, 0.1 μg/
ml). ELISAmeasured IL-1β, IL-18, and LDH expression in the cell supernatant, while
WB analysis evaluated TLR4, NF-κB p65, and pyroptosis-related protein levels. NF-
κB p65 protein nuclear translocation was observed using laser confocal
microscopy.

Results: Tanshinone IIA treatment exhibited enhanced cardiac function,
mitigated histological cardiac tissue damage, lowered serum levels of NT-
pro-BNP, IL-1β, and IL-18, and suppressed myocardial cell apoptosis.
Moreover, tanshinone IIA downregulated the expression of TLR4, NF-κB
p65, IL-1β, pro-IL-1β, NLRP3, Caspase-1, and GSDMD-N pyroptosis-related
proteins in myocardial tissue. Additionally, it bolstered H/R
H9C2 cardiomyocyte viability, curbed cardiomyocyte apoptosis, and
reduced the levels of TLR4, NF-κB p65, IL-1β, pro-IL-1β, NLRP3, Caspase-1,
and GSDMD-N pyroptosis-related proteins in H/R H9C2 cells. Furthermore, it
hindered NF-κB p65 protein nuclear translocation.

Conclusion: These findings indicate that tanshinone IIA enhances cardiac function
and alleviates myocardial injury in HF rats following AMI. Moreover, tanshinone IIA
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demonstrates potential suppression of cardiomyocyte pyroptosis. These effects
likely arise from the inhibition of the TLR4/NF-κB p65 signaling pathway, presenting
a promising therapeutic target.
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1 Introduction

Heart failure (HF) marks the advanced phase of diverse
cardiovascular disorders and impacts approximately 64.3 million
individuals globally (Lippi and Sanchis-Gomar, 2020). Once HF
manifests, its reversal becomes formidable, leading to a notable
deterioration in patients’ quality of life. Investigations have
approximated that 1%–2% of adults in developed nations are
afflicted with diagnosed HF(Sahle et al., 2016; Groenewegen
et al., 2020). The survival rates for HF patients at 1, 2, 5, and
10 years stand at around 87%, 73%, 57%, and 35%, correspondingly,
with HF incidents amplifying mortality risk fivefold (Jones et al.,
2019). Despite considerable strides in HF treatment, clinical
outcomes continue to be unsatisfactory, particularly in terms of
enhancing patients’ quality of life (Freedland et al., 2021). Research
has indicated that within a year of discharge post acute myocardial
infarction (AMI), about 20%–30% of patients develop HF(Jenča
et al., 2020). Hence, exploration into drugs that shield cardiac
function following AMI holds substantial promise.

Cardiac remodeling emerges as a pivotal pathological
mechanism in the initiation and advancement of HF, with
myocardial cell demise constituting a central process in this
remodeling (Mishra et al., 2019). Pyroptosis, a variant of
programmed cell demise, maintains close ties with physiological
and pathological heart processes (Gao et al., 2022). Detection of
pyroptosis signals hinges on pattern recognition receptors,
encompassing NOD-like receptors (NLR), Toll-like receptors
(TLR), and C-type lectin receptors (CLR) (Yang et al., 2018;
Zhou et al., 2020; Jin et al., 2022). Among these, TLR plays a
pivotal role in instigating the signal cascade, culminating in cell
activation and inflammatory cytokine generation (Swanson et al.,
2020). Particularly, TLR4 becomes activated under myocardial
ischemic hypoxia conditions (Zhao et al., 2009). Once activated,
TLR4 incites NF-κB p65 activation, subsequently triggering
NLRP3 inflammasome activation, leading to Caspase-1 activation
(Liu et al., 2017; Yang et al., 2020). The activated Caspase-1 cleaves
Gasdermin D (GSDMD), yielding a GSDMD nitrogen terminal
activity domain (GSDMD-N) peptide fragment that triggers cell
membrane perforation, rupture, and content release, instigating
pyroptosis (Liu et al., 2016a; Tsuchiya et al., 2019). Additionally,
Caspase-1 cleaves IL-1β and IL-18 precursors to form their active
forms (Sansonetti et al., 2000; Xia et al., 2021), which are then
extracellularly released, attracting inflammatory cells and
exacerbating the inflammatory response. Under normal
conditions, pyroptosis is maintained at a low baseline level,
contributing to cellular equilibrium (Yu et al., 2021). However,
during ischemia or hypoxia, excessive pyroptosis activation,
coupled with sustained inflammatory reactions, accelerates
adverse cardiac remodeling and deteriorates heart function
(Toldo et al., 2018; Zeng et al., 2019). Thus, drug exploration

that centers on the TLR4/NF-κB p65 pathway to hinder
myocardial pyroptosis and enhance cardiac function holds
considerable potential.

Radix Salviae Miltiorrhizae (Salvia miltiorrhiza Bunge) is a
conventional Chinese medicinal herb renowned for its varied
therapeutic effects, encompassing pain alleviation, activation of
blood circulation, elimination of blood stasis, heart clearance,
cooling of blood, and elimination of carbuncles, aligned with
traditional Chinese medicine principles (Zhou et al., 2019; Fang
et al., 2020). It has gained widespread use for its cardiovascular
benefits, including antioxidant, anti-inflammatory, and antifibrotic
attributes (Su et al., 2015; Fang et al., 2018a; Jung et al., 2020). A
clinical trial has documented that a 3-month regimen of salvia
miltiorrhiza compounds can diminish coronary heart disease risk by
ameliorating blood lipid levels (Liu et al., 2016b). The primary active
components in Radix Salviae Miltiorrhizae comprise phenolic acids
and tanshinones. Among these, Tanshinone IIA has been
extensively researched for its biological activities, exhibiting
promising results in treating atherosclerosis, cardiac hypertrophy,
enhancing heart function, alleviating cerebral ischemia, and
presenting potential advantages for Alzheimer’s disease. These
effects are closely tied to its anti-inflammatory and antioxidant
properties, capacity to impede cell apoptosis, and role in
safeguarding mitochondrial function (Gao et al., 2012; Guo et al.,
2020; Ansari et al., 2021; Subedi and Gaire, 2021; Wang et al., 2022;
Wang andWu, 2022). Recent investigations have demonstrated that
tanshinone IIA can amplify the mitigation of mesenchymal stem
cell-derived exosome-induced myocardial ischemia-reperfusion (I/
R) injury by elevating miR-223-5p (Li et al., 2023). It can also
ameliorate cardiac hypertrophy through galectin-3, suppress
cardiomyocyte apoptosis (Zhang et al., 2022), and preserve
cardiac function during doxorubicin-triggered cardiac toxicity
(Xu et al., 2022). However, present research has not yet explored
whether tanshinone IIA is implicated in pyroptosis. In this study, we
employed a left anterior descending coronary artery (LADCA)
ligation-induced HF rat model and an in vitro hypoxia-
reoxygenation (H/R)-stimulated H9C2 cardiomyocyte model to
delve into the potential mechanism of tanshinone IIA in
hindering myocardial pyroptosis and ameliorating HF and
cardiac remodeling via the TLR4/NF-κB p65 pathway.

2 Materials and methods

2.1 Drugs and reagents

Tanshinone IIA (B20257, HPLC≥98%, China), captopril
(H32023731, China), Dulbecco’s Modified Eagle Medium (D6570,
Solarbio, China), streptomycin (T1320, Solarbio, China), penicillin
(P1400, Solarbio, China), fetal bovine serum (10099141, Gibco,
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United States), anti-NF-κB p65 (ab76302, Abcam,
United Kingdom), anti-NLRP3 (ab263899, Abcam,
United Kingdom), anti-pro-Caspase1 (ab179515, Abcam,
United Kingdom), anti-Caspase1 (ab138483, Abcam,
United Kingdom), anti-GSDMD (ab209845, Abcam,
United Kingdom), anti-TLR4 (19811-1-Ap, proteintech, China),
anti-IL-1β (16806-1-AP, proteintech, China), anti-GAPDH
(60004-1-Ig, proteintech, China), anti-β-actin (66009-1-Ig,
proteintech, China), anti-pro-IL-1β (WL02257, Wanleibio,
China), BNP (ab108815, Abcam, United Kingdom), IL-1β
(ab255730, Abcam, United Kingdom), IL-18 (ab213909, Abcam,
United Kingdom), TUNEL Apoptosis Assay Kit (KGA7071, China).

2.2 Animals and ethics statement

Male Sprague-Dawley (SD) rats, aged 6 weeks and weighing
180–200 g, were obtained from Beijing Hua Fu Kang Bioscience Co.,
LTD. The rats were housed under standardized conditions,
including a 12-h light/dark cycle and a temperature of 22°C ±
2°C. They were provided ad libitum access to food and water
throughout the experiment. All experimental procedures and
animal welfare practices strictly adhered to the Ethical
Regulations on the Care and Use of Laboratory Animals of
Guang’anmen Hospital to ensure ethical treatment of the animals
(IACUC-GAMH-2021-020).

2.3 Experimental protocol

This study encompassed a total of 100 male Sprague-Dawley
(SD) rats. The LADCA ligation technique was employed to establish
the AMI model. The rats were anesthetized with intraperitoneal
sodium pentobarbital (50 mg/kg) and subjected to chest opening for
heart exposure. The LADCA was ligated using a 5-0 surgical suture.
Post-operation, the rats were placed on an electric blanket for
temperature maintenance until regaining consciousness.

For the sham group, the LADCA was threaded but not ligated,
while all other surgical steps remained consistent. At 24 h after the
operation, rats in the LADCA ligation group were randomly
allocated to three subgroups: the model group, tanshinone IIA
group, and captopril group. Guided by prior research, the
tanshinone IIA group received an optimal dosage of 1.5 mg/kg of
tanshinone IIA (Zhang et al., 2019). The captopril group was
administered captopril at 10 mg/kg dosage, based on body
surface area equivalence between animals and humans, as per
recommended daily human dosage. The sham and model groups
received purified water. Drugs were orally administered once daily
for an 8-week duration.

2.4 Echocardiography

At the 8-week mark post ligation, echocardiography was
conducted under anesthesia. Rats were appropriately positioned
after shaving their thoracic walls. Two-dimensional and M-mode
echocardiography assessed cardiac morphology and function. An 8-
MHz transducer connected to an HP5500 color Doppler ultrasound

imaging instrument (Agilent, California, US) facilitated the
procedure.

Echocardiography captured several parameters, including left
ventricular end-diastolic diameter (LVIDd), left ventricular end-
systolic diameter (LVIDs), fractional shortening (FS), and ejection
fraction (EF), with the values averaged from three cardiac cycles.

2.5 Histological examination

Harvested myocardial tissues underwent 4% paraformaldehyde
fixation for 30 h and storage at 4°C. Fixed tissues were paraffin-
embedded and sliced into 6 μm-thick sections. Sections underwent
deparaffinization, dehydration via xylene and ethanol gradient
immersion, followed by staining procedures involving
Hematoxylin and Eosin (HE), Masson’s trichrome staining, and
Tunel staining (Sheng et al., 2019).

To prepare samples for transmission electron microscopy, left
ventricular myocardium was diced into 1 mm̂3 cubes and treated
with 2.5% glutaraldehyde for 24 h at 4°C. Subsequently, samples
were immersed in 1% osmium tetroxide, dehydrated with graded
ethanol solutions, and embedded. 60 nm ultrathin slices of
embedded specimens were double-stained with uranyl acetate
and lead citrate before observation using a transmission electron
microscope (H-7650, Hitachi Limited, Japan).

2.6 Measurement of inflammatory cytokines
and HF biomarker

After drawing blood samples from the rat abdominal aorta, the
samples were subjected to centrifugation at 3,000 rpm and 4°C for
10 min. This centrifugation process separated the blood into two
components: plasma and cell supernatant. The plasma and cell
supernatant were collected and stored at −80°C for further analysis.

To measure the levels of N-terminal pro-B-type natriuretic
peptide (NT-pro-BNP), interleukin-1β (IL-1β), and interleukin-18
(IL-18), an enzyme-linked immunosorbent assay (ELISA) was
employed. ELISA is a commonly used laboratory technique that
allows for the quantification of specific proteins or molecules in a
sample. In this case, the plasma samples and cell supernatant were
analyzed using ELISA kits designed to detect and measure the
concentrations of NT-pro-BNP, IL-1β, and IL-18. The ELISA
procedure involves the use of specific antibodies that bind to the
target molecules, allowing for their detection and quantification
based on colorimetric or fluorescent signals.

2.7 Cell culture

H9C2 cells, obtained from the Chinese Academy of Medical
Sciences (Institute of Basic Medicine, Beijing, China), were cultured
in Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented
with 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin
(Gibco) at 37°C under 95% humidity and 5% CO2. The culture
medium was refreshed every 2 days to support optimal cell growth
and viability.

Prior to experiments, H9C2 cells were divided into four groups:
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FIGURE 1
Effect of Tanshinone IIA on cardiac function in rats with heart failure after acute myocardial infarction. (A) Appearance of the hearts of each group of
rats. (B) The expression of NT-pro-BNP in serum of rats in each groupwas detected. (C)Quantification of essential cardiac function parameters including
left ventricular end-diastolic diameter (LVIDd), left ventricular end-systolic diameter (LVIDs), left ventricular ejection fraction (LVEF), and left ventricular
fractional shortening (LVFS). These indicators serve as valuable tools to ascertain the efficacy of Tanshinone IIA in counteracting the HF on cardiac
function. (D) The figure presents representative images from H&E staining (Scale bars = 2000–200 μm) provides an overall view of cellular integrity and
layout, Masson’s Trichrome staining (Scale bars = 2000–200 μm) highlights the collagen deposits characteristic of fibrosis, TUNEL staining (Scale bars =
50 μm) allows the identification of apoptosis, and electron microscopy (Scale bars = 500 μm) offers an in-depth view of the ultrastructural changes in
cardiac tissues. Together, these analyses reveal the promising potential of Tanshinone IIA in mitigating fibrosis and cellular damage after AMI. Electron
microscopy arrow definition: The green arrows indicate the dark zone is characterized by areduction in the number and diameterof the cardiomyocytes.
The yellow arrows indicate mitochondrial morphological atrophy, distortion, and deformation. The blue arrows mark the increase ofintracellular
glycogen precipitation. (E, F) The semiquantitative analysis results of Masson’s trichrome staining and TUNEL staining. #p < 0.05 and ##p < 0.01 VS. the
control group; *p < 0.05 and **p < 0.01 VS. the model group.
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Control group: Cells cultured under standard conditions at
37°C, 95% humidity, and 5% CO2, serving as the baseline
control.

Hypoxia/Reoxygenation (H/R) group: Cells subjected to 6 h of
hypoxia followed by 24 h of reoxygenation to mimic ischemia-
reperfusion injury.

Tanshinone IIA group: Cells treated with tanshinone IIA at
concentrations of 0.05 μg/ml and 1 μg/ml for 24 h before
reoxygenation.

This categorization enabled the assessment of tanshinone IIA’s
effects on cells under normal conditions and during hypoxia/
reoxygenation, relevant to cardiac ischemia-reperfusion injury.

2.8 Measurement of cardiomyocyte viability

After reaching over 90% confluence, H9C2 cells were detached
from culture dishes using 0.25% trypsin (Sigma, St. Louis, MO,
United States) for 3 min. The trypsin reaction was stopped with
DMEM. Cell counting determined viable cell numbers.

Subsequently, H9C2 cells were seeded into 12-well plates at
50,000 cells per well, allowing adherence for 24 h in DMEM
supplemented with 10% FBS and 1% penicillin-streptomycin at
37°C under 95% humidity and 5% CO2.

Cell viability was assessed using the Cell Counting Kit-8 (CCK-
8) method, involving CCK-8 reagent addition to produce a

FIGURE 2
Impact of Tanshinone IIA on H/R H9C2 Cardiomyocytes. (A) Safety evaluation of Tanshinone IIA was conducted using CCK-8 assays to assess the
effect on cell viability under normal conditions after 24 h of treatment. (B) Efficacy evaluation of Tanshinone IIA was conducted using CCK-8 assays to
examine changes in cell viability in model conditions and post-intervention with Tanshinone IIA (0.05 μg/ml, 0.1 μg/ml). (C) LDH release assay to assess
cellular injury following H/R insult. (D) Flow cytometry analysis, with four quadrants denoting live cells (Q4), early apoptotic cells, late apoptotic cells,
and necrotic cells, offering a comprehensive view of the cellular state. (E) Bar chart displaying the percentages of early, late, and total apoptotic cells,
highlighting the mitigatory effect of Tanshinone IIA on H/R-induced cellular apoptosis. #p < 0.05 and ##p < 0.01 VS. the control group; *p < 0.05 and
**p < 0.01 VS. the model group.
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FIGURE 3
The Effect of Tanshinone IIA on the TLR4/NF-κB p65 Signaling Pathway and Pyroptosis in HF Rats. (A): Detection of the inflammatory cytokines IL-18
and IL-1β was performed using ELISA. (B): The levels of TLR4, NF-κBp65, and p-NF-κBp65 were determined via Western blot analysis. (C): Western blot
was also used to examine the levels of NLRP3, IL-1β, pro-IL-1β, Caspase1, pro-Caspase1, and GSDMD-N/F. #p < 0.05 and ##p < 0.01 VS. control group;
*p < 0.05 and **p < 0.01 VS. model group. The figure demonstrates the considerable inhibitory effect of the Tanshinone IIA on these signaling
pathways and proteins related to pyroptosis.
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FIGURE 4
Impact of Tanshinone IIA on Pyroptosis. (A) Expression levels of the cytokines IL-18 and IL-1βwere examined using ELISA. (B)Western blot was used
to assess the expression levels of key pyroptosis markers: NLRP3, IL-1β, pro-IL-1β, Caspase1, pro-Caspase1, and GSDMD-N/F. #p < 0.05 and ##p <
0.01 VS. control group; *p < 0.05 and **p < 0.01 VS. model group. This indicates the significant downregulation of these markers in response to
Tanshinone IIA intervention.
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FIGURE 5
The impact of Tanshinone IIA on the TLR4/NF-κBp65 pathway. (A) Western blot was used to assess the expression of TLR4 in the cytosol, and the
expression of NF-κBp65 in both the cytosol and the nucleus. (B) The nuclear translocation of p65 was observed via confocal microscopy. #p < 0.05 and
##p < 0.01 VS. control group; *p < 0.05 and **p < 0.01 VS. model group. These significant variations denote the modulatory effects of Tanshinone IIA on
the TLR4/NF-κBp65 pathway.
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colorimetric reaction in viable cells, generating a measurable signal
reflecting cell viability. Absorbance or optical density was measured
using a microplate reader for quantitative assessment.

2.9 Apoptosis detection

After 24-h treatment, adherent and detached H9C2 cells were
collected. Apoptosis assessment involved staining collected cells
with Annexin V-FITC and propidium iodide (PI) using a
commercially available apoptosis detection kit. Annexin V
binds to exposed phosphatidylserine on apoptotic cell
membranes, while PI stains DNA in cells with compromised
membranes.

Stained cells were analyzed using flow cytometry (BD
C6 instrument) for apoptosis evaluation.

2.10 Western blotting

Proteins were extracted from both heart tissues and cells of each
experimental group and subjected to SDS-PAGE for separation. The
isolated proteins were then transferred onto polyvinylidene fluoride
(PVDF) membranes under controlled conditions (250mA, 4°C,
90 min). Subsequently, these membranes were immersed in a
TBST solution containing 5% non-fat milk (used as a blocking
agent) and left to incubate for 2 h at room temperature. Primary
antibodies specific to TLR4, NF-κB p65, IL-1β, pro-IL-1β, NLRP3,
Caspase-1, pro-Caspase-1, and GSDMD were prepared in diluted
form and applied to the PVDF membranes, which were then
incubated at 4°C overnight. Following this, the membranes were
thoroughly washed to remove unbound antibodies. The next step
involved applying HRP-conjugated secondary antibodies, also diluted

in the blocking solution. The membranes were incubated with these
secondary antibodies at 37°C for 2 h. A second thorough washing of
the membranes was performed to remove any unbound secondary
antibodies. The membranes were then treated with a freshly prepared
ECL reagent, a 1:1 mixture of enhanced solution and stable peroxide
solution. For detecting protein bands, themembranes were exposed to
film for 60 s using an eBlot exposure instrument. The optimal
exposure time was determined, and images were captured and
subsequently analyzed using ImageJ software.

2.11 The nuclear translocation of p65 was
observed via confocal microscopy

Following treatment, the H9C2 cardiomyocytes were fixed,
permeabilized, and blocked. Subsequently, they underwent
overnight incubation at 4°C with primary antibodies targeting
NF-κB p65, diluted at 1:500. After thorough triple washing with
PBST, the cells were exposed to secondary antibodies labeled with
FITC, diluted at 1:200. Nuclear counterstaining was then performed
in a dark environment. Finally, the cells were examined using a laser
confocal microscope.

2.12 Statistical analysis

All experimental data are presented as mean ± standard error of
the mean. Comprehensive evaluations were conducted using
analysis of variance (ANOVA). For comparisons between two
independent groups, a t-test was employed. In the case of
multiple groups, either a one-way or two-way ANOVA, followed
by a Tukey post-hoc test, was utilized. Statistical significance was
determined with a p-value less than 0.05.

FIGURE 6
Tanshinone IIA protects cardiac function and inhibits cardiomyocyte pyroptosis through TLR4/NF-κBp65 pathway.
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3 Results

3.1 Effect of tanshinone IIA on cardiac
function

At the conclusion of the 8-week post-surgery period, during which
heart samples were collected, external examination of the hearts
revealed distinct differences. The model group exhibited a pale left
ventricular anterior wall and an enlarged heart cavity compared to the
sham surgery group. However, treatment with tanshinone IIA and
captopril led to improvements in these visual characteristics
(Figure 1A).

Echocardiography findings highlighted significant distinctions
between the groups. The model group displayed increased LVIDd
and LVIDs, alongside decreased LVEF and LVFS compared to the
sham surgery group. Notably, intervention with tanshinone IIA and
captopril resulted in reductions in LVIDd and LVIDs (p < 0.05),
while leading to improved LVEF (p < 0.01) and LVFS. These
observations underscore the presence of left ventricular systolic
and diastolic dysfunction, as well as enlargement of the left
ventricular cavity post-AMI. Both tanshinone IIA and captopril
exhibited protective effects on cardiac function post-AMI
(Figure 1C).

Analysis of the HF biomarker, plasma NT-pro-BNP, demonstrated
significantly elevated levels in the model group in comparison to the
sham surgery group. However, following tanshinone IIA intervention,
NT-pro-BNP levels notably decreased, further affirming the protective
role of tanshinone IIA in HF (Figure 1B).

Histological examination using HE staining revealed that
cardiomyocytes in the sham group displayed organized
arrangement, uniform shape, and consistent size. In contrast, the
model group exhibited a substantial reduction in cardiomyocytes,
disarray in muscle fiber alignment, and extensive infiltration of
inflammatory cells. Treatment with tanshinone IIA and captopril led
to reduced infarct size and alleviated myocardial tissue lesions
compared to the model group (Figure 1D).

Analysis via Masson’s staining unveiled that the myocardial
tissue in the infarct area of the model group had been replaced by
collagen fibers. The marginal area of the infarct showed a loose
cellular arrangement with abundant collagen fiber deposition in the
intercellular space. Nevertheless, following treatment with
tanshinone IIA and captopril, the severity of myocardial tissue
lesions exhibited noticeable reduction in comparison to the
model group (Figures 1D, E).

TUNEL staining outcomes indicated a substantial decrease in
viable cell count within the model group as opposed to the sham
group. However, administration of tanshinone IIA and captopril led
to an increase in viable cell count (Figures 1D, F).

Examination under transmission electron microscopy
unveiled severe myocardial structural damage within the
model group. This damage was characterized by loose and
disordered alignment of myocardial fibers, irregular
morphology, and instances of fracture. Additionally,
mitochondrial contraction, distortion, deformation, and
glycogen accumulation were observed within cardiomyocytes.
Nevertheless, after tanshinone IIA and captopril treatment,
notable improvement in the alignment of myocardial fibers
was observed in comparison to the model group (Figure 1D).

3.2 Tanshinone IIA enhances viability and
reduces apoptosis in H/R
H9C2 cardiomyocytes

The present study investigated the effects of tanshinone IIA on
cell viability, apoptosis, and pyroptosis in H9C2 cardiomyocytes
exposed to H/R. Intervention with tanshinone IIA demonstrated a
significant improvement in the proliferative capacity of H9C2 cells,
as indicated by CCK-8 assays after a 24-h incubation period. These
results highlight the favorable proliferative effect and safety profile of
tanshinone IIA under normal conditions (Figure 2A). Moreover,
tanshinone IIA intervention led to a notable increase in cell viability
compared to the model group following H/R (Figure 2B). This
intervention resulted in enhanced cell survival rates and reduced
apoptosis indices. Additionally, lactate dehydrogenase (LDH)
measurements, a marker for cellular injury, indicated that
tanshinone IIA effectively mitigated H/R-induced cell damage
(Figure 2C). Flow cytometry analysis provided further evidence
of reduced apoptosis, confirming the potential cardioprotective
effects of tanshinone IIA (Figures 2D, E).

3.3 Tanshinone inhibits TLR4/NF-κB
p65 signaling pathway and pyroptosis in rats
with HF after AMI

The current study revealed that tanshinone IIA demonstrated
inhibitory effects on inflammatory cytokines and the TLR4/NF-κB
p65 signaling pathway in cardiomyocytes, thereby suppressing
cardiomyocyte pyroptosis in rats with HF following AMI. In
comparison to the sham group, the model group exhibited a notable
increase in IL-1β and IL-18 levels (p < 0.05, Figure 3A). Furthermore,
there was an elevated expression of TLR4 and phosphorylated NF-κB
p65 (pNF-κB p65) in cardiomyocytes, showing statistical significance
(p < 0.05). However, intervention with captopril and tanshinone IIA
resulted in a significant reduction of IL-1β, IL-18, TLR4, and
phosphorylated NF-κB p65 (p < 0.05, Figure 3B). Additionally, the
levels of NLRP3, Caspase-1, IL-1β, pro-IL-1β, and GSDMD-N were
notably elevated in the model group (p < 0.05). In contrast, treatment
with captopril and tanshinone IIA significantly downregulated these
markers (p < 0.05, Figure 3C).

3.4 Tanshinone IIA inhibits pyroptosis in H/R
H9C2 cardiomyocytes

In addition to its positive impact on cell viability and apoptosis,
tanshinone IIA also exhibited promising effects in mitigating
pyroptosis in H/R-exposed H9C2 cardiomyocytes. ELISA results
indicated a significant reduction in IL-18 and IL-1β, two critical
cytokines released during pyroptosis, upon treatment with
tanshinone IIA (p < 0.01, Figure 4A). Moreover, western blot
analysis revealed a noticeable decrease in the expression levels of
NLRP3, Caspase-1, IL-1β, pro-IL-1β, and GSDMD-N, pivotal
proteins in the pyroptosis pathway and essential markers (p <
0.01, Figure 4B). These findings affirm tanshinone IIA’s
inhibitory effect on pyroptosis, underscoring its potential as a
therapeutic agent for H/R-exposed H9C2 cardiomyocytes.
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3.5 Tanshinone IIA inhibits the TLR4/NF-κB
p65 signaling pathway

The Western blot analysis results showed a notable reduction in
the expression levels of TLR4 and pNF-κB p65 in the cytoplasm
following tanshinone IIA intervention compared to the model group
(p < 0.05, Figure 5A). Conversely, there was a significant increase in
the expression of pNF-κB p65 in the nucleus (p < 0.05, Figure 5A).
Immunofluorescence analysis further substantiated the effective
inhibition of NF-κB p65 activity and nuclear translocation by
tanshinone IIA intervention (Figure 5B).

4 Discussion

This study delved into the protective role of tanshinone IIA in
cardiac health and its potential to curtail cardiomyocyte pyroptosis
through a combination of in vivo and in vitro experiments. Our key
findings are as follows: ① Tanshinone IIA improves cardiac
function and myocardial structure in rats following AMI leading
to HF. This enhancement is evident in improved cardiac function
metrics and reduced myocardial tissue damage. ② Tanshinone IIA
effectively suppresses cardiomyocyte pyroptosis. This is manifest in
diminished pyroptotic markers and decreased levels of
inflammatory cytokines linked to pyroptosis. ③ The inhibition of
cardiomyocyte pyroptosis by tanshinone IIA is possibly mediated
via the TLR4/NF-κB p65 signaling pathway. This treatment
downregulates TLR4 and pNF-κB p65 expression and hampers
NF-κB p65 nuclear translocation.

Tanshinone IIA, utilized in this study, has demonstrated its
therapeutic potential in bolstering cardiac function. It has emerged
as a prominent therapeutic agent in the management of cardiovascular
diseases, with well-established efficacy. The favorable effects of
tanshinone IIA manifest through diverse physiological pathways. It
functions as a regulator of platelet aggregation (Wang et al., 2020a),
thereby diminishing the risk of clot formation. Furthermore, its anti-
inflammatory properties mitigate the inflammatory responses
commonly linked to heart conditions (Lu et al., 2022). Tanshinone
IIA also plays a significant role in energymetabolism (Li et al., 2020; Liu
et al., 2021; Qi et al., 2022), which is crucial for maintaining the high-
energy demand of the heart. Its additional cardiovascular effects include
antioxidant activity (Yan et al., 2021), anti-atherosclerotic effects
(J. Wang et al., 2020a; Wang et al., 2020b), protection against
myocardial I/R injury (Li et al., 2023; Zhu et al., 2023), regulation of
lipid metabolism (Gao et al., 2021), anti-fibrotic effects (Yan et al.,
2022), vasodilation (Fan et al., 2011), and potential anti-arrhythmic
effects (Shan et al., 2009), further demonstrating its multi-faceted role in
promoting cardiovascular health.

Our findings, derived from cardiac ultrasound and BNP
measurements, indicate that tanshinone IIA possesses the capacity to
enhance cardiac function in rats with HF induced by AMI. Moreover,
histological assessments encompassing HE staining, Masson’s staining,
Tunel staining, and transmission electron microscopy unveil
tanshinone IIA’s potential to ameliorate myocardial fibrosis and
mitigate cardiomyocyte apoptosis. Furthermore, we evaluated the
expression levels of pivotal pyroptosis-related proteins, including
NLRP3, IL-1β, pro-IL-1β, Caspase-1, and GSDMD-N. Post
tanshinone IIA treatment, a noticeable reduction in the expression

levels of these proteins was observed. It is acknowledged that upon
NLRP3 activation, subsequent activation of Caspase-1 and GSDMD
occurs, prompting the expression of IL-1β and IL-18, thereby
intensifying the inflammatory response.

Research has indicated that tanshinone IIA has the potential to
modulate the TLR4/NF-κB p65 signaling pathway, enhancing
oxidative stress levels to address hypoxic/ischemic
encephalopathy (Fang et al., 2018b). Simultaneously, it can
suppress the TLR4/NF-κB pathway to mitigate the vulnerability
of atherosclerotic plaques in ApoE(−/−) mice (Wang et al., 2020c),
thus showcasing its anti-inflammatory and immune-regulatory
properties (Chen et al., 2019). Furthermore, tanshinone IIA has
been shown to inhibit the inflammatory response of vascular smooth
muscle cells induced by lipopolysaccharides (LPS) through the
TLR4/TAK1/NF-κB signaling pathway (Meng et al., 2019). These
collective findings suggest that tanshinone IIA can influence or
partially activate the TLR4/NF-κB p65 signaling pathway. Building
on these observations, we hypothesize that tanshinone IIA exerts its
protective effects by mitigating cardiomyocyte pyroptosis,
consequently reducing the inflammatory response associated with
NLRP3 inflammasome activation. This study sheds light on the
potential therapeutic role of tanshinone IIA in cardiac pathologies,
offering insights into its underlying molecular mechanisms.

The TLR4/NF-κB pathway assumes a pivotal role in governing
inflammation and pyroptosis. Activation of TLR4 triggers NF-κB
activation, culminating in the transcription of pro-inflammatory
cytokines and inflammasomes (like NLRP3), thereby instigating
pyroptosis through Caspase-1. Numerous investigations have
elucidated the significance of the TLR4/NF-κB pathway in
pyroptosis. For example, the combined application of mangiferin
and cinnamic acid has exhibited the capacity to impede TLR4/
NLRP3-activated pyroptosis, consequently alleviating rheumatoid
arthritis (Li et al., 2022). Similarly, in instances of liver I/R injury,
both oxytocin and melatonin have been documented to mitigate
inflammasome-induced pyroptosis via the TLR4/NF-κB/
NLRP3 pathway (El-Sisi et al., 2021). Additionally, metformin
interrupts the TLR4/NF-κB/PFKFB3 signal transduction, ameliorates
abnormal glucose metabolism, and averts NLRP3 inflammasome-
mediated pyroptosis (Zhang et al., 2021). These investigations
collectively underscore the intimate association between the TLR4/
NF-κB p65 signaling pathway and pyroptosis.

Increasing evidence suggests that excessive pyroptosis can lead to
cardiac insufficiency, and targeting pyroptosis can improve heart
function. Cathepsin B exacerbates diabetic cardiomyopathy by
promoting NLRP3-mediated pyroptosis (Liu et al., 2022). By
generating GSDMD global knockout mice, it has been found that
GSDMD deficiency reduces Doxorubicin (Dox)-induced
cardiomyopathy. Dox induces the activation of inflammatory
caspases, which subsequently mediate the generation of GSDMD-N
indirectly (Ye et al., 2022). The anti-inflammatory activity of apigenin
inhibits pyroptosis through the NLRP3/Caspase1/Gasdermin D
signaling axis, protecting the heart from LPS-induced cardiac
dysfunction (Joshi et al., 2023). Cinnamic acid prevents myocardial
I/R injury by inhibiting the NLRP3/Caspase-1/GSDMD signaling
pathway (Luan et al., 2022). These studies collectively suggest that
targeting pyroptosis can enhance heart function.

We acknowledge the limitations of our study. While we have
proposed potential mechanisms underlying the inhibitory effect of
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tanshinone IIA on cardiomyocyte pyroptosis, we did not employ
molecular manipulation techniques to thoroughly investigate these
mechanisms. Our study lays the groundwork for future research.
Subsequent studies could employ techniques like gene knockdown,
overexpression, siRNA, or specific inhibitors to manipulate the
expression or activity of key molecules in the suggested
pathways. These approaches would aid in validating and
elucidating the precise mechanisms by which tanshinone IIA
exerts its inhibitory effects on cardiomyocyte pyroptosis. By
addressing these limitations and conducting more comprehensive
investigations, we can deepen our understanding of tanshinone IIA’s
molecular mechanisms and bolster the scientific rationale for its
potential therapeutic application in cardiac pathologies.

5 Conclusion

The findings suggested that tanshinone IIA ameliorates cardiac
function and reduced myocardial injury in rats with HF after AMI.
Furthermore, tanshinone IIA appeared to inhibit cardiomyocyte
pyroptosis. The protective effect might be attributed to the
inhibition of the TLR4/NF-κB p65 signaling pathway, which
potentially presents a novel therapeutic target (Figure 6).
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