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The correct maintenance and differentiation of hematopoietic stem cells (HSC) in
bone marrow is vital for the maintenance and operation of the human blood
system. GATA2 plays a critical role in the maintenance of HSCs and the
specification of HSCs into the different hematopoietic lineages, highlighted by
the various defects observed in patients with heterozygous mutations in GATA2,
resulting in cytopenias, bone marrow failure and increased chance of myeloid
malignancy, termed GATA2 deficiency syndrome. Despite this, the mechanisms
underlying GATA2 deficiency syndrome remain to be elucidated. The detailed
description of how GATA2 regulates HSC maintenance and blood lineage
determination is crucial to unravel the pathogenesis of GATA2 deficiency
syndrome. In this review, we summarize current advances in elucidating the
role of GATA2 in hematopoietic cell fate determination and discuss the
challenges of modeling GATA2 deficiency syndrome.
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1 Introduction

The adult hematopoietic system is derived from hematopoietic stem cells (HSCs)
situated within the bone marrow (BM). According to Waddington’s epigenetic theory,
various blood cell types originate from unstable stem/progenitor cells and eventually fall into
a stable cell fate development track (Waddington, 1957; Ladewig et al., 2013) producing
myeloid and lymphoid cells for immunity, erythrocytes for oxygen and carbon dioxide
transport and platelets for coagulation. The process of hematopoietic lineage formation
resembles a branching tree structure (Figure 1). Within the human bone marrow, the apex
point of this classical branching structure is self-renewing HSCs which are typically
characterized by the phenotype CD49f+CD90+CD45RA–CD34+CD38–LIN– (Notta et al.,
2011).

Numerous genetic mutations result in hematopoietic disorders with unbalanced lineage
output, such as RUNX1mutations, leading to familial platelet disorder (Preudhomme et al., 2009),
IRF8mutations resulting inmononuclear phagocytes-related human primary immunodeficiencies
(Hambleton et al., 2011), and mutations in ELANE or HAX1 resulting in severe congenital
neutropenia (Ye et al., 2011). A prime example is GATA2 deficiency syndrome (Hahn et al., 2011;
Hsu et al., 2011; Ostergaard et al., 2011; Spinner et al., 2014; Calvo and Hickstein, 2023).
GATA2 deficiency syndrome, caused by germline mutations in the hematopoietic transcription
factor GATA2, stands out becausemultiple lineages can be affected and patients often present with
monocytopenia, B cell deficiency, NK (natural killer) cell deficiency and Dendritic Cell deficiency
(Dickinson et al., 2011; Novakova et al., 2016). Neutropenia also occurs in GATA2 deficiency
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patients (Pasquet et al., 2013) and inversions of the CD4/CD8T cell ratio
have been reported (Mutsaers et al., 2013; Ganapathi et al., 2015),
indicating that GATA2 plays a crucial role as a key component within
the BM hematopoietic hierarchy, orchestrating the differentiation and
maintenance of diverse hematopoietic cell lineages. Furthermore,
GATA2 deficiency syndrome patients have a high predisposition to
develop (pediatric) myelodysplastic syndrome (MDS) or acute myeloid
leukemia (AML)with amedian age of onset of 17 years (Wlodarski et al.,
2016; Homan et al., 2021), however, before the onset of malignancy, the
disease is also life-threatening due to anemia, bleeding disorders, or
immunodeficiency with nontuberculous mycobacterial infections
(NTM), fungal infections, and human papillomavirus (HPV)
infections (Spinner et al., 2014; Ganapathi et al., 2015; Calvo and
Hickstein, 2023). Therefore, it is vital to understand the role of
GATA2 in the molecular determinants of hematopoietic cell fate.

A schematic representation of the classical tree-like
hematopoiesis model shows formation of the various lineages in
human bone marrow. The HSC population forms the apex of this
hierarchical model, and differentiates into distinct lineages.
Important modulators of the lineage choices are depicted, such as
transcription factors, transcription regulators, membrane-bound
receptors, cytokines, and epigenetic regulators.

2 The role of GATA2 in HSC self-
renewal and differentiation

To preserve the hematopoietic system, HSCs are required to self-
renew. To preserve the self-renewal capacity of HSCs in the BM

microenvironment, a variety of extracellular and intracellular factors
must provide support. Extrinsically, different cellular factors, such as
stem cell factor (SCF) and thrombopoietin (TPO), organize a
coordinated extracellular microenvironment to preserve the self-
renewal and maintenance of HSCs (Stoffel et al., 1999; Ema et al.,
2000; Fox et al., 2002; Yoshihara et al., 2007; Mendelson and
Frenette, 2014; Kokkaliaris et al., 2016). Intrinsically, the self-
renewal of HSCs is influenced by multiple transcription factors,
including GATA2, GFI1, and EVI1, and epigenetic regulatory
molecules, such as TET2 and DNM3TA (Zhu and Emerson,
2002; Hock et al., 2004; Huck et al., 2014; Jeong et al., 2018;
Xavier-Ferrucio and Krause, 2018; Aljoufi et al., 2022).
GATA2 has various roles in supporting the maintenance of adult
HSC characteristics. Complete knockout of Gata2 in mice results in
apoptosis of HSCs (Tsai et al., 1994; de Pater et al., 2013; Gao et al.,
2013). In proliferating HSCs, Gata2 expression is activated by
EVI1 and it was shown that haploinsufficiency of Gata2 impairs
cell cycle inmice (Ling et al., 2004; Yuasa et al., 2005). Interestingly, a
Gata2 reporter mouse model showed that all HSCs have
intermediate levels of Gata2 and that Gata2 is variable in
multipotent hematopoietic progenitor cells, suggesting that
different levels of Gata2 influence lineage determination
(Kaimakis et al., 2016). Interestingly, Gata2 protein levels were
observed to be constantly fluctuating in embryonic definitive
HSPC formation during the endothelial-to-hematopoietic
transition (EHT), indicating that Gata2 expression is a dynamic
process in HSPC generation, likely required for normal lineage
differentiation. Gata2 heterozygous animals displayed reduced
Gata2 protein fluctuations and this may be the underlying cause

FIGURE 1
Lineage differentiation in BM and important regulators of the process.
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of the lineage differentiation defects (Eich et al., 2018). Together, this
shows that the gene dosage of Gata2 in embryonic and adult HSPCs
is crucial for normal lineage differentiation.

As HSCs differentiate into various hematopoietic lineages, they
receive extrinsic and intrinsic signals that prompt specialization
towards specific blood cell lineages, resulting in the gradual
reduction of self-renewal and multi-potency. Extrinsically,
cytokines, including Flt3L, SCF, granulocyte colony-stimulating
factor (G-CSF), interleukin-1 (IL-1), interleukin-3 (IL-3),
interleukin-6 (IL-6), and interleukin-11 (IL-11), coordinate the
development of multipotent progenitors (MPPs) from HSCs. SCF
expression can be detected in several niche cells, including
osteoblasts, endothelial cells and LepR+ perivascular stromal cells,
suggesting the importance of the microenvironment for HSC
maintenance and differentiation (Ding et al., 2012; Zhou et al.,
2014; Zhou et al., 2017).

MPPs are heterogeneous with distinct transcriptomic
characteristics. Combined single-cell barcoding and
transcriptional analysis reported that MPPs in mice could be
further defined as MPP1, MPP2, MPP3, and MPP4, which
showed different features and lineage bias through cell fate
decisions (Rodriguez-Fraticelli et al., 2018). The first lineage
priming separates myeloid and lymphoid differentiation from
erythroid lineage differentiation (Notta et al., 2016; Belluschi
et al., 2018). MPPs are gradually directed to the myeloid and
lymphoid lineages (Velten et al., 2017). Upregulation of Rag1,
Ikzf1, and Ebf1 in the MPP population will lead to lymphoid
bias, while the upregulation of Cebpa and Irf8 will lead to
myeloid bias (Wolfler et al., 2010; Pietras et al., 2015; Lenaerts
et al., 2022). Although differentiation does not occur in a clear step-
wise manner, several progenitors like Lymphoid-Primed
Multipotent Progenitors (LMPPs), Common Myeloid Progenitors
(CMPs) and Common Lymphoid Progenitors (CLPs) can be
recognized and will be discussed as such.

2.1 Erythroid differentiation

Megakaryocytes (Mk) and erythrocytes are the first lineage to
bifurcate from MPPs driven by the lineage-priming module of
GATA2-NFE2 (Sanjuan-Pla et al., 2013; Belluschi et al., 2018)
and are generated from megakaryocyte-erythroid progenitors
(MEPs). EPO induces the specialization of MEPs to erythroid
cells (Li et al., 2014). As development progresses, the size of
erythroid cells gradually decreases, the nucleus gradually
condenses, and terminally enucleates to form mature red blood
cells (Sankaran et al., 2012; Wang S. et al., 2022b; Soboleva and
Miharada, 2022). GATA1 plays a vital role in erythropoiesis as it is
related to essential erythrocyte functions, including heme synthesis,
globin synthesis/switch, and enucleation. As reported,
GATA1 interacts with all known erythrocyte development-related
genes (Ferreira et al., 2005; Ludwig et al., 2022).

Downregulation of GATA2 is an essential signal for Mk and
erythroid lineage commitment. Downregulation of GATA2 results
in a chromatin occupancy switch from GATA2 bound loci to
GATA1 together with FOG1 bound loci. This change in
chromatin occupation, termed “GATA factor switching,” is
indispensable for differentiation towards Mk/erythrocytes and

blocks mast cell differentiation (Tsai and Orkin, 1997; Grass
et al., 2003; Anguita et al., 2004; Dore et al., 2012).

GATA1 is involved in the precise downregulation of
GATA2 expression. GATA2 expression is promoted by the direct
binding of GATA2 itself to the upstream WGATAR motif (Grass
et al., 2003). During erythroid development, upregulation of
GATA1 leads to the recruitment of FOG1 and NuRD, forming
the GATA1-FOG1-NuRD complex that acts to repress
GATA2 transcription through WGATAR motif occupation. As a
result, the GATA2 level is gradually reduced alongside the increase
in GATA1 expression during erythropoiesis (Ferreira et al., 2007;
Gao et al., 2010; Gregory et al., 2010; Mancini et al., 2012).

For Mk maturation and platelet release, TPO induces the
specialization of MEPs to Mks (Ng et al., 2012). During Mk
development, the cell size continues to increase, while DNA
replicates, but does not undergo mitosis. Eventually, this forms a
large and lobulated mature Mk, which then releases platelets into the
circulation. For Mk maturation, GATA1 and FOG1 (ZFPM1) can
mediate the expression of the Mk marker CD41 (Mancini et al.,
2012; Gekas and Graf, 2013). NFE2, FLI1, and RUNX1 are also
critical for the terminal maturation of Mks (Zang et al., 2016).
Transplantations in mice has further clarified the lineage
specification of the erythroid and megakaryocyte lineage,
indicating that TPO induces direct Mk development from HSCs,
bypassing other hierarchical progenitors (Sanjuan-Pla et al., 2013).
Although the downregulation of GATA2 is required for normal Mk
differentiation, atypical Mk were observed in BM from germline
GATA2 mutated patients (Ganapathi et al., 2015). This could point
to a defect in correct downregulation of GATA2 in
GATA2 deficiency patients. In a zebrafish model for
Gata2 deficiency, such a mechanism was observed, where
heterozygous loss of Gata2b (orthologue of GATA2) resulted in
dysplastic erythroid lineage cells caused by excess of open chromatin
at the Gata2b locus (Gioacchino et al., 2021b).

2.2 Myeloid differentiation

Common myeloid progenitors (CMPs) have the capacity to
form CFU-GEMM (colony-forming unit-granulocyte erythroid
macrophage megakaryocyte) in colony-forming assays under the
influence of granulocyte-macrophage colony-stimulating factor
(GM-CSF) and G-CSF (Pietras et al., 2015; Regan-Komito et al.,
2020).

Throughout the progression from MPPs to CMPs, cytokines
such as Flt3L, SCF, and IL-3 continue to sustain the proliferative
capacity of progenitor cells. Under the mediation of SCF and
interleukin-4 (IL-4), CMPs undergo differentiation into mast cells
(Okayama and Kawakami, 2006). The development of basophils is
facilitated by the sustained activity of GM-CSF and IL-3. Under the
influence of GM-SCF and IL-3, CMPs develop into a mature
Basophil. Single cell research showed that the differentiation of
basophils and mast cells is closely linked and they share a bipotent
basophil-mast cell progenitor (Hamey et al., 2021; Wanet et al.,
2021; Miyake et al., 2023). In these progenitors, loss of CD34 and
downregulation of c-Kit indicate differentiation in the direction of
basophils, while loss of integrin β7 in c-Kit+ cells indicate
differentiation in the direction of mast cells. The cooperation
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between GATA2 and PU.1 stimulates the lineage commitment of
mast cells (Walsh et al., 2002). Additionally, several transcription
factors, including CEBPA, IRF8, GATA2, RUNX1, and STAT5, play
a critical role in the maturation of mast cells and basophils (Li et al.,
2015; Sasaki et al., 2015). The highest expression of GATA2 in the
hematopoietic system is detected in basophils and specifically the
GATA2-STAT5 axis is critical for both mast cell and basophil
differentiation (Zon et al., 1991; Li et al., 2015).

Monocytes and granulocytes are derived from the same
progenitors, GMPs, downstream of CMPs (Rodrigues et al., 2008;
Guilliams et al., 2018). The cytokines, SCF, IL-3, GM-CSF, and
M-CSF, are all equally important for the differentiation of GMPs
(Metcalf, 2008; Ushach and Zlotnik, 2016). M-CSF and GM-CSF
induces monocyte/macrophage specialization from GMPs, while
G-CSF induces neutrophil lineage specialization from GMPs via
STAT3 signaling (Semerad et al., 2002; Irandoust et al., 2007;
Ushach and Zlotnik, 2016; Kawano et al., 2017). The generation
of dendritic cells from bone marrow progenitors is highly reliant on
Flt3/Flt3L and is distinct from the further differentiation of
monocytes into dendritic cells (Guilliams et al., 2014; Murphy
and Murphy, 2022). Downstream of cytokines, key lineage-
restricted transcription factors are critical for the hematopoietic
cell fate determination, such as Irf8 (monocytes/dendritic cells) and
Gfi1 (neutrophils) (Wei et al., 2008; Olsson et al., 2016; Sichien et al.,
2016; Murakami et al., 2021). Additionally, heterozygous
Gata2 mutated mice displayed GMP defects. It was shown that
GATA2 plays a critical regulatory role in GMP function through the
GATA2-HES1 signaling axis (Rodrigues et al., 2008).

The critical role that GATA2 plays in GMP formation, myeloid
differentiation and maturation easily explains the regulatory
mechanisms behind the dendritic cell deficiency, monocytopenia,
and neutropenia frequently observed in patients that have been
diagnosed with GATA2 deficiency syndromes (Hsu et al., 2011;
Spinner et al., 2014; Calvo and Hickstein, 2023). Therefore, it is
surprising that these phenotypes are not easily modeled in mice.
This could be due to the absence of secondary injuries like infections
or the fact that mice are bred in a congenic background.
Interestingly, these cytopenic phenotypes have been modeled
using zebrafish, where homozygous deletion of Gata2b leads to
neutropenia (Gioacchino et al., 2021a; Avagyan et al., 2021), and loss
of the intronic enhancer of Gata2a results in monocytopenia and
neutropenia (Dobrzycki et al., 2020; Mahony et al., 2023), providing
direct insights into the molecular effects of GATA2 mutation in
blood lineage differentiation in the hematopoietic system. This,
however, does not explain why only specific lineages are affected
in zebrafish, e.g., the monocyte lineage in Gata2a enhancer mutant
zebrafish, while this lineage is unaffected in Gata2b mutant
zebrafish. This suggests that GATA2 is not only required for the
GMP cell state, but also plays a role in the lineage differentiation
choice these cells make.

2.3 Lymphoid differentiation

The adaptive immune system is indispensable for protection
from invasion of pathogens, by recognition of non-self. The
lymphoid lineage is derived from the common lymphoid
progenitor (CLP) and this cell gives rise to natural killer (NK)

cells, the B cell lineage and T cell lineage. The upregulation of
CD122, a receptor for interleukin-15 (IL-15) in NK cell progenitors
underscores the pivotal role IL-15 plays in orchestrating essential
processes such as proliferation, metabolism, and survival
throughout NK cell differentiation (Huntington et al., 2007;
Carotta et al., 2011; Anton et al., 2015). Recently, the importance
of the GATA2-TGF-b1 axis in regulating NK cell development was
reported. In this axis, GATA2 controls the production of TGF-b1 in
NK cells, showing the influence of GATA2 on NK formation and
explaining the phenotype seem in patients (Wang D. et al., 2022a).

IL-7 acts as the primary cytokine of B cell lineage differentiation
in fetal and adult stages in mice, although IL-7 independent B cell
differentiation is described in human, highly reliant on FLT3 ligand
(Carvalho et al., 2001; Jensen et al., 2008; von Muenchow et al.,
2016). Besides cytokines, intracellular factors will also facilitate B
lymphopoiesis. The simultaneous expression of Lhx2, Hox9 and
Runx1 could drive B lineage fate commitment using pluripotent
stem cells (PSCs) as cell source (Zhang et al., 2022). Bone marrow is
the primary development location of immature B cells. Subsequently
immature B cells can give rise to secondary B cell development in
secondary lymphoid organs, like the spleen and tissue lymph nodes,
where immature B cells continuously develop into naïve mature
B cells (Mueller and Germain, 2009). In secondary lymphoid organs,
naïve mature B cells differentiate into plasma cells (PCs), germinal
center (GC) B cells, and GC-independent memory B cells (MBCs) by
antigen receptor signaling in combination with T follicular helper
cells (Ochiai et al., 2013; Krautler et al., 2017; Ise et al., 2018).
PAX5 is a pivotal transcription factor for B lineage decision, but
shows downregulation during PC generation (Chan et al., 2017;
Calderon et al., 2021). Furthermore, high level of Irf4 is required for
PC differentiation in mice (Ochiai et al., 2013). The differentiation of
GC B cell can also be initiated by the dynamic expression of Irf4,
while GC B cell generated from naïve B would develop into various
B cell subpopulations like memory B and long-lived plasma cells
undergoing complicated primary and secondary immune response
(Ochiai et al., 2013; Akkaya et al., 2020).

Progenitor-T cells are double negative (DN) for CD4 and
CD8 and can be divided into several well-defined cell stages
orderly following the expression of CD44 and CD25: DN1 with
CD44+ CD25-, DN2 with CD44+ CD25+, DN3 with CD44-CD25+,
DN4 with CD44- CD25- (Olariu et al., 2021). These progenitor-T cell
subpopulations are transcriptionally and functionally distinct.
Proliferation mainly occurs in DN1 and DN2, while T cell
receptor gene arrangement starts from DN3 (Olariu et al., 2021).
A single-cell study in mice indicated that the “early T cell
precursor”-DN2 population is characterized by the expression of
Mpo and Bcl11b and gives rise in the middle stage of DN2, while in
the DN3 population the expression of Flt3, Kit, and Spi1 is absent
(Zhou et al., 2019). Subsequently, Naïve T population that double
CD4 and CD8 positive cells are generated from the
DN4 subpopulation. By expressing T cell receptor, alpha/beta
T cells acquire maturation (the formation of CD4+ T or CD8+ T)
in the thymus (Miller, 1961), then act as various types of effector
T cells in the peripheral blood system (Fang et al., 2018).

The role of GATA2 in lymphoid lineage differentiation is poorly
described. However, GATA2 deficiency patients do present with
B/NK lymphopenia and inversions of the CD4/CD8 T cell ratio have
been observed (Mutsaers et al., 2013; Ganapathi et al., 2015; Calvo
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and Hickstein, 2023). So far, there is some evidence that
GATA2 plays a role in T cell development in a mouse study
showing that loss of the intronic enhancer leads to defects in
MPP3 resulting in defective T cell development (You et al.,
2022). Interestingly, GATA2 plays a key role in lymphatic vessel
and valve formation through binding with the key lymphatic
transcriptional regulator Prox1, Foxc2, and Neatc1 in mice
(Kazenwadel et al., 2012; Yamazaki et al., 2014; Kazenwadel
et al., 2015). But if and how this influences the CD4/CD8 ratio is
unclear. B cell lineage differentiation defects were observed in a
zebrafish model for GATA2 deficiency syndrome after deletion of
Gata2b (Avagyan et al., 2021; Gioacchino et al., 2021b). Gata2b
deficiency resulted in increased lymphoid differentiation, but
incomplete B cell differentiation due to a loss of B cell lineage
transcription factor accessibility. What the underlying molecular
mechanism is, is still under investigation.

3 The challenges of modelling defects
in cell fate determination of
GATA2 deficiency syndrome

Human primary cells remain a treasured resource and are widely
used to understand the molecular processes underlying
hematopoietic cell fate. For instance single cell RNA sequencing
from primary patient samples showed clear lineage differentiation
defects that reflect the defects observed in patients due to increases
in Mk/erythroid priming genes such as GATA1 and decreases in
myeloid priming genes and lymphoid priming genes such as SPI1
originating in the HSPC population (Wu et al., 2020). Furthermore,
recent methylation data from GATA2 deficiency patient samples
clearly distinguished symptomatic and asymptomatic patients from
healthy donors and highlighted the changes in methylation that
underlie leukemia development in these patients (Marin-Bejar et al.,
2023).

Unfortunately, due to genetic heterogeneity and the inability to
genetically alter these cells, a true comparative study remains
impossible with primary cells. Therefore, there will always be a
need for model systems to study human disease. Current zebrafish
andmouse models of GATA2 deficiency syndrome were only able to
partially phenocopy the lineage differentiation defects observed in
patients (Dobrzycki et al., 2020; Abdelfattah et al., 2021; Gioacchino
et al., 2021a; Avagyan et al., 2021; Gioacchino et al., 2021b; You et al.,
2022; Mahony et al., 2023). This could be due to significant
disparities between animal models and humans concerning adult
size, aging and niche components. The differences may be caused by
variations in the quantities of hematopoietic progenitor cells (HPCs)
and osteoblasts between these species (Jung et al., 2005; Asada et al.,
2015). Differences in population sizes may have impact on the
concentration of signaling molecules in human and mouse bone
marrow. Furthermore, there are significant differences in cytokine
release by the various niche components and differences in cytokine
requirements of HSPCs between mouse and human (Scheerlinck,
2014).

To solve these barriers, ex vivo human cell models can be used
like induced pluripotent stem cells (iPSCs) and embryonic stem cells
(ESCs). In iPSCs and ESCs the embryonic hematopoiesis can be
simulated, but up to a limited extent. The three waves of embryonic

hematopoiesis, from 1) early primitive hematopoiesis, to 2)
definitive progenitor hematopoiesis, to 3) definitive HSC
formation can only be partially simulated (Sturgeon et al., 2014;
Ng et al., 2016; Dzierzak and Bigas, 2018), and the formation of
definitive HSCs has not been documented to date. A clear advantage
of these models is the fact that these cell models can easily be
genetically altered. Atkins et al. also utilized both human ESCs and
iPSCs to understand human primitive embryonic hematopoiesis
and further detailed the developmental mechanisms of erythroid-
myeloid progenitor and lymphoid lineages (Atkins et al., 2022).
iPSCs have been used to investigate lineage development (Carcamo-
Orive et al., 2017), of B cell (Zhang et al., 2022), T cell (Wang Z. et al.,
2022c), NK cell (Zhu et al., 2020; Woan et al., 2021), erythroid
lineage (Xin et al., 2021) andmyeloid lineage (Mulero-Navarro et al.,
2015), providing insights into the molecular mechanisms of various
lineages decisions, cellular maturation and cell function. Besides
modelling normal hematopoiesis, pluripotent stem cells have been
used to study malignant hematopoiesis. Patient-specific iPSCs have
been used to understand the mechanisms of leukemic
transformation, as well as screening patient-specific drugs
(Turhan et al., 2019; Olofsen et al., 2020; Bigas et al., 2022;
Olofsen et al., 2023). It must be noted that iPSC of patients with
GATA2 mutations showed only marginal differences. Specifically,
GATA2 patient-specific iPSCs exhibited nuanced differentiation
phenotypes dependent upon the tissue which the iPSCs were
derived from. Hematopoietic maturation was reduced from iPSC
where GATA2 was mutated using CRISPR/Cas9. This heterogeneity
in differentiation outcomes hampers the investigation of the role of
GATA2 in lineage differentiation using this model system (Jung
et al., 2018).

In addition to employing human cell models, the utilization of
humanized animal models represent a valuable method to
investigate the functional role of GATA2 in hematopoietic
lineage determination. The most common humanized animal
model to study hematopoiesis is the NSG immunodeficient
mouse model, which allows us to study the mechanism of
hematopoietic lineage determination with human cells in vivo
(Adigbli et al., 2020). By xenotransplantation, it is possible to
trace the differentiation of HSPCs carrying GATA2 mutations.
However, as previously elucidated, it is crucial to consider the
impact of microenvironmental components on hematopoiesis.
Although the differentiation of human HSPCs can be activated in
mouse bone marrow by the expression of human cytokines, the
biological difference between mouse and human should be
considered and may not represent the best model to study
lineage differentiation defects.

Another complication in the study of GATA2 deficiency
syndrome is the vast variety between patients. Some patients
remain asymptomatic, while others suffer from immune
deficiencies and yet others develop myeloid malignancies at an
early age. Important considerations are the many different
mutation types that are found between these patients, but also
the environmental factors that contribute to our health,
i.e., secondary injuries like infection. Inflammation has been
recognized as driver of leukemogenesis and could contribute to
disease progression and the variety observed between these patients
(Essers et al., 2009; Rodriguez-Meira et al., 2023). A more likely
model for GATA2 deficiency may thus be the current mouse models
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with an addition of a secondary injury like transplantation or
stimulation with LPS, know to induce inflammation (Abdelfattah
et al., 2021).

4 Conclusion and discussion

GATA2 has a pivotal role in HSC self-renewal and
hematopoietic lineage determination. The precise expression
regulation of GATA2 has a profound impact on hematopoietic
development, as high expression of GATA2 is required for HSC self-
renewal and maintenance, while procedural downregulation is
imperative to facilitate downstream lineage differentiation. Recent
advances in the field in terms of new animal models to understand
the precise role of GATA2 in lineage differentiation can significantly
contribute to the development of treatments for the life-threatening
cytopenias from which the majority of GATA2 deficiency syndrome
patients suffer (Gioacchino, et al., 2021a; Gioacchino et al., 2021b;
Mahony et al., 2023). In recent years, the employment of single cell
sequencing technologies resulted in remarkable progress in the
comprehension of the molecular regulatory processes governing
hematopoietic cell fate determination (Ranzoni et al., 2021; Zeller
et al., 2023; Zhang et al., 2023). These technological advancements
have supported and continue to support the deconstruction of the
functions of GATA2 in hematopoiesis, and the pathophysiological
mechanisms behind GATA2 deficiency syndrome. The precise
mechanism behind GATA2 deficiency-related immunodeficiency,
the variation between patients and the progression to myeloid
leukemia remains to be elucidated. Furthermore, considering the
different genetic backgrounds and inflammatory burden, caution
should be exercised when addressing research questions and
conclusions between human and animal models. Thus, there is a
need to continue the development of animal or human cell-based
research models.
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