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Editorial on the Research Topic
Molecular drivers of prostate cancer pathogenesis and therapy resistance

Prostate cancer (PCa) is the most diagnosed malignancies in the men worldwide (Sung
et al., 2021). Blood PSA level (>2.5–4 ng/mL) is primarily used to screen PCa in men with or
without symptoms (David and Leslie, 2023). However, elevated PSA level does not confirm
the incidence of PCa as other conditions such as prostatitis or benign prostatic hyperplasia
(BPH) also show elevated level of PSA. Therefore, additional tests such as digital rectal exam,
multiparametric MRI/transrectal ultrasound, biopsy-based cytopathology/histopathology/
Immunohistochemical (IHC) analysis are commonly used to confirm the incidence of PCa
(David and Leslie, 2023). Androgen deprivation therapy (ADT) remains the standard of care
for PCa patients. Notwithstanding an initial favorable response, the majority of the PCa
patients invariably progress to castrate-resistant prostate cancer (CRPC). Currently, several
hormonal and non-hormonal therapeutic agents including enzalutamide, abiraterone
acetate, cabazitaxel, darolutamide, apalutamide, sipuleucel-T, Olaparib, radium-223 are
being used to treat PCa (Patel et al., 2019; Verma et al., 2023). These agents showed
significant survival benefits in patients with metastatic or non-metastatic CRPC while other
promising agents are under clinical trial (Verma et al., 2023). Despite these advancements,
PCa remains 2nd most common cause of cancer-related death in men (Sung et al., 2021).
Therefore, understanding the underlying molecular mechanisms and identification of
effective therapeutic targets are very crucial to manage the PCa in the clinics.

Androgen receptor (AR) signaling regulates several vital pathways. However, aberrant
AR signaling leads to multiple oncogenic events including cellular proliferation, migration,
invasion, differentiation and cell survival (Kim et al., 2022; Srivastava et al., 2022; Dutta et al.,
2023). In recent years, several molecular drivers of PCa pathogenesis and therapy resistance
are identified (Testa et al., 2019; Verma et al., 2023). Variants of AR (AR-Vs) (Antonarakis
et al., 2014), AR alternate signaling pathways (glucocorticoid receptor signaling) (Puhr et al.,
2018), TMPRSS2-ERG fusion (Demichelis et al., 2007), loss of PTEN (Whang et al., 1998),
RB1 and P53 (Mu et al., 2017) are well established molecules which play critical role in PCa
pathogenesis and therapy resistance. It is demonstrated that MYCN and AURKA cooperate
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to induce NEPC (Beltran et al., 2011). MYCN also shown to induce
EZH2-mediated transcriptional programming to drive NEPC
(Dardenne et al., 2016). Dual loss of TP53 and RB1 are shown to
promote SOX2-mediated lineage plasticity and ADT resistance (Mu
et al., 2017). Using genetically engineered mouse models and
correlative human studies, NSD2 was identified as a cell-intrinsic
drivers of metastatic PCa (Aytes et al., 2018). It is reported thatWnt-
signaling regulates prostatic growth and FOXA2 expression during
NEPC development and the loss of FOXA2 is compensated by
upregulation of pro-neural gene (Mash1) in TRAMP mouse model
(Gupta et al., 2013). Furthermore, NEPC-secreted neuropeptides
(gastrin releasing peptide (GRP) and bombesin) regulate NF-lB
mediated regulation of AR-V7 and promote CRPC (Jin et al., 2008).
Our group showed the role of MYB-AR crosstalk in stemness and
ADT resistance (Srivastava et al., 2022). In the absence of androgen,
MYB overexpressing PCa cells sustained AR transcriptional activity
and retained AR in the nucleus leading to CRPC (Srivastava et al.,
2022). Nandana et al. (2017) established the role of TBX2 in bone
metastasis through WNT signaling in PCa. In addition, they further
demonstrated that TBX2 by suppressing miR-200c-3p via cell-
intrinsic and exosome-mediated paracrine manners promotes
SOX2 and N-MYC mediated neuroendocrine differentiation
(Patel et al., 2021). Recently, they further identified
TBX2 suppression of AR results in GR overexpression and
enzalutamide resistance (Dutta et al., 2023). Similarly, Zhang
et al. (2020) identified that loss of CHD1 leads to overexpression
of oncogenic transcription factors (NR3C1, POU3F2, NR2F1, and
TBX2) in which TBX2 was shown to involve in antiandrogen
resistance. Altogether, these molecules are shown to drive PCa
pathogenesis, metastasis, stemness, NEPC, therapy resistance and
cancer relapse. Notwithstanding all these identified molecular
drivers and current therapeutic options, many questions remain
unanswered regarding the PCa progression and resistance.
Therefore, further research is required to identify effective
molecular targets for the clinical management of the disease.

Metabolic adaptation of cancer cells dormancy is known to play
an important role in therapy resistance. A study by Bort et al.
showed metabolic fingerprinting of chemotherapy-resistant PCa
stem cells using LC-MS and other approaches, and identified
repressed fatty acid oxidation, methionine metabolism and ADP-
ribosylation pathways promoting the entry of PCa cells into
dormancy (Bort et al.). Dormant cancer cells remain occult,
asymptomatic, and resistant to therapy and thus thought to be a
major cause of cancer relapse.

Identification of novel molecules for early detection of PCa is
highly desirable. Vahabzadeh et al. constructed a lncRNA-miRNA-
mRNA network and analyzed to develop potential predictive
biomarkers. They identified differential expression four lncRNAs
(NEAT1, MALAT1, PCAT19, and CASC2), five miRNAs and
15 common target genes. Among them, oncogenic ALB, APOE,
F2, and FAP were significantly upregulated and tumor suppressor
such as BDNF, MET, PLG, MMP1, ITGA6, ITGA5, FGF18, CD44,
CXCL12, IL10, and ITGB3, were significantly downregulated in PCa
patients compared to the healthy control. The interactions between
lncRNAs, miRNAs, and mRNAs could be utilized to develop novel
biomarkers for assessing treatment response in PCa patients.

Identification of different genetic mutations (Such as DPYD,
BRCA1, and BRCA2/HER2) are utilized for the prediction of drug

response. Zhao et al. represented a case report of a 65 year old PCa
patients which was treated with multiple treatment regimens.
Patient’s response was significant when treated with
cisplatin+paclitaxelfollowed by Nilaparib combined with
endocrine therapy. After 9 months of Nilaparib maintenance
therapy, the disease further progressed. Therefore further treated
with docetaxel+cisplatin regimen showed poor response and disease
progressed. Genetic testing identified TP53, BRCA1, and
BRCA2 gene mutations underscoring the role of genetic
mutations in therapy response.

Zhu et al. used the publicly available database and identified
differentially expressed genes in PCa. Among them, MYLK, MYL9,
MYH11, CALD1, ACTA2, SPP1, and CNN1 are identified as hub
genes which were associated with proliferation, invasion, and
migration of PCa cells and promoting tumor neovascularization
which may serve as prognostic markers and therapeutic targets for
PCa patients.

Together, the evidence summarized in this topical Research
Topic highlights how these articles provide new insights about
several molecules and their interactions that play important role
in mediating PCa progression, metastasis, and therapy resistance.
These studies further suggest that metabolic adaptation, lncRNA-
miRNA-mRNA network analysis, identification of hub genes
associated with PCa occurrence, and genetic testing may be
helpful to decision making to treat PCa. Such studies may apply
to achieve early diagnosis, understanding the metastatic progression
and designing effective treatment strategies for better clinical
outcomes.
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