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The endothelium layer lining the inner surface of blood vessels serves relevant
physiological functions in all body systems, including the exchanges between
blood and extravascular space. However, endothelial cells also participate in
innate and adaptive immune response that contribute to the pathophysiology
of inflammatory disorders. Type I Interferon (IFN) signaling is an inflammatory
response triggered by a variety of pathogens, but it can also be induced by
misplaced DNA in the cytosol caused by cell stress or gene mutations. Type I
IFN produced by blood leukocytes or by the endothelium itself is well-known to
activate the interferon receptor (IFNAR) in endothelial cells. Here, we discuss the
induction of type I IFN secretion and signaling in the endothelium, specifically in
the brain microvasculature where endothelial cells participate in the tight blood-
brain barrier (BBB). This barrier is targeted during neuroinflammatory disorders
such as infection,multiple sclerosis, Alzheimer’s disease and traumatic brain injury.
We focus on type I IFN induction through the cGAS-STING activation pathway in
endothelial cells in context of autoinflammatory type I interferonopathies,
inflammation and infection. By comparing the pathophysiology of two separate
infectious diseases—cerebral malaria induced by Plasmodium infection and
COVID-19 caused by SARS-CoV-2 infection—we emphasize the relevance of
type I IFN and STING-induced vasculopathy in organ dysfunction. Investigating the
role of endothelial cells as active type I IFN producers and responders in disease
pathogenesis could lead to new therapeutic targets. Namely, endothelial
dysfunction and brain inflammation may be avoided with strategies that target
excessive STING activation in endothelial cells.
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1 Introduction

The brain vasculature structure contributes to a particular environment essential for
neuronal functioning. The selective permeability of the blood-brain barrier (BBB) protects
the brain from neurotoxins while allowing the supply of nutrients via solute carriers and the
elimination of by-products of brain metabolism via efflux transporters [reviewed in
(Sweeney et al., 2019)]. BBB dysfunction underlies a large number of neurologic
diseases, including those triggered by pro-inflammatory responses to viruses and to the
malaria parasite (Patabendige and Janigro, 2023).
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Type I interferons (IFNs) are inflammation mediators induced
via activation of pathogen recognition receptors bymicrobial nucleic
acids or by endogenous DNA misplaced in the cytosol (Wu and
Chen, 2014). The type I IFN response is pleiotropic: antireplicative
in viral infections, immunosuppressive in multiple sclerosis
(Trinchieri, 2010) or autoinflammatory in interferonopathies
(Crow et al., 2022). The multiple beneficial and deleterious roles
of type I IFN in the immune response against pathogens is
exemplified by SARS-CoV-2 infection (Sposito et al., 2021), and
has long been known in the field of Plasmodium infection, which
causes malaria (Sebina and Haque, 2018). Experimental and human
data suggest that during infection progression, the time windows of
type I IFN secretion, the innate immune receptors involved, and the
cells-types activated, are main determinants of whether type I IFN
responses will potentiate anti-viral or anti-parasitic mechanisms or
instead heighten immunopathology and tissue damage events
(Sebina and Haque, 2018; Chiale et al., 2022).

Here, we discuss the role of endothelial type I IFN response
during disease. In the last 5 years, the induction of type I IFN via the
cGAS-STING pathway was linked to alterations in the vasculature
(vasculopathy) and inflammation of the blood vessels (vasculitis).
Excessive type I IFN induction can be caused either by gain of
function mutations in the STING gene such as in STING-associated
vasculopathy with onset in infancy (SAVI), a type I interferonopathy
or by STING activation during infectious diseases. STING activation
in the brain endothelium leads to leukocyte recruitment and
contributes to Plasmodium-induced cerebral vasculopathy (Pais
et al., 2022). Furthermore, STING activation by mitochondrial
DNA appears to be part of the lung vasculopathy caused by
SARS-Cov-2 (Domizio et al., 2022). Thus, STING inhibition in
endothelial cells may open new avenues for therapeutic intervention
aiming at protecting the endothelium in several pathologies.

2 A brief overview of the brain
vasculature

Endothelial cells (ECs) are in close contact with the bloodstream
and constitute a selective barrier to circulating molecules, cells, and
pathogens. In the luminal side, ECs expose a complex network of
macromolecules, mostly negatively charged membrane-bound
proteoglycans, glycolipids, and glycosaminoglycans that form the
glycocalyx. The glycocalix contributes to cell signaling and ECs
properties such as mechanotransduction and adhesion of cells and
molecules to the endothelium (Reitsma et al., 2007; Krüger-Genge
et al., 2019). On their basolateral surface, a glycoprotein basement
membrane, produced by ECs themselves, delimits the surrounding
tissues.

The term endothelium, originally coined by the Swiss anatomist
Wilhem His in 1865, designates the inner layer of ECs that
participate in many vascular physiological functions such as
permeability, blood cell trafficking, nutrient and oxygen
transport, hemostatic balance and control of vasomotor tone, as
well as innate and adaptive immunity (Aird, 2007; Claesson-Welsh
et al., 2021; Amersfoort et al., 2022). Currently, three main types of
endothelium are considered (Aird, 2007; Hennigs et al., 2021; Gifre-
Renom et al., 2022), the continuous endothelium, fenestrated
endothelium and discontinuous endothelium. The most common

in the brain is the continuous endothelium of capillaries
(corresponding to 85% of the brain vessels length) (Sweeney
et al., 2019). The microvascular endothelial cells are connected by
tight junctions formed by transmembrane proteins such as claudin 5
(CLDN-5), occludins, junctional adhesion molecules and
cytoplasmic adaptors, such as zona occludens proteins (e.g., ZO-
1) (Sweeney et al., 2019). These tight junctions, together with the
lack of fenestrations and low pinocytic activity, prevent the
paracellular molecular passage, establishing a tight endothelial
barrier against the flow of solutes and water-soluble molecules
from the blood into the brain and contributing to the blood
brain barrier (BBB). The BBB structure is further strengthened
by the basement membrane and interactions between the
endothelial cells and CNS cells, pericytes, astrocytes and
microglia on the abluminal side. Functionally, this structure
provides a neurovascular unit, which integrates vascular and
neuronal activities in order to maintain brain homeostasis
[reviewed in (McConnell and Mishra, 2022)]. These unique
endothelial cell features are essential to protect the brain against
harmful blood-borne factors and pathogens.

Site-specific endothelium structural properties are dynamically
regulated during embryogenesis and postnatal period and can be
modulated under pathologic conditions (Aird, 2007; Augustin and
Koh, 2017; Potente and Mäkinen, 2017; Gifre-Renom et al., 2022).
The development of the brain vasculature and the establishment of
the BBB depend on the canonical Wnt/β-catenin pathway. Namely,
the WNT7A/WNT7B ligands together with two membrane
proteins, Reck (reversion inducing cysteine rich protein with
kazal motifs) and Gpr124 (an orphan G protein-coupled
receptor), promote the BBB formation and maintenance (Cho
et al., 2017). Endothelial-specific Gpr124 deficient mice are more
susceptible to stroke and display decreased expression of Wnt-
targeted genes such as Cldn5 in brain endothelial cells while
expression of activated β-catenin restores BBB integrity (Chang
et al., 2017).

Endothelial cell heterogeneity and the dynamics of endothelium
responses to the changing microenvironment constitute a main
constrain to fully study its function, particularly during disease
(Aird, 2005). Currently, advances in single-cell transcriptomics are
contributing to deeper analysis of EC heterogeneity and to further
understanding its dysfunction during disease (Schaum et al., 2018;
Zhao et al., 2018; Khan et al., 2019; Kalucka et al., 2020; Jeong et al.,
2022; Jones et al., 2022). A single-cell study of the normal and
malformed human brain vasculature identified specific endothelial
gene expression signatures in arteries, capillaries, venules and veins
by using previously defined gene markers of these different
vasculatures (Winkler et al., 2022). Pro-inflammatoy, pro-
angiogenic and pro-permeability genes were upregulated in the
ECs of arteriovenous malformations, which correlated with
increased number of CD8+ T cells and myeloid immune cells in
the perivascular space (Winkler et al., 2022).

Endothelial cells express several innate immune receptors that
recognize blood-born factors contributing to immune responses
through several mechanisms (Pais and Penha-Gonçalves, 2019).
Classical functions include, 1) regulation of innate and adaptive
immune cells recruitment and extravasation from the circulation
into the tissue parenchyma, through differential expression of
adhesion molecules and chemokines; and 2) antigen presentation
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that is mostly restricted to subsets of ECs with capacity to capture
antigen and processing it for presentation, thus performing as semi-
professional antigen presenting cells (APC) (Pober and Sessa, 2007;
Amersfoort et al., 2022). More recently, tissue-specific subsets of ECs
have been observed to modulate the immune response in particular
organs (Amersfoort et al., 2022). Murine and human single-cell
transcriptional analysis enabled the transcriptomic profiling of EC
subsets with specialized biological features. Interestingly, a
population of capillary ECs expressing interferon-response genes
(Ifit1, Ifit3, Ifit3b, Igtp, Isg15, Stat1, Tgtp2, Usp8), and thus
resembling an “interferon-activated EC population,” was
identified in healthy mouse organs, namely, brain, heart, muscle
and spleen (Kalucka et al., 2020). The authors of this study
hypothesize that this particular EC population might play a role
in immunological surveillance. These findings also point to a high
degree of heterogeneity in the activation of type I IFN in brain ECs,
which requires further investigation.

3 Type I IFN response and IFNAR
signaling

Interferon (IFN) was originally coined to describe a cell-released
“interfering agent” that inhibited influenza virus growth in hen’s
eggs (Isaacs and Lindenmann, 1957). Type I IFNs, however, have
been linked to immunomodulatory, antiproliferative and neurologic
functions [reviewed in (Crow et al., 2019)]. IFN-α, IFN-β, IFN-ε,
IFN-κ and IFN-ω are all members of the type I IFN gene family,
clustered in the human chromosome 9 and mouse chromosome 4.
The biological activities of IFNα (13 subtypes in humans and 14 in
mice) and IFNβ are mostly studied because infection induces
secretion of these particular interferons in high amounts
[reviewed in (Fox et al., 2020)].

The detection of secreted type I IFNs is hindered by the low
sensitivity of currently available ELISA-based assays. On the other
hand, type I IFN signaling is usually indirectly measured by the
expression of genes induced upon Type I IFN stimulation, the so-
called IFN- stimulated genes (ISGs). The generation of reporter
mouse strains such as the IFNβ-luciferase reporter mice, which
express luciferase under the control of the IFN-β promoter, allowed
for the tracking of IFNβ producer cells in vivo and offer a direct
measure of IFNβ expression levels in different tissues (Lienenklaus
et al., 2009).

Interestingly, IFNα was the first biotherapeutic approved by
regulatory agencies in the 1980s, and it was initially used to treat a
type of leukemia and liver viral infections. IFNβ was approved in
1993 as a treatment for the relapsing-remitting form of multiple
sclerosis (Borden et al., 2007).

3.1 IFNAR signaling

One of the most intriguing aspects of the type I IFN response is
that all type I IFNs bind to and signal through the same receptor: the
type I IFN receptor (IFNAR) that is ubiquitously expressed. IFNAR
is composed of the high-affinity binding subunit IFNAR2 and the
signaling transduction subunit IFNAR1. The associated Janus
activated kinase 1 (JAK1) and thyrosine kinase 2 (TYK2)

undergo autophosphorylation upon type I IFN binding and
activate the JAK-STAT (“signal transducer and activator of
transcription”) signaling pathway [reviewed in (Ivashkiv and
Donlin, 2014)]. The IFN-stimulated gene factor 3 (ISGF3)
complex is assembled by phosphorylated STAT1 and STAT2, as
well as by the interferon regulatory factor 9 (IRF9). ISGF3 acts as a
transcriptional factor that binds to IFN-stimulated response
elements (ISREs) and induces ISGs expression (e.g., Mx1, Ifit1,
Isg15 and Usp18) [reviewed in (Schneider et al., 2014)]. Several
mechanisms contribute to IFNAR-mediated responses upon
stimulation by type I IFN molecules: 1) the different binding
affinities to the receptor of different type I IFN molecules (Fox
et al., 2020); 2) the assembling of different STAT complexes
(homodimers and heterodimers of STAT3, 4, 5 and 6); 3) the
activation of additional signaling pathways (e.g., PI3-AKT,
p38 and ERK); 4) the priming of type I IFN response by
different cytokines (e.g., IFNγ, IL1β and IFNβ) and 5) the
negative regulation of type I IFN signaling [reviewed (van Boxel-
Dezaire et al., 2006)].

3.2 Induction of type I IFN

The induction of type I IFN is primarily mediated by innate
pathogen recognition receptors (PRRs) known to detect nuclei
acids [reviewed in (Gazzinelli et al., 2014)]. Endosomal
membrane Toll-like receptors (TLRs) detect RNA (TLR3,
7 and 8) and DNA (TLR9) from bacteria and viruses exposed
in the lumen of endosomes and lysosomes. Retinoic acid
inducible gene (RIG) I-like receptors, including the melanoma
differentiation associated gene 5 (MDA5) and RIG I receptors,
are activated by synthetic or viral-derived double-stranded RNA
(dsRNA) present in the cytosol. After binding the RNA, the
caspase activation and recruitment domains (CARDs) of these
cytosolic receptors interact with a CARD domain of the outer
mitochondrial antiviral signaling (MAVS) protein. Upon MAVS
oligomerization, TNF receptor-associated factor (TRAF)
proteins are recruited to form the “MAVS signalosome”. This
complex then initiates a signaling cascade that results in
phosphorylation of the type I IFN transcription factors
IRF3 and IRF7 by TANK-Binding Kinase 1 (Refolo et al., 2020).

The enzyme cyclic-GMP-AMP (cGAMP) synthase (cGAS)
binds to cytosolic dsDNA. As a result, cGAS undergoes catalytic
pocket changes and synthesizes 2′3′-cyclic guanosine-adenosine
mono phosphate (2′3′-cGAMP) [reviewed in (Wan et al., 2020)].
2′3′-cGAMP functions as a second messenger and activates the
stimulator of IFN genes (STING) receptor, also known as stimulator
of interferon response cGAMP interactor 1 (STING1) or
TMEM173. A critical step in type I IFN induction is the
trafficking of STING from the endoplasmic reticulum (ER) to the
Golgi compartments, which is triggered by interaction of 2′3′-
cGAMP with STING [reviewed in (Ergun and Li, 2020)]. The
cGAS-STING pathway is critical for the response to cellular
damage that misplaces mitochondrial and genomic dsDNA, and
for the response to infection by detecting microbial dsDNA.
Activation of the cGAS-STING pathway by self-DNA in non-
hematopoietic cells such as the endothelium seems to contribute
to the pathophysiology of several autoinflammatory and
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neurodegenerative disorders [reviewed in (Skopelja-Gardner et al.,
2022)].

3.3 STING

In addition to being induced upon dsDNA sensing via the
cGAS-STING pathway, type I IFN responses can be triggered by
cGAS-independent STING activation. STING is a transmembrane
ER protein with activation binding site in the homodimer’s cytosolic
domain. STING dimers undergo a conformational change in
response to cGAMP binding, which “closes” the dimer and
facilitates the recruitment of additional STING molecules
[reviewed in (Ergun and Li, 2020)]. In addition to 2′3′-cGAMP,
cyclic di-AMP secreted by bacteria directly binds STING, albeit with
a lower binding affinity [reviewed in (Cheng et al., 2022)].
Interestingly, STING bystander activation may occur by cGAMP
transferred from nearby DNA-responder cells (Ablasser et al., 2013).
One of the identified cGAMP intercellular transporters is the
SLC19A1, known as a ubiquitously expressed high-affinity
importer of reduced folates (Ritchie et al., 2019). After cGAMP
binding, the cGAMP-STING complex translocates to the Golgi
compartment via the ER-Golgi intermediate compartment
(ERGIC) and the vesicle coat protein COP-II (Gui et al., 2019).
The STING C-terminal tail (CTT), comprising its last
40 aminoacids, is required for TBK1/IKKε recruitment at the
Golgi (Liu et al., 2022). Interestingly, the CTT domain seems to
be present only in vertebrates while the cyclic dinucleotide binding
domain is evolutionary conserved and present in sea anemones
(Kranzusch et al., 2015).

Palmitoylation, a posttranslational modification critical for
STING signaling, also occurs in the Golgi compartment (Mukai
et al., 2016). Binding of TBK1 to STING oligomers causes
autophosphorylation of TBK1, which further phosphorylates the
tails of neighboring STING molecules, forming a docking site for
TBK1 to phosphorylate IRF3 (Zhang et al., 2019). Subsequent
translocation of IRF3 phosphorylated dimers to the nucleus
activates the transcription of type I IFN and of other pro-
inflammatory cytokine genes (Liu et al., 2015). In addition,
STING activation has been demonstrated to activate NF-kB and
induce pro-inflammatory genes (TNF, IL1β, and IL-12p40) in
macrophages independent of TBK1 (Balka et al., 2020). STING
can be transported back to the ER through COP-I vesicles or be
recruited to the lysosomes, where it is degraded (Taguchi et al.,
2021).

Remarkably, disruption of STING post-Golgi trafficking induces
tonic type I IFN signaling even in the absence of pathogenic
exposure to DNA. After deletion of the trans-Golgi coiled coil
protein GCC2, which regulates Golgi-exit and STING
degradation by the lysosome, STING remained in the ER and
Golgi. This was sufficient to sustain phosphorylated STING,
TBK1 and IRF3 levels in fibroblasts (Tu et al., 2022), which
nevertheless require basal cGAS activity to induce ISGs. In
fibroblasts and bone marrow-derived macrophages, however,
blocking STING lysosomal degradation could promote cGAS-
independent ISG expression (Chu et al., 2021). The recently
proposed “basal flux” model of STING activation suggested that
trafficking interruption of STING can activate type I IFN signaling

(Jeltema et al., 2023). According to this model, cell trafficking defects
causing protein aggregation in neurodegenerative diseases may also
contribute to constitutive activation of STING and disease-
associated pathology.

STING drives authophagosome formation and several forms of
cell death in addition to the canonical STING pathway of type I IFN
and pro-inflammatory cytokines induction [reviewed in (Zhang
et al., 2021)]. cGAMP-stimulated autophagosome formation
occurs in STING-enriched ERGIC areas, accompanied by
LC3 recruitment and lipidation (Gui et al., 2019). Authophagy
induction is independent of the CTT STING domain suggesting
that this ancient mechanism, also with antiviral function, precedes
type I IFN induction in vertebrates (Gui et al., 2019). In mice with a
mutation that impairs STING-dependent type I IFN induction,
STING activation lead to T cell death, and affected T cell-
mediated tumor immunity (Wu et al., 2020). In contrast, another
study showed that apoptosis required IRF3 and type I IFN activation
in primary human T cells, whereas inhibition of T cell growth was
IRF3-independent (Kuhl et al., 2023; Kuhl et al., 2023).

In conclusion, STING activation operates both by type I IFN-
dependent and independent mechanisms, with diverse effects in the
immune response. In this review, we address the type I IFN signaling
pathway in endothelial cells associated with inflammation and BBB
dysfunction. Based on recent research, we discuss the role of STING
activation in endothelial cells, in type I IFN production, and in
inflammatory responses, a rapidly expanding field of study.
Nonetheless, there is significant evidence that non-canonical
STING activation is involved in the pathogenesis of several
diseases, independently of type I IFN production. (Wu and Yan,
2022).

4 Type I IFN signaling in the
endothelium

Activation of type I signaling in endothelial cells may be
triggered by infection but it is also caused by gene mutations,
response to cellular stress and changes in inflammatory and
ageing-related circulating factors (Chen et al., 2020). The type I
IFN response in the endotheliummay have a major impact on organ
function by increasing vascular permeability, inflammatory cell
recruitment, and angiogenesis.

4.1 Interferonopathies

Interferonopathies are inherited monogenic autoinflammatory
disorders characterized by overactivation of type IFN signaling.
Since 1984, when Jean Aicardi and Françoise Goutières described
the first interferonopathy, 38 identified gene mutations have been
associated to interferonopathies [reviewed in (Crow et al., 2022)].

The Aicardi–Goutières syndrome (AGS) was defined as a
familial encephalopathy of non-viral origin with increased levels
of IFNα in the serum and in cerebral spinal fluid. The majority of
interferonopathies are caused by gene mutations responsible for
cytosolic accumulation of nucleic acids, which promotes innate
immune responses against self-DNA via activation of type I IFN
signaling. Interferonopathies are phenotypically heterogeneous with
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a wide range of clinical features, but the majority share neurological
manifestations. Furthermore, cerebral and skin vasculopathy
(d’Angelo et al., 2021; Xin et al., 2011) are common, highlighting
that abnormal type I IFN responses target endothelial cells. In

particular, STING-associated vasculopathy with onset in infancy
(SAVI) is caused by de novo mutations in TMEM173, the gene
encoding STING, and is associated with a type I IFN response
signature and increased blood levels of CXCL10 chemokine, a well-

FIGURE 1
The endothelium as initiator and target of type I IFN responses. (A) Viruses and Plasmodium-infected erythrocytes (IE), neutrophil extracellular traps
(NETs) and cytokines such as TNF released by monocytes trigger type I IFN in the endothelium. STING activation is a main pathway of IFNα/β gene
transcription induction in the endothelium. Cellular stress produced by infection or TNF causes leaky mitochondrial DNA that binds cGAS and generates
2′3′-cGAMP, which activates STING (1). Extracellular particles (EPs) derived from IE (2), as well as defects in STING trafficking across endoplasmatic
reticulum, Golgi and lysosomal compartments (3) also activate the STING pathway. STING recruits TBK1 in the Golgi, which phosphorylates IRF3 and
induces IFNβ transcription (4). TNFR signaling induces IFNβ through IRF1, in cooperation with other TNF-activated transcription factors, NF-κB and AP1
(5). (B) Paracrine IFNAR1 signaling induction by endothelial secreted IFNα/β activates the phosphorylated STAT1/STAT2 dimer with IRF9 complex that
migrates to the nucleus and directs ISGs expression (1). Type I IFN signaling induces immunoproteasome activation (2) and promotes MHC class I antigen
presentation (3). Immunoproteasome activation inhibits the Wnt/β-catenin signaling pathway (4), which is associated with downregulation of tight
junction components (5). On the other hand, type I IFN signaling induces CXCL10 secretion (6), leading to leukocyte recruitment to the endothelium,
namely, CD4+ and CD8+ T cells. Activation of CD8+T cytotoxic cells through interaction with MHC class I peptide complexes on the endothelium layer
combined with decrease of tight junction proteins contribute to loss of endothelial barrier function (7).
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known ISG (Liu et al., 2014). SAVI syndrome is distinguished by the
early-onset of systemic inflammation in children, manifested by
severe cutaneous vasculopathy and pulmonary inflammation.
Inflammatory neutrophil and T-lymphocyte infiltrates are found
around damaged vessels, some of which are occluded by fibrin
deposits. Endothelial inflammation, intravascular coagulation and
enhanced expression of adhesion molecules by vascular endothelial
cells were reported in SAVI (Liu et al., 2014).

4.2 TNF-dependent type I IFN signaling

The primary target of circulating TNF during inflammation is
the endothelium. TNF promotes expression of cell adhesion
molecules (CAMs) on the vascular endothelium and production
of chemokines. These responses contribute to the recruitment,
activation and transmigration of leukocytes across the
endothelium (Amersfoort et al., 2022). TNF association with type
I IFN signaling was first uncovered by its antiviral activity in
hepatocytes (Mestan et al., 1988). Only after 20 years was the
mechanism found in TNF-activated human macrophages
(Yarilina et al., 2008). TNF activates the IRF1 transcription
factor, which together with NF-kB and AP1 results in IFNβ
production. In turn, IFNβ acts in an autocrine manner via
IFNAR, activating STAT1 and type I IFN response genes such as
the chemokine CXCL10 (Yarilina et al., 2008). IFNAR1 signaling is
also required in vivo during TNF-induced lethal shock (Huys et al.,
2009).

In endothelial cells, TNF also stimulates the same IRF1-IFNβ-
IFNAR-STAT1 autocrine loop through TNFR2 and TNFR1. In
mice, intravenous injection of soluble TNF induces STAT
phosphorylation and the expression of CXCL10 protein in
glomerular endothelial cells, which is required for kidney
monocyte recruitment (Venkatesh et al., 2013). The role of type
I IFN in leukocyte recruitment was further demonstrated in a
mouse model of TNF-induced peritonitis. Upon TNF treatment,
IFNAR−/− mice have lower recruitment of leukocytes (CD45+ cells)
including CD4+ T lymphocytes into the peritoneal cavity as
compared to wild-type mice (Anastasiou et al., 2021).
Interestingly, T lymphocyte recruitment mediated by IFNAR
signaling depended on endothelial-specific STING expression.
TNF stimulated endothelial cells induced T cell transendothelial
migration (TEM) in a STING-dependent manner in vitro. STING
activation resulted in type I IFN production, which promoted
T cell TEM by inducing endothelial CXCL10 expression via the
IFNAR-JAK/STAT axis. Adhesion molecules such as VCAM-1,
ICAM-1, and PECAM-1, on the other hand, did not differ in
expression between wild-type and STING-deficient endothelial
cells when stimulated by TNF (Anastasiou et al., 2021; Pais
et al., 2022), which indicates that T cell adhesion to the
endothelium was unaffected.

Another possibility, as described in human monocytes, is that
increased mitochondrial DNA in the cytosol due to impaired
mitochondrial function causes a type I IFN response via the
cGAS-STING pathway in TNF-activated endothelial cells
(Willemsen et al., 2021). This induction of type I IFN via TNF
response may play an important role in endothelial response to
infection and chronic inflammation.

4.3 Type I IFN response in brain endothelial
cells

Brain endothelial cells activate innate immune mechanisms in
response to systemic alterations, which may have both deleterious
and beneficial impact in brain functioning (Pais and Penha-
Gonçalves, 2019). Among these innate responses, type I IFN has
been linked to cognitive impairment and neuroinflammation in
virus-induced sickness (Blank et al., 2016), Aicardi-Goutières
syndrome (d’Angelo et al., 2021), stroke (Kang et al., 2020),
brain injury (Abdullah et al., 2018), multiple sclerosis (MS)
(Raftopoulou et al., 2022) and neurodegenerative diseases such as
Alzheimer’s disease (AD) (Roy et al., 2022). In addition, type I IFN
plays a role in CNS homeostasis (Goldmann et al., 2016). The
activation of type I IFN signaling in the brain endothelium could
represent an initial response to pro-inflammatory factors in
circulation, which can subsequently be amplified by other brain
cells (Owens et al., 2014). On the other hand, production of type IFN
by CNS resident cells (Raftopoulou et al., 2022) can also activate
IFNAR receptor on brain endothelium. Understanding the type I
IFN response in brain endothelial cells may identify important cues
in the cross-talk between the periphery and CNS (Figure 1).

Type I IFN signaling in brain endothelial cells has primarily been
studied in multiple sclerosis (MS) and viral infection throughout the
years, with both beneficial and deleterious effects on the BBB.
Administration of IFNβ is one of the most successful treatments
of MS. The main therapeutic benefit resides in IFNα/β-mediated
suppression of pathogenic T cells, but in vitro studies show an
additional direct impact of interferons on the BBB. IFNβ inhibits
both the expression of adhesion molecules and the transendothelial
migration of monocytes (Floris et al., 2002). Furthermore, IFNβ
prevents the loss of BBB function caused by astrocyte depletion or by
incubation with histamine (Kraus et al., 2004). Similarly, West Nile
virus (WNV) and mouse hepatitis virus (MHV) neuroinvasion are
prevented by viral-induced IFNβ, which reinforces endothelial tight
junctions and improves its barrier function (Daniels et al., 2014).

In part, type I IFN effects on the BBB were linked to the activity
of Rho GTPases, a family of signaling molecules that affects tight
junction stability and paracellular permeability by controlling
cytoskeletal dynamics (Beckers et al., 2010). In an in vitro BBB
model, TNF and IL-1β activate RhoA, which impairs the barrier
function and increases West Nile virus transendothelial migration.
IFNβ, on the other hand, decreases RhoA activity while increasing
Rac-1 thereby stabilizing the BBB (Daniels et al., 2014). Animal
studies have also shown that type I IFN protects the BBB. Mice pre-
conditioning with poly I:C, a synthetic dsRNA, elicits IFNAR
signaling in the brain endothelial cells and protects against
ischemia-induced brain injury (Gesuete et al., 2012). MRI studies
also show that systemic administration of IFNβ after stroke reduces
vasogenic edema, leukocyte infiltration and brain volume lesion in
rats (Veldhuis et al., 2003). In contrast, recent studies found that
IFNβ has a negative impact on the brain endothelium.
Administration of IFNβ into brain lesions after mild traumatic
brain injury prevents meningeal vascular repair (Mastorakos
et al., 2021). Interestingly, DNA in neutrophil extracellular traps
(NETs) activate the cGAS-STING pathway inducing IFNβ and
cerebrovascular complications after stroke (Kang et al., 2020;
Wang et al., 2021). In this setting, IFNβ in the brain caused tight
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junction disruption and BBB permeability, although it is unclear
whether IFNβ induction or IFNAR signaling were directly triggered
in brain endothelial cells. DNAse treatment and STING silencing
both reversed this detrimental effect and promoted the vascular
remodeling following stroke (Kang et al., 2020).

Further supporting a type I IFN detrimental effect on the brain
vasculature, MDA5-dependent type I IFN induction by viral
infection delayed BBB repair in models of post traumatic brain
injury (TBI) and cerebrovascular injury. (Mastorakos et al., 2021).
Activation of IFNAR signaling in the myeloid cell compartment is
required for this effect, while it is unclear if downstream IFNAR
signaling on brain endothelial cells leads to vascular impairment.
In a transgenic mouse model of AD, a type I IFN signature in brain
endothelial cells was linked to increased BBB permeability and
amyloid-beta deposition (Jana et al., 2022). This endothelial
response could be secondary to the disease itself, as activation
of IFNAR signaling specifically in microglia and neurons drives
neuropathology in this AD mouse model (Roy et al., 2022).
Recently, analysis of post-mortem brain tissue from MS and
AD patients showed colocalization of calnexin, a marker of
activated endothelial cells, with STING in brain capillaries
(Ferecskó et al., 2023). The authors show that activation of
human brain endothelial cells with palmitic acid, an
inflammatory agent in neurodegenerative diseases, leads to the
release of mitochondrial DNA resulting in STING activation,
IRF3 phosphorylation and IFNβ production.

Although several neurologic conditions activate type I IFN
signaling in the brain endothelium, the connection to the
pathology is not always clear.

Cerebral malaria (CM), a severe form of malaria, is a neurologic
syndrome caused by Plasmodium falciparum infection with a
mortality of up to 25% even among hospitalized and treated
children (Idro et al., 2010; Savonius et al., 2023). CM develops
during the parasite blood stage of infection. It involves different
pathogenesis mechanisms that dependent on host factors and
parasite virulence, and culminate in the loss of BBB function
(Pais and Penha-Gonçalves, 2019). By using an experimental

mouse model of CM, we have shown that STING activation in
endothelial cells contributes to brain accumulation of leukocytes
including activated CD8+T cells that drive BBB damage during CM,
via the IFNβ-CXCL10 axis (Pais et al., 2022). Concomitantly, IFNAR
autocrine/paracrine signaling in brain endothelial cells promoted
immunoproteosome activation and enhanced antigen presentation

TABLE 1 Effects of type I IFN signaling in the brain endothelium.

Disease/model Stimulus Pathway Effects Ref

AGS SAMHD1 mutations Unknown Structural changes Xin et al. (2011)

Stroke NETs (DNA) cGAS-STING BBB dysfuntion Kang et al. (2020), Wang et al. (2021)

Brain injury-associated infections LCMV infection, LPS IFNAR-MDA5 Vascular repair inhibition Mastorakos et al. (2021)

Alzheimer’s disease Amyloid-beta deposition ISG activation BBB dysfunction Jana et al. (2022)

Cerebral malaria EPs of Plasmodium-IE STING Leukocyte recruitment Pais et al. (2022)

BBB dysfunction

CNS viral infection PRR activation in BBB IFNAR-IRF7 BBB stability Daniels et al. (2014)

In vitro BBB IFNβ Rho GTPases BBB stability Daniels et al. (2014)

Plasmodium-IE IFNAR BBB dysfunction Shafi et al. (2023)

Brain endothelial cells Plasmodium-IE IFNAR Immuno-proteosome activation Shafi et al. (2023)

Antigen-presentation

Abbreviations: AGS, Aicardi–Goutières syndrome; SAMHD1, SAM, And HD, Domain Containing Deoxynucleoside Triphosphate Triphosphohydrolase 1; NETs, neutrophil extracellular

traps; LCMV, lymphocytic choriomeningitis virus; BBB, blood-brain barrier; EPs, extracellular particles; IE, infected erythrocytes.

FIGURE 2
Trajectories of type I IFN responses and organ pathology in
infectious diseases. (A) Early and strong type I IFN responses in the
spleen and liver induce anti-parasite immunity during Plasmodium
infection avoiding organ targeting and protecting from cerebral
pathology (CM). Similarly, in COVID-19, early induction of type I IFN
controls viral load preventing lung pathology. (B) Early low intensity
type I IFN responses, allow pathogen expansion. A second wave of
type I IFN, induced by STING activation in the endothelium acts in
paracrine fashion causing hyperinflammation of target organs such as
the brain and the lung in CM and COVID-19, respectively.
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by MHC Class I upon exposure to malaria parasite-infected
erythrocytes (Shafi et al., 2023). This may help parasite-specific
CD8+ cytotoxic T lymphocytes kill activated brain endothelium and
contribute to BBB disruption during cerebral malaria (Howland et
al., 2013). In addition, IFNAR signaling and immunoproteosome
activation in endothelial cells autonomously contribute to increase
the permeability of the brain endothelial barrier via inhibition of the
Wnt/β-catenin signaling pathway (Shafi et al., 2023) (Figure 1).

Therefore, many factors may influence the different cellular
downstream effects and pathological outcomes of type I IFN
signaling in the brain endothelium (Table 1). These include the
response to locally produced type I IFN or to systemically available/
administered type I IFN; the cell source and cell target of type I IFN;
the nature of stimuli (infectious context or sterile origin); the
particular PRR that are activated; and the presence of other
immune cells and inflammatory cytokines.

4.4 STING-mediated vasculopathy in
cerebral malaria and COVID-19

The coronavirus-19 (COVID-19) pandemic caused by the severe
acute respiratory syndrome coronavirus-2 (SARS-CoV-2) ignited
intensive research on the underlying immunopathology
mechanisms [reviewed in (Rybkina et al., 2022)]. COVID-19 and
severe malaria share a hyperinflammatory response (“cytokine
storm”) and several clinical manifestations, which complicates
correct diagnosis and treatment of COVID-19 patients in
endemic malaria regions (Chaturvedi et al., 2022). Understanding
the similarities in type I IFN responses between CM and COVID-19
may elucidate general mechanisms of type I IFN responses in
infectious diseases. In both CM and COVID-19, the timing of
type I IFN induction appears to be particularly important. The
involvement of STING in the vasculopathology, the possibility of a
synergistic effect between the type I IFN response and TNF, and the
role of type I IFN in the long-term cognitive deficits are also shared
features of type I IFN responses to these infectious diseases.

While the initial type I IFN response appears protective in
SARS-CoV-2 infection and in CM, activation of this pathway in
target organs such as the lung and the brain is highly deleterious.
The anti-viral activity of type I IFN response against SARS-CoV-2 is
underlined by increase severity of COVID-19 manifestations in
patients with impaired type I IFN response (Smith et al., 2022).
These impairments are in some cases associated with genetic defects,
specifically in the TLR7 gene (Fallerini et al., 2021) or with
neutralizing autoantibodies against type I IFN (Bastard et al.,
2020). In a mouse model of SARS-CoV-2 infection, disrupting
IFNAR signaling increased viral load and disease severity (Ogger
et al., 2022). Similarly, in CM, upregulation of type I IFN is linked to
protective immunity in children with uncomplicated malaria
(Krupka et al., 2012; Boldt et al., 2019). Early induction of a
strong type I IFN in the liver and spleen promote anti-parasitic
immune responses avoiding brain pathology in experimental CM
models [reviewed in (Sebina and Haque, 2018)] (Figure 2, trajectory
A of IFNα/β production during infection). IFNα treatment of mice
immediately after infection (Vigário et al., 2007) or co-infection with
a virus that induces an early type I IFN response (Hassan et al., 2020)
reduces parasitemia and confers resistance to CM.

In contrast to the early protective effect, research on COVID-19
showed that a late and sustained type I IFN response, most likely
caused by high viral loads, was associated with severe disease
outcomes (Figure 2, trajectory B of IFNα/β production during
infection). This response occurs in the lower respiratory airways
and is associated with tissue damage and apoptosis in the lungs of
patients with severe COVID-19 (Sposito et al., 2021). Induction of
ISGs, which include monocyte recruitment chemokines like Cxcl10,
Ccl7 and Ccl2 drives the recruitment of inflammatory cells into lungs
of SARS-CoV-2-infected mice (Israelow et al., 2020). In contrast to
the anti-viral activity mediated by TLR3 and TLR7, this second wave
of type I IFN response is associated with cGAS-STING activation.
Post-mortem analysis of lungs from COVID-19 patients with a
rapid lethal course revealed phosphorylation of STING in the lung’s
macrophages and endothelial cells (Domizio et al., 2022). In a lung-
on-chip model that mimics the alveolar-capillary interface, alveolar
epithelial cells are cultured on the top channel of the microfluidic
device separated by a membrane from endothelial cells facing the
bottom channel. SARS-CoV-2 infection of alveolar epithelium
induces STING phosphorylation and IFNβ in endothelial cells
but not in the epithelial cells. In addition, endothelial cells
undergo cell death. Both IFNβ production and cell death could
be blocked by the STING inhibitor H-151 in the vascular side or by
STING knockdown in the endothelial cells. Mitochondrial stress
with release of endogenous mitochondrial DNA was upstream the
cGAS-STING activation pathway and IFNβ induction in endothelial
cells, which could be inhibited by blocking mtDNA release (Domizio
et al., 2022). However, it is not clear whether IFNβ was required to
induce endothelial cell death in this experimental setting.
Endothelial cell death was induced, independently of virus
replication in endothelial cells and of RNA-sensing RIG-I like
receptors. In SARS-Cov-2 infected mice, inhibiting STING
reduces lung pathology and inhibits cell death and type I IFN
signaling without affecting the viral load (Domizio et al., 2022).
Overall, data suggest that PRRs play different roles in different cell
types during the course of COVID-19 pathology (Chiale et al., 2022).

Polymorphisms in regulatory regions of type I IFN receptor gene
(IFNAR1 subunit) was associated with increased expression of type I
IFN, enhanced type I IFN signaling and susceptibility to CM in
children (Feintuch et al., 2018). Mice lacking IFNAR1 (Ball et al.,
2013), the transcription factors interferon regulatory factor 3 (IRF3)
and 7 (IRF7), or the upstream TAK-binding kinase 1 (TBK1), were
protected from neurologic symptoms, BBB leakage and death by CM
providing compelling evidence of type I IFN-mediated brain
pathology in CM (Sharma et al., 2011). Recently, through the use
of cell-specific IFNβ-reporter mice, we have identified myeloid
(monocytes and microglia) cells and endothelial cells as the IFNβ
producing cells in the brain of Plasmodium-infected mice (Pais et al.,
2022). We found that the recruitment of leukocytes into the brain is
specifically determined by STING-dependent IFNβ induction in the
brain endothelium via induction of CXCl10 (Figure 2, trajectory B of
IFNα/β production during infection). STING in endothelial cells
was activated following the uptake of heme-containing particles
released by Plasmodium-infected erythrocytes. We showed that
heme may activate STING through direct interaction but did not
rule out the possibility of upstream cGAS activation by
mitochondrial DNA. In contrast to the critical role of STING, we
showed that activation of other PRRs via MyD88-dependent
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pathways or through MAVS are not required in the development of
CM pathology (Pais et al., 2022).

The involvement of STING in pulmonary inflammation and
vasculopathy in COVID-19 prompted the comparison with SAVI
disease, suggesting that gene polymorphisms in the STING pathway
could also be associated with COVID-19 (Berthelot and Lioté, 2020).
It would be interesting to analyze if STING gene polymorphism´s
are associated to CM susceptibility as well. The induction of a type I
IFN response in conjunction with TNF is another intriguing aspect
that may contribute to the immunopathology of both COVID-19
and CM. Interestingly, postmortem lung tissues from patients with
lethal COVID-19 as well as PBMCs from severe COVID-19 cases,
show a type I IFN response transcriptional signature, along with
TNF/IL-1β induction (Lee et al., 2020). It is possible that type I IFN
and TNF responses may synergize also in CM. In fact, TNF was
shown to contribute to vasculopathy in CM (Rudin et al., 1997;
Zuniga et al., 2022) and to induce a type I IFN response in
endothelial cells (Venkatesh et al., 2013).

As suggested for type I IFN-dependent COVID-19 cognitive
symptoms (Suzzi et al., 2023), we hypothesize that the type I IFN
responses, namely, those involving the brain endothelium, may
underlie neurological sequelae in children who survive CM.
Activation of type I IFN signaling pathway in the CNS has been
linked to cognitive impairment in diseases such as
interferonopathies, viral infections, Alzheimer’s disease (Roy
et al., 2020) and age-related inflammation (Baruch et al., 2014;
Deczkowska et al., 2017), as well as IFNα/β therapies (Valentine and
Meyers, 2005). Despite persistent cognitive impairment in COVID-
19 patients, there is no strong evidence that SARS-CoV-2 infects the
brain. The choroid plexus epithelium, on the other hand, appears to
respond to infection by increasing genes associated with type I IFN
signaling and cell communication with oligodendrocytes, microglia
and neurons through CCL and CXCL family of chemokines (Yang
et al., 2021). High levels of chemokines, including CCL2, CCL11,
and CXCL10, were found in the cerebral spinal fluid (CSF) of the
mouse model of mild COVID-19 and persisted during infection.
This correlates with increased microglial reactivity and decreased
hippocampal neurogenesis (Fernández-Castañeda et al., 2022).
These observations support the possibility that cognitive risks in
COVID-19 infection may be promoted by persistent low-grade
inflammation driven by IFN-chemokines signaling loops
involving the choroid plexus epithelium, microglia and astrocytes,
as proposed by (Suzzi et al., 2023). CXCL10may also act on neurons.
CXCL10 induction by IFNAR signaling in brain endothelial cells has
been shown to promote virus-induced sickness behavior by binding
to CXCR3 on neurons and changing synaptic plasticity (Blank et al.,
2016). We hypothesize that during CM a similar mechanism may
operate and contribute to the neurologic symptoms and cognitive
impairment in patients surviving the infection.

5 Conclusion and perspectives of
STING targeting in the endothelium

Protective, pathological and therapeutic effects of type I IFN are
context-dependent and are highly influenced by the nature of innate

stimuli, the innate receptors that are engaged, the responding genes
(ISGs) and the cell types involved in type I IFN secretion and
signaling, as well as the inflammatory milieu including the action of
other inflammatory factors, namely, TNF. However, type I IFN
responses associated with cGAS-STING activation appear to be
critical in promoting organ inflammation and immune-mediated
damage. Given the potential clinical applications in inflammatory
diseases, efforts have been made to develop small-molecule
inhibitors of the cGAS-STING pathway (Decout et al., 2021). We
hypothesize that inhibiting this pathway at the endothelium level
may be an effective approach to minimize auto-inflammatory events
and infection-driven immunopathology in organs such as the brain
and lung. On the other hand, drugs activating STING in endothelial
cells may help to target cancer tissue increasing the efficiency of
cytotoxic adaptive immune responses. It has been proposed that
intratumoral injection of cGAMP enhance STING activation on
endothelial cells and strongly promote the generation of CD8+ T cell
responses that efficiently control the growth of the injected tumor
and of contralateral tumors (Demaria et al., 2015).

Although these approaches may face pharmacological
challenges related to drug delivery, tissue-specificity and off-
target effects, the strategy of modulating type I IFN responses by
targeting one specific innate sensor may offer a successful path in
obtaining defined and unmet therapeutic outcomes.
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