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Editorial on the Research Topic
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cardiovascular physiopathology-Volume II

Inter-cellular and inter-organellar communications are required to maintain
homeostasis in complex organisms (Jain and Zoncu, 2022). Most of subcellular
organelles evolved as entities needing connections, rather than separate units with
unitary functions. Indeed, besides the anterograde and retrograde communication
between the nucleus and organelles which involves gene transcription regulation, there is
ample evidence that they come into contact with each other through several physical contact
sites (Scorrano et al., 2019). Usually, such sites are represented by dynamic changes of
membranes juxtaposition of neighboring organelles with specific purposes: the exchange of
biological material and thus, information. Information that is required to coordinate a series
of signaling pathways to sustain life.

Over the years, the understanding of inter-organellar communications has been
thoroughly investigated and eventually transformed our view of cellular physiology
(Quirós et al., 2016; Ghai et al., 2017; Lopez-Crisosto et al., 2017; Shai et al., 2018).
Although the vesicular transport (import and export) has been described as the main
system for material exchange (Bonifacino and Glick, 2004; Di Mambro et al., 2023), not all
biomolecules follow this route (Lev, 2012). Non-vesicular lipid trafficking (Kaplan and
Simoni, 1985; Urbani and Simoni, 1990; Heino et al., 2000) and spatio-temporal calcium
(Ca2+) transfer (Giorgi et al., 2018) are just a couple of notable examples. These
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communication systems are mutually coordinated and actively
participate to the intracellular signaling and the transcriptional
program.

In the cardiovascular setting, mitochondrial signaling acquires
considerable importance for countless reasons that can be roughly
summarized with the functional role played for ATP production, in
the so-called ATP cycling in cardiac contraction, as well as in Ca2+

handling (Gambardella et al., 2018). This second messenger is able
to induce cell death and tissue function loss as consequence of the
mitochondrial permeability transition pore (PTP) opening (Campo
et al., 2017; Morciano et al., 2021a) and the activation of Ca2+-
dependent proteases inducing hypercontracture (Neuhof and
Neuhof, 2014). Given the critical role of these pathways for cell
survival, mitochondrial dysfunctions have been disclosed as key
hallmarks of cardiovascular diseases (CVDs). Also, being ATP
generators and biosynthetic centers, mitochondria are important
for cell metabolism with pathophysiological phenotypic features
highly dependent on their morphology (Wai and Langer, 2016;
Morciano et al., 2022).

In this Research Topic, Mostafavi et al. investigated the degree of
mitochondrial remodeling accompanying the metabolic switch
occurring in cardiomyocyte differentiation. In this regard,
mitochondria from human pluripotent stem cells (hPSCs) and
terminally differentiated cardiomyocytes have been evaluated by
assessing differences in their number, morphology, membrane
potential and the activity of the respiratory chain. Differentiated
cells displayed a greater efficiency in energy production (ATP) and a
greater dependence on oxidative phosphorylation (OXPHOS) with a
more electronegative membrane potential despite a decrease in the
number, DNA levels and mitochondrial biogenesis. These
investigations, in concert with examining the impact of
mitochondrial remodeling on inter-organellar dynamics, are
fundamental in order to gain pathologically relevant insights.

Vásquez-Trincado et al. provided further evidence on the pivotal
role played by mitochondria and mitochondrial signaling in
metabolic disorders linked to CVDs. Indeed, they demonstrated
how lipotoxic stress, induced by fatty acid overload, triggered
cardiac hypertrophy and insulin desensitization by increasing
E3 ubiquitin ligase MUL1 expression, a protein localized at
mitochondria. Lipotoxic stress-induced MUL1 activation
impaired some mitochondrial features by promoting organelle
fragmentation through dynamin-related protein 1 (DRP1) and by
decreasing mitofusin 2 (MFN2) expression. MUL1 would be
required for this process as its silencing prevents cardiac
hypertrophy and metabolic impairment. Further investigations on
this process can lead to the identification of a reliable therapeutic
target for metabolic diseases.

In the field of organelles communication, mitochondria interact at
multiple levels to communicate with other organelles. Noteworthy
examples are described by the existence of mitochondria—nucleus
contact sites (Desai et al., 2020), mitochondria—associated
membranes (MAMs) (Morciano et al., 2018) and
mitochondria—plasmalemma contacts (Montes de Oca Balderas,
2021). Additionally, Guajardo-Correa et al. summarized the
importance of mitochondria in CVDs by highlighting a key aspect
of their connection with the nucleus. In detail, Estrogens modulation of
cardiovascular physiology has been revealed as one of the most potent
cardioprotective factor in humans. Multiple evidence found estrogen

signaling pathways to involve mitochondria, mainly in antioxidant
defense mechanisms, by reducing mitochondrial reactive oxygen
species (ROS) and increasing mitochondrial antioxidant enzymes
(Lynch et al., 2020). Estrogens are also potentially able to improve
cellular Ca2+ handling, which is essential for heart contraction and
relaxation (Jiao et al., 2020). How these pathways are inter-linked and
intracellularly signaling to the nucleus is of growing interest. Although
estrogens have pleiotropic effects, most of them are described in the
nuclear—mitochondrial anterograde and retrograde communication,
such as the estrogen–mediated transcriptional activity of many master
regulators of mitochondrial pathways. Among them, PGC-1α, that in
turn may affect fatty acid oxidation (FAO), tricarboxylic acid (TCA)
cycle, and OXPHOS. PGC-1α related pathways result to be impaired in
CVDs and can be finely regulated through estrogen receptors (ERs)
localized on the membranes of several organelles. On the other hand,
retrograde signaling also exists, and is mainly mediated by
mitochondrial energetic deprivation (Hu et al., 2011), ROS stress
responses (Tan et al., 2008), Ca2+-dependent signaling (Novotny
et al., 2009), and by mitochondrial unfolded protein response
(mtUPR) (Germain, 2016).

Finally, the review authored by Pedriali et al. expanded the
current view on mitochondrial connections moving the focus on
other points of contacts, especially those established with either the
SR or the sarcolemma. The architecture of MAMs in physiology is
dynamic and aims to optimize Ca2+ transfer (and not only) from SR
to mitochondria to support cell bioenergetics. This aspect is so
important for cell survival that an impairment in the architecture of
MAMs is at the basis of many molecular pathways in cardiac
diseases (Dridi et al., 2022; Morgado-Cáceres et al., 2022). A
striking example occurs in ischemia/reperfusion (I/R) injury and
heart failure, in which many studies supported the hypothesis that
mitochondria are subjected to an overload of Ca2+, an event
triggering cell death through the PTP opening (Morciano et al.,
2021b). At the basis of these phenomena, an impaired interaction
between SR and mitochondria occurs; here, a pharmacological or
genetic approach in reducing SR-mitochondria tethering would
correlate with a decrease in Ca2+ transfer and thus a significant
lower amount of myocardial cell death. Also, a close proximity
between mitochondria and cardiomyocytes gap junctions have been
described (Forbes and Sperelakis, 1982) with a prominent role in I/R
(Rodriguez-Sinovas et al., 2004; Fridolfsson et al., 2012).

In conclusion, mitochondrial signaling, especially the one
established by nuclear-, SR- and sarcolemma-connections is a
growing field of research (Kerkhofs et al., 2019) and may
actually represent a fertile field for promising therapeutic
purposes.
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