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Cardiovascular disease (CVD) is the primary cause of death in humans.
Atherosclerosis (AS) is the most common CVD and a major cause of many
CVD-related fatalities. AS has numerous risk factors and complex
pathogenesis, and while it has long been a research focus, most mechanisms
underlying its progression remain unknown. Noncoding RNAs (ncRNAs) represent
an important focus in epigenetics studies and are critical biological regulators that
form a complex network of gene regulation. Abnormal ncRNA expression disrupts
the normal function of tissues or cells, leading to disease development. A large
body of evidence suggests that ncRNAs are involved in all stages of
atherosclerosis, from initiation to progression, and that some are significantly
differentially expressed during AS development, suggesting that they may be
powerful markers for screening AS or potential treatment targets. Here, we
review the role of ncRNAs in AS development and recent developments in the
use of ncRNAs for AS-targeted therapy, providing evidence for ncRNAs as
diagnostic markers and therapeutic targets.
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Introduction

Cardiovascular disease (CVD) is the leading cause of death in humans, with over
17 million CVD-related deaths occurring in 2020 (2020; Acosta et al., 2021). CVD
mainly includes atherosclerosis (AS), congenital heart disease, arrhythmia, and heart
failure, among which AS is the most common (Virani et al., 2021). AS is a chronic
inflammatory disease caused by endothelial dysfunction and abnormal lipid metabolism
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(Ross, 1999; Zhao et al., 2022). In the early stages of AS, intimal
low-density lipoprotein (LDL) accumulation triggers
inflammation, and macrophages phagocytose the lipids,
forming foam cells that trigger the inflammatory response.
During this process, the migration and proliferation capacity
of many types of cells, such as vascular smooth muscle cells and
macrophages, are abnormal (Moore et al., 2013; Wolf and Ley,
2019; Mushenkova et al., 2020). Subsequently, atherosclerotic
plaques are formed by inflammatory cells and smooth muscle cell
apoptosis, angiogenesis, and thrombogenesis. The prevalence of
AS is high and underlies most CVDs, leading to high-mortality-
rate manifestations, such as acute coronary syndrome and
myocardial infarction (Falk, 2006; Xie et al., 2020). Early AS
has no obvious symptoms; thus, early screening for AS is
necessary to effectively prevent high-risk CVD (Liu et al.,
2018). Imaging remains the primary means for early AS
diagnosis, and due to advances in medical technology, some
molecular markers shown promise for improving AS screening
(Meng H. et al., 2022). Notably, although aging is a major risk
factor for AS, with changes in lifestyle habits and dietary
structure, there is now a trend toward the development of AS
in younger individuals (Libby, 2021; Tyrrell and Goldstein,
2021). Due to the harm of AS to human health, substantial
research has been conducted on the mechanisms underlying
its occurrence and development to improve the current status
of AS diagnosis and treatment. Indeed, epigenetic modifications
contribute to AS, such as an abnormal DNA methylation status,
altered histone modification levels, and disordered ncRNA
expression levels (Xu et al., 2018). NcRNAs are not involved
in protein synthesis but can regulate gene expression (Zhang
et al., 2016; Bonilauri and Dallagiovanna, 2022; Sandmann et al.,
2023).

Long noncoding RNAs (lncRNAs), microRNAs (miRNAs),
circular RNAs (circRNAs), ribosomal RNAs, and tRNAs are the
most common ncRNAs(Palazzo and Lee, 2015; Zhang Y. et al.,
2022; Dragomir et al., 2022). There is increasing evidence that
ncRNAs are important in vascular biology, maintaining human
health (Jinn et al., 2015; Håkansson et al., 2019; He et al., 2021;
Sletten et al., 2021; Farina et al., 2023). Abnormal ncRNA
expression can give rise to numerous diseases, including CVD,
various cancers, neurodegenerative diseases, and diabetes
(Anastasiadou et al., 2018; Mehta et al., 2020; Zhao et al.,
2021). NcRNAs have been shown to regulate biological features,
biological mechanisms, and phenotypes, such as cell proliferation,
apoptosis, and migration capabilities, and have demonstrated
potential as therapeutic targets in various diseases (Zhao W.
et al., 2018; Ji et al., 2022). In recent years, abnormally
expressed ncRNAs have been found to play an important role
in various stages of AS progression, including endothelial damage,
plaque formation, and plaque instability (Simion et al., 2020; Cui
et al., 2022).

Here, we review the abnormal expression of ncRNAs in the
occurrence and development of AS and the specific role of key
ncRNAs in these processes. We then introduce several ncRNA-
targeted treatment methods for AS, exploring the potential of
ncRNAs as diagnostic and therapeutic targets in this disease.

miRNAs participate in AS development and
are potential treatment targets

MiRNAs are ncRNAs approximately 20 nucleotides in length.
MiRNA is first transcribed into pre-miRNA, which moves from the
nucleus to the cytoplasm, undergoes progressive processing, and
ultimately matures. Mature miRNAs participate in the formation of
RNA silencing complexes (RISCs) and impart RISC targeting by
loosely pairing with mRNAs with corresponding miRNA responsive
elements (MREs) (Kobayashi and Tomari, 2016; Zealy et al., 2017).
Then, miRNAs use RISCs to degrade target mRNA or inhibit its
translation, representing a key form of post-transcriptional
regulation (Lu and Rothenberg, 2018).

Abnormal miRNA expression has been observed frequently in
AS in recent years. Indeed, miRNAs can be used as therapeutic and
diagnostic biomarkers and drug targets in AS. The regulatory roles
of an increasing number of miRNAs in the occurrence and
development of AS are becoming clear (Table 1).

Differentially expressed miRNAs in AS progression can now be
more efficiently identified from tissue or blood samples due to
advances in sequencing technologies, enabling the analysis of
potential key miRNAs in AS and their downstream mechanisms
(Moreau et al., 2021; Dragomir et al., 2022; Santovito and Weber,
2022). Albuminuria is a marker of endothelial dysfunction.
Screening of miRNAs in the plasma of hypertensive patients with
albuminuria symptoms revealed that miR-126-3p was abnormally
elevated and associated with cardiovascular events; thus, this
miRNA is a potential molecular marker for AS (Martinez-Arroyo
et al., 2023). miR-126-5p is also involved in endothelial cell
protection via autophagy in AS (Santovito et al., 2020a). In a
recent study of AS in 16 baboons, blood and common iliac
artery (CIA) samples were collected before and after 2 years of
high cholesterol and high-fat diets, and miRNA expression levels
were analyzed to identify potential molecular markers of human AS.
miR-17-5p and miR-146a-5p, which are upregulated in both fatty
streak and fibrous plaque lesion types, were revealed as possible key
players in AS development (Karere et al., 2023). Another previous
report indicated that miR-17-5p and miR-146a-5p demonstrate
potential in the clinical diagnosis of AS (Sharma et al., 2022).
miR-342-5p is significantly overexpressed in damaged endothelial
cells and significantly affects apoptosis levels in oxidatively damaged
endothelial cells by regulating PPP1R12B (Xing et al., 2020). miR-
19b expression was found to be elevated in the endothelial cells and
arterial tissues of an ox-LDL-induced AS mouse model and
promoted inflammation, thus participating in AS development by
inhibiting the ubiquitination of NF-κB/p65 by PPARγ(Wang et al.,
2021). Abnormally elevated levels of miR-202-5p have been found in
AS tissues and to induce macrophage apoptosis by inhibiting Bcl-2
expression levels, thereby promoting AS plaque formation and
reducing fibrous cap thickness in vivo, which in turn increased
the risk of plaque rupture (Xu et al., 2023). In addition, reduced
expression of some miRNAs has been observed during the AS
process, suggesting that these miRNAs may have a potential
inhibitory effect on AS. Reduced miR-330-3p expression levels
and increased AQP9 expression levels have been observed in an
AS mouse model. Further experimental results indicated that miR-
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330-3p could reduce endothelial cell apoptosis and promote
endothelial cell proliferation and migration by inhibiting AQP9
(Shan et al., 2023). The recruitment of inflammatory cells is an
important event in AS plaque formation. Monocytes adhere to the
vessel wall and gradually migrate to the subendothelial layer in the
inflammatory state, during which IL-1β upregulates the expression
level of cell adhesion molecules; this effect is achieved by inhibiting
miR-1914-5p (Toriuchi et al., 2023). When miR-1914-5p was
overexpressed, the migration ability of monocytes induced by IL-
1β across the endothelial cell layer was significantly inhibited. Ox-
LDL-induced AS resulted in a significant downregulation of miR-
147a expression levels during AS, which led to elevated ZEB2 levels
that mediated monocyte adhesion to endothelial cells, exacerbating
lipid accumulation and AS plaque formation; in contrast, elevated
miR-147a expression could stabilize AS (Chen et al., 2023).

Numerous studies have focused on new drugs for AS and their
key underlying mechanisms, revealing the importance of miRNA
expression regulation in the associated pathways. Sodium butyrate, a
product of intestinal flora, has a therapeutic effect on AS. A previous
report revealed that sodium butyrate in an AS model increased the
expression levels of 29 miRNAs, including miR-7a-5p, and reduced

the expression of 24 (Ma et al., 2023). This finding suggests that
sodium butyrate can regulate miRNA expression in AS. Icariside
(ICA), the main active ingredient of Epimedium, can produce
significant therapeutic effects in animal models of AS, reducing
lipid accumulation and plaque formation in blood vessels. Further
studies demonstrated that ICA elevated miR-205-5p expression
(Zhu and Ren, 2022), promoted endothelial cell apoptosis, and
inhibited their migration; silencing miR-205-5p reversed this
inhibitory effect, demonstrating miR-205-5p upregulation is a
potential approach for AS treatment (Huang et al., 2023). There
is evidence that miR-217 can inhibit apoptosis through the TLR4/
PI3K/Akt/NF-κB pathway in atherosclerotic endothelial cells in a rat
model (Zhang et al., 2020). Moreover, miR-124-3p overexpression
inhibits macrophage proliferation and apoptosis by downregulating
MEKK3 expression in a mouse model of AS (Zhai et al., 2020). In
addition, numerous studies have indicated that miRNAs are strongly
expressed cell lines associated with AS; for example, miR-126-5p in
human endothelial cells promotes cell proliferation and reduces
apoptosis by inhibiting caspase-3 and Dlk1 (Schober et al., 2014;
Santovito et al., 2020a); miR-133a and miR-145 in human VSMCs
inhibit cell migration and promote contractile phenotype (Cipollone

TABLE 1 The role of miRNAs in AS.

miRNA The expression level of
miRNA in AS

Function in AS References

miR-342-5p Up Promotes endothelial cell apoptosis Xing et al. (2020)

miR-19b Up Promotes inflammatory response Wang et al. (2021)

miR-202-5p Up Promotes apoptosis of macrophages Xu et al. (2023)

miR-217 Up Increase blood pressure and exacerbate atherosclerosis de Yébenes et al. (2020)

miR-124-3p Up Inhibit proliferation and promots apoptosis of macrophage Zhai et al. (2020)

miR-144 Up Influence intimal hyperplasia Chen et al. (2018), Lian et al. (2022)

miR-126-5p Down Attenuates endothelial cells apoptosis and promotes endothelial cells
proliferation

Schober et al. (2014), Santovito et al. (2020a)

miR-133a Down Inhibits proliferation and promotes apoptosis of VSMCs and
promotes differentiation of VSMCs

Cipollone et al. (2011), Gao et al. (2014), Shi
et al. (2019)

miR-
143/145

Down Inhibits VMSCs migration and promotes VMSCs differentiation Li et al. (2018), Ni et al. (2021), Vacante et al.
(2021)

miR-155 UP It inhibits macrophage proliferation in early AS and efferocytosis in
advanced AS

Wei et al. (2015)

miR-21 Up Regulates circadian apoptosis of macrophages and promotes
migration and proliferation of VSMCs

Raitoharju et al. (2011), Zhu et al. (2019a),
Schober et al. (2021)

miR-330-3p Down Reduces endothelial cell apoptosis, promotes endothelial cell
proliferation and migration

Shan et al. (2023)

miR-
1914-5p

Down Inhibits monocyte adhesion and migration Toriuchi et al. (2023)

miR-147a Down Weakens monocyte adhesion and increases the stability of AS plaques Chen et al. (2023)

miR-205-5p Down Promotes apoptosis and inhibits migration of vascular smooth muscle
cells

Huang et al. (2023)

miR-455-5p Down Reduces endothelial cell scorching and vascular inflammation Li et al. (2023)

MiR-
148a-3p

Down Reduces macrophage apoptosis and inflammation Wang et al. (2022a)

miR-186-5p Down Reduces lipid accumulation in macrophages Ding et al. (2022)
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et al., 2011; Gao et al., 2014; Li et al., 2018; Shi et al., 2019); miR-21
and miR-155 are present in human and mouse monocytes/
macrophages, and the former regulates circadian apoptosis in
macrophages, whereas the latter exerts inhibitory in early AS but
promotional effects in advanced AS (Raitoharju et al., 2011; Wei
et al., 2015; Schober et al., 2021). miR-144 knockdown has been
shown to attenuate intimal hyperplasia in VSMCs(Lian et al., 2022).
The above findings indicate that miRNAs play a role in AS.

MiRNAs, key post-transcriptional regulation factors, change
during AS development, likely affecting downstream gene
expression homeostasis and AS. Thus, drugs could be developed
to target miRNAs that regulate gene expression in AS. In conclusion,
abnormally expressed miRNAs are potential diagnostic biomarkers
and potential therapeutic targets in AS, and reversing abnormal
miRNA expression levels may be a powerful AS prevention or
treatment modality.

lncRNAs act as molecular sponges in the AS
process

Single-stranded RNAs greater than 200 nucleotides in length are
classified as lncRNAs. Some lncRNAs are processed similarly to
mRNAs, transcribed by RNA pol III, or capped/polyadenylated
(Simion et al., 2019). The competing endogenous RNA (ceRNA)
hypothesis posits that lncRNAs can competitively bind to miRNA
and regulate the expression of miRNA target genes (Salmena et al.,
2011). Research on lncRNAs continues to advance, and our
knowledge of their functions has been enriched, suggesting that
many diseases are closely related to abnormal lncRNA expression
(Table 2).

The lncRNA CARMN, upstream of miR-143 and miR-145, has
been found to be downregulated in late AS plaques. CARMN
knockdown downregulated miR-143 and miR-145 expression and

accelerated AS progression in mice, increasing the area and volume
of AS plaques and producing a late AS phenotype (Dong et al., 2021;
Ni et al., 2021; Vacante et al., 2021). Moreover, CARMN has been
considered a regulator of mouse and human VSMC plasticity in AS
(Dong et al., 2021; Ni et al., 2021). In these studies, CARMN
promoted the contractile phenotype of VSMCs through miR-143/
145, whereas regulation of VSMCs proliferation was independent.

NcRNAs are known to be involved in cellular biology processes
in AS, such as cell apoptosis (Kockx and Herman, 2000). MALAT1
can mediate cell autophagy and affects plaque inflammation in AS
(Zhu Y. et al., 2019; Cremer et al., 2019). LncRNA RASSF8-AS1 is
highly expressed in the serum of AS patients and can promote
ATG7-mediated autophagy through the competitive combination of
miR-188-3p, promote the proliferation ability and anti-apoptotic
activity of smooth muscle cells, and play an important role in the
development of AS plaques (Song et al., 2023). A recent study
identified the macrophage-specific lncRNAMAARS and observed a
270-fold increase in its expression level in the aortic intima during
AS progression and a 60% decrease during AS regression, indicating
that this lncRNA has high clinical value as a biomarker for AS
diagnosis (Simion et al., 2020). In the aforementioned study,
knocking out MAARS resulted in a 52% reduction in AS lesions
in LDLR−/− mice; MAARS can interact with the RNA binding
protein HuR and thus regulate macrophage apoptosis levels.
Knocking down MAARS increases the exocytosis of macrophages
and reduces their apoptosis level, thus reducing AS plaque necrosis.

In addition, the lncRNA AI662270 has been observed to be
specifically enriched in macrophages during AS.
AI662270 overexpression promotes lipid accumulation, reduces
the cholesterol outflow of macrophages, and accelerates the
formation of foam cells, yielding an AS-promoting effect.
AI662270 knockdown exerts a therapeutic effect on AS (Hong
et al., 2023). Moreover, there is evidence that MIAT can affect
lesion formation and plaque destabilization in AS. MIAT regulates

TABLE 2 The role of lncRNAs in AS.

lncRNAs The expression level of
lncRNAs in AS

Function in AS References

MAARS Up Promotes apoptosis of macrophages Simion et al. (2020)

RASSF8-
AS1

Up Promotes vascular smooth muscle cell proliferation and inhibits apoptosis Song et al. (2023)

CARMN Down Regulates vascular smooth muscle cell proliferation, migration and
differentiation; increases the area and volume of strong AS plaques

Dong et al. (2021), Ni et al. (2021),
Vacante et al. (2021)

AI662270 Up Accelerates foam cell formation Hong et al. (2023)

NIPA1-SO Down Inhibits monocyte adhesion and foam cell formation Jiang et al. (2023)

Lnc_000048 UP Accelerates inflammation and collagen degradation and reduces plaque stability Zhang et al. (2023a)

lncR-GAS5 UP Inhibits autophagy in endothelial cells Fan et al. (2023)

Punisher Down Inhibits vascular smooth muscle cell apoptosis by regulating mitochondrial
homeostasis

Yang et al. (2022)

MDRL Down Inhibits NLRP3 inflammasome activation and apoptosis of vascular smooth
muscle cells

You et al. (2022)

Gaplinc UP Causes vascular endothelial cell scorching Tang et al. (2022)

APPAT Down Inhibits the proliferation and migration of vascular smooth muscle cells Meng et al. (2022a)
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smooth muscle cell proliferation and apoptosis as well as contributes
to the transformation of smooth muscle cells into inflammatory
macrophage-like cells (Fasolo et al., 2021).

Due to the broad regulatory role of lncRNAs, their abnormal
expression often affects the expression levels of multiple
downstream genes. LncRNAs may be upstream of other factors
in the complex mechanism of AS development and have greater
potential as a diagnostic marker for this disease. In addition, a large
body of evidence suggests that regulating lncRNA expression can
have therapeutic effects on AS and that targeting lncRNAs in AS
treatment may produce therapeutic effects through multiple
downstream pathways. Further exploration of these specific
mechanisms will enrich the theoretical basis of AS.

circRNAs play a functional role in AS

Unlike other ncRNAs, circRNAs exhibit a loop structure. The
closed-loop structure of circRNAs provides stability in the presence
of RNA nucleic acid exonucleases (Zhao K. et al., 2018). Similar to
lncRNAs, circRNAs regulate target mRNA expression levels and

influence protein levels by competitively binding to
miRNAs(Abdelmohsen et al., 2017). As research has progressed,
understanding of circRNAs has gradually increased; however, most
circRNAs’ functions remain unclear (Li et al., 2019). Multiple
circRNAs have been shown to be differentially expressed during
AS progression and, similar to miRNAs and lncRNAs, are involved
in various stages of AS occurrence and development (Figure 1). The
expression of circRNAs demonstrates temporal and spatial
specificity, which, combined with their stable expression
characteristics, affords them good potential as molecular markers
of AS (Singh et al., 2022). In addition, circRNAs play an important
role in gene regulatory networks, and reversing the abnormal
expression of key circRNAs in AS may be a potential therapeutic
option. Therefore, exploring the key circRNAs in AS and analyzing
their role is important for developing diagnostic and treatment
approaches for this disease (Table 3).

The potential role of certain circRNAs in AS has been
recognized, and sequencing has been used to directly screen
differentially expressed circRNAs to explore AS diagnostic
markers. Abnormally elevated circRNA has_circ_0126672 was
found in the gene expression profile associated with coronary

FIGURE 1
The role of ncRNAs in the development of AS. The expression ofmRNAwhichwas related to ASwas regulated by lncRNA,miRNA and circRNA. These
ncRNAs, such as miR-126, miR-133a, miR-21, miR-33, miR-1914,miR-155 and lncRNA RASSF8-AS1, could influence apoptosis, proliferation,
inflammatory, migration, lipid metabolism and angiogenesis in vascular endothelial cells, macrophages, monocytes and smooth muscle cells.
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artery disease. This circRNA can competitively adsorb numerous
miRNAs, including miR-145-5p, and is closely associated with AS
(Rafiq et al., 2023). Feng Zhang et al. prepared AS rabbit models
using a high-fat diet, screened the differentially expressed circRNAs,
miRNAs, and mRNAs by RNA-seq and mapped the ceRNA
network, concluding that seven circRNAs, including ocu-cirR-
novel-18038, were associated with AS by gene function
enrichment analysis (Zhang et al., 2018). In addition,
circZNF292 in endothelial cells and circLRP6 in VSMCs have
been demonstrated to influence endothelial cell shape and
vascular diseases in both humans and mice (Hall et al., 2019;
Heumüller et al., 2022). CircZNF292 regulates endothelial cell
flow responses, while circLRP6 participates in AS by acting as a
molecular sponge of miR-145.

After screening for differentially expressed circRNAs in the AS
process, further analysis of the role of these circRNAs in AS
facilitates the development of therapeutics. In an AS cell model
prepared using ox-LDL treatment, circ_0090231 was found to
promote the progression of AS by competitively adsorbing miR-
635, increasing NLRP3 expression levels and triggering higher levels
of cell damage and cell scorching (Ge et al., 2021). In addition, ox-
LDL treatment significantly reduced the expression level of circ_
0026218, and overexpression of this circRNA increased the
expression level of SIRT6 by adsorbing miR-338-3P, enhancing
endothelial cell viability and inhibiting the inflammatory
response and apoptosis. In contrast, miR-338-3p overexpression
reversed the protective effect of circ_0026218 on endothelial cells.
Thus, the circ_0026218/miR-338-3p/SIRT6 axis is closely associated
with endothelial injury in the early stages of AS (Yang L. et al., 2023).

Angiogenesis is a key event in AS progression and increases AS
plaque instability, further elevating AS-related CVD risk. A recent
study identified a novel circRNA_06206, circSCRG1, and found that
its expression level decreased after ox-LDL treatment and increased
after treatment with drugs blocking endothelial cell angiogenesis.
Further studies revealed that circSCRG1 has a role in stabilizing AS
plaques by competitively adsorbing miR-1268b to regulate

NR4A1 expression levels and thereby inhibit angiogenesis (Yuan
et al., 2023).

Some circRNAs are expressed at higher levels during the AS
process, and further mechanistic exploration has revealed that they
could play a role in promoting AS; in contrast, certain circRNAs
show decreased expression levels during AS and perform several
functions, including the protection of endothelial cells and
inhibition of apoptosis. In addition, the stability of circRNAs
increases their potential for use as biomarkers versus other
ncRNAs. In conclusion, as research on circRNAs in AS continues
to unfold, circRNAs as diagnostic markers and therapeutic targets
may help alleviate the burden associated with AS.

AS-targeted therapeutic approaches using
ncRNAs as targets

With the development of medical technology, precision and
personalized medicine approaches are increasingly becoming the
main development trend in clinical medicine (Wang et al., 2018).
Some drugs have been demonstrated to regulate ncRNA expression
related to AS. Furthermore, as potential drugs, lncRNAs and
miRNAs might play a role in AS treatment (Saenz-Pipaon and
Dichek, 2022). Regarding ncRNAs in precision and personalized
medicine, carriers should have the characteristics of low cytotoxicity,
non-immunogenicity, and ease of mass production (Nam et al.,
2015). Thus, peptides, micelles, liposomes, exosomes, and
microbubbles have been assessed as carriers to deliver ncRNAs
for AS therapy (Terashima et al., 2018; Aoki et al., 2020; Scholz et al.,
2022) (Figure 2).

Exosomes are cell-derived vesicles, typically 50–200 nm,
containing rich RNA, DNA, protein, and lipid content. Exosome
content secreted by different types of cells varies in composition
(Shao et al., 2018). Exosomes play a dual role in AS, on the one hand
worsening AS through the contents they carry. For example,
exosomes secreted by nicotine-stimulated macrophages contain

TABLE 3 The role of circRNAs in AS.

circRNA The expression level of circRNA
in AS

Function in AS References

circ_0090231 Up Promotes endothelial cell scorching Ge et al. (2021)

circ_0026218 Down Reduces endothelial cell apoptosis and inhibits inflammatory response Yang et al. (2023a)

circRNA_06206 Down Inhibits angiogenesis Yuan et al. (2023)

circ_0008896 Up Promotes endothelial cell apoptosis, angiogenesis and inflammatory response Liu et al. (2023)

circ_0000280 Down Inhibits proliferation of smooth muscle cells Wang et al.
(2022b)

circ COL1A1 Up Promotes the conversion of vascular smooth muscle cells from a contractile to a
synthetic phenotype

Ye et al. (2023)

circ_0007478 Up Promotes foam cell formation Ye et al. (2022)

circ_0007478 Up Inhibits endothelial cell viability and promotes endothelial damage Zhang et al.
(2022a)

circNMD 3 Down Reduces endothelial cell inflammation and oxidative stress Xiu et al. (2022)

circ_0030042 Up Promotes the proliferation and migration of vascular smooth muscle cells Ma et al. (2022)
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large amounts of miR-21-3p and increase the migration and
proliferation ability of vascular smooth muscle cells through
miR-21-3p, thus accelerating the progression of AS (Zhu J. et al.,
2019). On the other hand, a fraction of exosomes can have
therapeutic effects on AS. For example, adipose-derived MSC
exosomes can inhibit miR-342-5p expression and may thereby
reduce endothelial cell damage in AS (Xing et al., 2020). Since
exosomes themselves may contain therapeutic ncRNAs, nucleotide
drugs, such as siRNAs, can be further artificially piggybacked by
electroporation to enhance their therapeutic effects (Alvarez-Erviti
et al., 2011; Familtseva et al., 2019). With the development of
molecular engineering technology, exosomes with higher
targeting capabilities can be generated by adding ligands for the
targeted treatment of AS (Liang et al., 2021). For example, a recent
trial evaluated prepared engineered M2 macrophage-derived
exosomes with higher inflammatory tropism and anti-
inflammatory effects that could better carry the contents for the
treatment of AS (Wu et al., 2020).

Liposomes are lipid bilayer particles with good biocompatibility
and bioavailability and allow for modifications on their surface to
increase stability and targeting within the plasma (Yan et al., 2019;
Scheideler et al., 2020). Liposomes are now widely used to deliver
ncRNA drugs; in a recent study miR-146a encapsulated into
liposomes demonstrated increased stability that could be
preserved for over 2 months, reducing inflammation and
decreasing foam cell production (Ho et al., 2023).

Several other types of nanocarriers can be used to deliver
ncRNAs for targeted therapy in AS. A novel water-soluble
membrane molecule pH low-insertion peptide (pHLIP) was
recently proposed as a carrier for AS-targeted therapy based on
the acidic environment of the AS lipid core. pHLIP was used to carry
antisense oligonucleotides of miR-33-5p to target macrophages in
AS plaques without the side effects of systemically reducing miR-33-
5p. This study demonstrated that pHLIP could be an excellent vector
for miRNA-targeted therapy in vivo and successfully reduced lipid
accumulation in macrophages by inhibiting miR-33-5p expression,
promoting AS regression and increasing AS plaque stability (Zhang
X. et al., 2022).

In contrast to the pH-responsive carriers mentioned above,
carriers actively targeting AS also exist. In one study, monocyte
chemotactic protein-1 (MCP-1) peptide was used to synthesize
peptide amphiphile micelle (PAM), which can target monocytes
in AS, andMCP-1/C-Cmotif chemokine ligand 2 (CCL2) was added
to it to target miR-145 to vascular smooth muscle cells through its
interaction with C-C chemokine receptor-2 (CCR2), which is
enriched in vascular smooth muscle cells (Chin et al., 2021). In
the aforementioned study, intravenous miR-145 micelles
successfully inhibited nearly half of the lesion growth in an early
AS model and inhibited AS plaque growth 35%more than free miR-
145 in a mid-stage ASmodel. In a follow-up study, miR-145 micelles
were shown to be effective in the long-term treatment of AS in vivo
(Chin et al., 2023).

FIGURE 2
AS-targeted therapeutic approaches using ncRNAs as targets. As potential drugs, a few of siRNA of lncRNAs or circRNAs, mimics or inhibitor of
miRNAs, can be used in AS. Furtherly, the carriers which were micelles, liposomes, exosomes and micro bubbles, can deliver ncRNAs for AS therapy.
These carries can target lipid core, peptide, ligand in Macrophages and VSMCs. Exosome andmicro bubbles can used in the sites where the AS occurs by
ultrasound.
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Ultrasound-targeted microbubble destruction (UTMD) is
another a promising technique for targeted drug delivery that
uses ultrasound to induce the rupture of drug-carrying
microbubbles at the target site, and this approach allows for
perforation of the cell membrane to increase the efficiency of
drug delivery (Zhou et al., 2022). Yu Wu et al. synthesized
cationic microbubbles and encapsulated miR-145 within them to
target its release in vascular smooth muscle cells using ultrasound.
The in vitro findings demonstrated that this approach significantly
increased the transfection efficiency of miR-145; in vivo, this
approach reduced AS plaque size by nearly half that achieved by
direct treatment with free miR-145 (Wu et al., 2023). In addition,
UTMD technology can be applied to exosomal vectors to achieve
targeted release of the mounted ncRNA (Sun et al., 2020).

Medical developments have revealed that non-targeted therapeutic
drugs sometimes result in side effects that cannot be ignored. Especially
in gene therapy, the overall regulation of certain genes may lead to more
serious consequences for patients. As a result, there has been a concerted
effort to develop targeted therapies for a wide range of diseases, including
gene therapy. As the number of specific molecules in key cells in AS
grows, theoretically, non-viral vectors for AS targeting could also be
gradually improved, allowing the more precise delivery of nucleotide
drugs to regulate ncRNA expression levels in AS treatment.

Conclusion

AS is the most common disease of the cardiovascular system,
and its ability to induce a variety of fatal CVDs makes AS a constant
threat to patients’ life and health. Current AS treatments are
pharmacological or surgical, and improving lifestyle habits can
help patients with less severe AS. Statins are commonly used to
treat AS and have cholesterol-lowering, anti-thrombotic, and anti-
inflammatory effects (Min et al., 2013; Vadali and Post, 2014).
Antiplatelet agents, hypotensive drugs, and hypoglycemic drugs
are also often used in the treatment of AS, and some plant
extracts have also demonstrated therapeutic effects; however,
despite the continuous development of AS therapies, none are
currently curative (Ruan et al., 2022; Shen et al., 2022). Thus, it
is important to continue exploring the mechanisms underlying AS
development. Currently known risk factors for AS include age,
unhealthy diet, smoking, and lack of exercise (Lechner et al.,
2020; Tyrrell and Goldstein, 2021). The aging-related miR-217
has been found to be overexpressed in the plasma of patients
with CVD. A recent study specifically knocked in miR-217 into
endothelial cells in an AS-promoting mouse model, demonstrating
the role of miR-217 in reducing NO and promoting endothelial
dysfunction, thus exacerbating the AS process, explaining the cause
of aging-induced AS to some extent (de Yébenes et al., 2020). miR-
124-3p expression levels were significantly higher in smokers than in
nonsmokers and past smokers, and increased miR-124-3p
expression levels were associated with AS due to the altered
monocyte phenotype caused by miR-124-3p overexpression (de
Ronde et al., 2017). Thus, more detailed screening of smokers for
AS risk may be possible based on ncRNA expression levels.

Sex is also considered a major factor for AS, possibly due to
hormone levels. Young women have a much lower risk of developing
AS than men, and the risk of AS in postmenopausal women

gradually increases or even exceeds that of men (Mathur et al.,
2015). A study in a mouse AS model showed that miR-144 silencing
prevented the development of AS in male mice but had no effect on
female mice (Cheng et al., 2020). Thus, ncRNAs may play different
roles in AS patients of different sexes, which is important to consider
in the clinical treatment of AS. Strategies exist to improve lifestyle
habits to prevent AS, and evidence suggests that ncRNA regulation is
a key aspect of these strategies. Exercise is an effective measure to
prevent AS, and exercise has been shown to downregulate lncRNA
NEAT1 expression, protecting the endothelium from early AS (Yang
Q. et al., 2023). In the aforementioned study, NEAT1 was found to
induce apoptosis in endothelial cells by binding to KLF4, promoting
the expression of the cellular focal death protein NLRP3. Exercise
reduced the expression level of NEAT1 through N6-
methyladenosine modification. There is a close relationship
between diet and AS, and there is evidence that the intake of
specific foods can reduce AS risk (Riccardi et al., 2022).
Astaxanthin is a common nutrient that has been reported to
have AS-protective effects, and a recent study demonstrated that
the protective effect of astaxanthin on AS arises through the
CircTPP2/miR-3073b-5p/ABCA1 axis that promotes macrophage
cholesterol efflux and thus reduces foam cell formation (Zhang Z.
et al., 2023). In addition, the side effects of some drugs used to treat
other diseases may contribute to AS, and ncRNAs may be crucial
regulators of these processes. The exploration of such mechanisms
has the potential to improve the use of these drugs and identify new
targets for treating AS. For example, after treatment with
doxorubicin, a common chemotherapeutic agent with cardiac
side effects that limit its application to some extent, miR-33
expression levels increased and consequently inhibited the
expression level of ATP-binding cassette transporter protein A1
(ABCA1), promoting lipid accumulation in macrophages and
exhibiting the hallmarks of early AS (Zhu et al., 2023). Another
study demonstrated that inhibiting miR-33-5p can reduce plaque
necrosis by regulating macrophage autophagy in AS, confirming the
feasibility of targeting miR-33-5p in AS therapy (Ouimet et al.,
2017). However, caution is needed on how to utilize miR-33 as a
target for AS therapy, as silencing it for long periods of time may
cause additional metabolic abnormalities (Goedeke et al., 2014).
This is because miR-33 also plays an important role in cholesterol
homeostasis (Marquart et al., 2010; Rayner et al., 2010). It is also
noteworthy that two members of miR-33, miR-33a and miR-33b,
showed different trends after statin treatment (Allen et al., 2012;
Santovito et al., 2020b). Thus the formal application of miRNAs to
the clinical treatment of AS has many challenges to overcome.

In summary, changes in ncRNA levels were observed in the
presence of common risk factors for AS, further emphasizing the
role of ncRNAs in AS development. Evidence suggests that aberrant
ncRNA expression has substantial potential as a diagnostic basis for
AS and that targeting aberrant ncRNAs to reverse such aberrant
expression may have therapeutic effects on AS in the clinical setting.

AS is a non-fatal chronic disease that, without intervention, can
easily worsen and lead to more serious CVDs. Abnormal ncRNA
expression affects AS development. Many miRNAs, such as miR-217
and miR-124, regulate target mRNAs involved in AS development. As
molecular sponges, lncRNAs and circRNAs can influence miRNA and
mRNA expression through ceRNA in AS. These ncRNAs are potential
biomarkers for the diagnostic screening and therapy of AS. Moreover,
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with the development of nanomolecular carriers, ncRNAs have become
more effective as targeted therapies for AS.
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