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Type H vessels are specialized blood vessels found in the bone marrow that are
closely associated with osteogenic activity. They are characterized by high
expression of endomucin and CD31. Type H vessels form in the cancellous
bone area during long bone development to provide adequate nutritional
support for cells near the growth plate. They also influence the proliferation
and differentiation of osteoprogenitors and osteoclasts in a paracrine manner,
thereby creating a suitable microenvironment to facilitate new bone formation.
Because of the close relationship between type H vessels and osteogenic activity,
it has been found that type H vessels play a role in the physiological and
pathological processes of bone diseases such as fracture healing, osteoporosis,
osteoarthritis, osteonecrosis, and tumor bonemetastasis. Moreover, experimental
treatments targeting type H vessels can improve the outcomes of these diseases.
Here, we reviewed the molecular mechanisms related to type H vessels and their
associated osteogenic activities, which are helpful in further understanding the
role of type H vessels in bone metabolism and will provide a theoretical basis and
ideas for comprehending bone diseases from the vascular perspective.
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Introduction

The skeletal system supports the structure of the body and contributes tomotor function.
After the basic structure of the bone is formed, the skeletal system will succeed with the
osteoclast–osteoblast bone remodeling process to adapt to the changing external mechanical
environment, so the osteogenic ability is very important to maintain the function of the
skeletal system (Langdahl et al., 2016). Studies have shown that neovascularization is closely
related to osteogenic activity: neovascularization not only directly provides oxygen,
nutrients, and growth factors for osteogenesis-active areas but also shapes the
microenvironment suitable for the survival of mesenchymal stem cells and pre-
osteoblasts through the secretion of angiocrine signals, thereby promoting osteogenic
activity (Sivaraj and Adams, 2016). So far, three types of capillaries have been found to
exist within bone tissue: types H, L, and E. Each type has different molecular markers,
morphologies, locations, and unique functions (Kusumbe et al., 2014; Langen et al., 2017).
Recently, by light-sheet confocal microscopy, a new kind of endothelial cell, namely, the
lymphatic endothelium (LEC), was found to exist within the bone marrow (Biswas et al.,
2023). It was found that bone marrow LEC was regulated by IL-6 through VEGF-C/VEGFR-
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3 signaling and genotoxic stress (Biswas et al., 2023). These results
demonstrated the highly diversified nature of bone marrow
transport networks.

Type H blood vessels, a vascular subtype discovered in recent
years, have been found to be closely associated with osteogenic
activity. The H (high) blood vessels are distinguished by their
elevated expression of endomucin (EMCN) and platelet
endothelial cell adhesion molecule-1 (PECAM-1/CD31)
(EmcnHigh CD31High). In morphology, type H vessels develop as
straight columns connected by vascular rings or arches. Studies have
indicated that type H vessels are encompassed by a substantial
quantity of pre-osteoblasts that express osteogenesis-specific
transcription factors, namely, osterix and Runx2 (Kusumbe et al.,
2014). There exists a reciprocal regulatory relationship between type
H vessels and diverse cell populations within the bone marrow. Bone
has the ability to modulate the angiogenesis process through the
secretion of various factors such as vascular endothelial growth
factor (VEGF), platelet-derived growth factor type BB (PDGF-BB),
and slit guidance ligand 3 (SLIT-3). Vascular cells can influence the
function of osteoblasts or osteoclasts by releasing factors like VEGF
and Noggin (Wan et al., 2010). The aforementioned spatial co-
localization and mutual regulation of neovascularization and
osteogenesis are referred to as the coupling of angiogenesis and
osteogenesis activities (Lafage-Proust et al., 2010). Numerous
reports have shown that type H vessels have a significant impact
on the processes of fracture healing, osteoporosis, osteoarthritis,
osteonecrosis, tumor bone metastasis, and other bone-related
disorders (Wan et al., 2010).

This article primarily focuses on the recent advancements in the
study of type H vessels, specifically addressing their formation and
regulatory mechanisms, as well as their significance in bone
development and bone-related disorders.

The role of type H vessels in bone formation
and bone remodeling

The formation and maintenance of long bones include two
distinct processes, namely, bone modeling and bone remodeling.
The former term primarily pertains to the osteogenic activities
involved in the transformation from a boneless state to the
formation of the bone during skeletal development. On the other
hand, the latter term refers to the localized process of bone
reconstruction that occurs in response to external mechanical or
metabolic factors after bone formation, commonly known as
“remodeling” (Langdahl et al., 2016).

Studies have shown that neovascularization acts in both bone
modeling and bone remodeling processes (Percival and Richtsmeier,
2013). During the process of bone modeling, the hypertrophic
chondrocytes located beneath the growth plate secrete VEGF,
which serves to attract vascular invasion toward the growth plate
and leads to the recruitment and differentiation of osteoblasts. This
process subsequently results in the mineralization of the area and the
elongation of long bones (Maes et al., 2002). Kusumbe et al. found
that these blood vessels were characterized by high expression of
Emcn and CD31, hence were named type H (high) blood vessels
(Kusumbe et al., 2014). In bone development, type H vessels
proliferate actively and form abundantly within the cancellous

bone region, periosteum, and endosteum of the long bone (Wan
et al., 2010). In the cancellous bone region of long bones,
interconnected vessel columns of type H vessels have been
observed in adolescent mice. Oxygenated arterial blood is
conveyed through arteries and enters type H vessels, which then
traverse the blood sinuses in the diaphysis and finally drain into the
venous system (Sivaraj and Adams, 2016). The observation of a
substantial population of pre-osteoblasts expressing osterix and
Runx2 in close proximity to type H vessels indicates a potential
link between the development of these vessels and osteoblast
function (Langen et al., 2017). In addition to osteoblasts, Romeo
et al. recently discovered that a new specialized vascular-associated
osteoclast (VAO) can promote the release of metalloproteinase-9
(MMP-9) from type H vessels (Romeo et al., 2019). This release of
MMP-9 results in the degradation of cartilage tissue, consequently
creating an environment that promotes the invasion of type H
vessels in growth plates (Romeo et al., 2019). The findings indicate a
significant correlation between the activity of osteoblasts and
osteoclasts, and the presence of type H vessels. During the
process of bone remodeling, Xie et al. unveiled that pre-
osteoclasts possess the capability to induce the development of
type H vessels in the active region of osteoclasts by means of
secreting PDGF-BB (Xie et al., 2014). The perivascular cells of
type H vessels also express mesenchymal stem cell markers such
as PDGFRβ, nestin, and NG2. When bone is injured, these cells can
transform into pre-osteoblasts through the activated Wnt pathway
and promote bone repair (Chen et al., 2020; Matsushita et al., 2020).

The regulation of type H blood vessels

The link between type H blood vessels and osteogenic activity is
based on the communication between vascular endothelial cells and
osteoblasts or osteoclasts (Figure 1).

HIF-1α
The hypoxia-induced factor (HIF) is a crucial transcription

factor involved in cellular oxygen sensing (Riddle et al., 2009).
HIF is composed of a β-subunit and one of three α-subunits
(HIF-1α, HIF-2α, and HIF-3α) (Peng et al., 2020). Under
hypoxic tissue conditions, HIF-1α, expressed by osteoblasts and
vascular endothelial cells, upregulates the expression of VEGF,
thereby facilitating and promoting the formation of tissue
neovascularization (Wan et al., 2010). Kusumbe et al. discovered
that the levels of HIF-1α were increased in type H vessels within the
bone marrow of adolescent mice. As mice aged, the levels of HIF-1α
gradually decreased, which was accompanied by a reduction in type
H vessels and a loss of bone mass. Activation of HIF-1α in vascular
endothelial cells has been shown to enhance the proliferation of type
H vessels in the bone marrow and increase the bone density
(Kusumbe et al., 2014). The specific knockout of HIF-1α in
vascular endothelial cells resulted in a decreased number of pre-
osteoblasts and led to osteoporosis (Wan et al., 2010). Additionally,
the HIF-1α pathway plays a regulatory role in osteoblast activity.
Wan et al. conducted a study which demonstrated that the
overexpression of HIF-1α in osteoblasts has the potential to
enhance both angiogenesis and osteogenesis (Wan et al., 2010).
Deferoxamine mesylate is an iron chelator that increases the activity
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and stability of intracellular HIF-1α. Researchers revealed that the
use of deferoxamine mesylate can increase the number of osteoblasts
by upregulating the number of type H vessels, thereby promoting
osteogenesis (Jones and Harris, 2006). It is important to note,
however, that this particular effect of HIF-1α on osteogenesis
may be restricted to young mice. In adult mice, the deletion of
HIF-1α in osteoblasts or osteocytes has been shown to enhance
osteoblast activity and promote an increase in bonemass in response
to mechanical loading (Riddle et al., 2011).

VEGF
The VEGF family in mammals consists of five protein subtypes

(VEGFA, B, C, D, and PlGF (placental growth factor)), three
receptors (VEGFR1, R2, and R3), and two co-receptors
(neuropilin-1 and -2) (Grunewald et al., 2010; Koch, 2012).
Among these subtypes, VEGFA is considered the most potent
angiogenic growth factor (Helmrich et al., 2013). It primarily

binds to the VEGFR2 receptor, thereby promoting the
proliferation, migration, maturation, and survival of vascular
endothelial cells. VEGF in the bone marrow originates from
various sources. In the long bone, chondrocytes, osteoblasts,
osteoclasts, immune cells, and perivascular cells were all proven
to secrete VEGFA (Hu and Olsen, 2017). Gerber et al. demonstrated
that hypertrophic chondrocytes play a crucial role in the process of
endochondral ossification by promoting the infiltration of blood
vessels into the cartilage region through the secretion of VEGF,
thereby facilitating osteogenesis (Gerber et al., 1999). Maes et al.
discovered that the deficiency subtypes of VEGF, namely,
VEGF188 and VEGF164, resulted in decreased vascular invasion
into cartilage and a reduction in bone marrow blood vessels. This
ultimately led to limb shortening and osteoporosis (Maes et al.,
2002). The knockout of the VEGFA or VEGFR gene in pre-
osteoblasts resulted in osteogenic disorders and decreased
osteogenic differentiation, suggesting that osteoblasts not only

FIGURE 1
Signaling pathways and molecules involved in the development and maintenance of type H vessels and coupled osteogenesis. VEGF, PDGF-BB,
SLIT-3, MMPs, and ANG secreted by bone cells inmetaphysis support typeH vessel formation. Osteoblasts secrete epidermal growth factor-like protein 6
(EGFL6) and nephronectin (NPNT) and chemokine (C-X-C motif) ligand 9 (CXCL9) to regulate angiogenesis. Regulated by HIF-1α under hypoxic
conditions, VEGF activates the Notch pathway of the tip cells by increasing the Notch ligand DLL4, producing stalk cells and completing the process
of angiogenesis. Type H vessels were surrounded by osteoprogenitors and promote matrix mineralization. Endothelial Notch/Dll4 signaling upregulated
secretion of Noggin, which supports osteoblast differentiation and cartilage maturation. Meanwhile, type H vessels express RANKL and induce
differentiation of VAO, which facilitates growth plate resorption and bone formation. Type H vessels secrete PDGF, FGF, and TGFβ to regulate adjacent
bone cells or endothelial proliferation. Type H vessels were also regulated by systematic signaling including IGF, FGF, WNT, BMP, PDGF, micro-RNAs, and
hormones (e.g., estrogen).
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secrete VEGF but also serve as important target cells for VEGF in the
bone marrow (Helmrich et al., 2013). Correspondingly,
overexpression of VEGF led to pre-osteoblast proliferation and
increased bone mass, showing again that VEGF could directly act
on osteoprogenitors without its angiogenic functions (Maes et al.,
2010). Intracellular VEGF signaling, but not exogenous VEGF, was
proven to regulate the differentiation of mesenchymal stem cells by
inhibiting adipogenesis (Liu et al., 2012; Berendsen and Olsen,
2014). In addition, loss of intracellular VEGF caused increased
bone marrow adiposity and bone loss (Berendsen and Olsen,
2014). VEGF also regulated extracellular matrix (ECM)
composition through its angiocrine function and thus had
significant impact on the distribution of the bone marrow cells
(Di Maggio and Banfi, 2022). It is noteworthy that VEGF does not
always facilitate osteogenesis. At high concentrations, VEGF can
hinder osteogenesis, stimulate the formation of osteoclasts, and
enhance their osteolytic activity, ultimately leading to the
development of osteoporosis (Nakagawa et al., 2000; Yang et al.,
2008; Helmrich et al., 2013). This complex phenomenon observed
with VEGF may be attributed to the temporal–spatial effect of its
normal distribution and also the highly varied origin and target cells
of VEGF. Under physiological conditions, the spatial distribution of
VEGF in the bone marrow is determined by a concentration
gradient. Therefore, the formation of blood vessels, osteogenesis,
and osteoclastic activities are directed toward specific areas of the
bone, allowing for bone metabolism to occur in a localized manner.
However, too high or too low VEGF will destroy the concentration
gradient under the physiological condition, resulting in an
imbalance between osteogenesis and osteoclast activity, finally
causing bone destruction (Ruhrberg et al., 2002; Gianni-Barrera
et al., 2020).

PDGF-BB
PDGF-BB is a chemotactic cytokine that promotes the

proliferation and differentiation of endothelial progenitor cells
and mesenchymal stem cells in the bone marrow (Fiedler et al.,
2004; Wang et al., 2012). Notably, Xie et al. discovered that pre-
osteoclasts are the primary source of PDGF-BB secretion in the
bone marrow (Xie et al., 2014). PDGF-BB facilitates the
proliferation and migration of endothelial cells and
mesenchymal stem cells through its interaction with the β-type
PDGF receptor (PDGF receptor-β), leading to the activation of
mitogen-activated protein kinases (MAPKs) and protein kinase B
(PKB and Akt) (Xie et al., 2014). Finally, these factors lead to an
increase in the number of type H vessels and osteoblasts in the
region responsible for bone formation (Xie et al., 2014). Gao et al.
discovered that tartrate-resistant acid phosphatase-positive
(TRAP+) cells located on the cortical bone have the ability to
stimulate the migration of bone marrow mesenchymal stem cells
toward the periosteum (Gao et al., 2019). This migration is
accompanied by the expression of periostin, which is facilitated
by the secretion of PDGF-BB (Gao et al., 2019). PDGF-BB
released by TRAP + cells has the potential to stimulate the
periosteum of type H vessels and enhance osteogenic activity
(Gao et al., 2019). Importantly, bone-derived PDGF-BB was
recently found to mediate arterial stiffening and calcification in
the brain, suggesting a central role of skeleton-derived PDGF-BB
in vascular diseases (Santhanam et al., 2021; Wang et al., 2023).

SLIT-3
The SLIT family is a molecule with the neuron guidance

function found in the central nervous system and includes three
homologous subtypes: SLIT-1, SLIT-2, and SLIT-3 (Long et al.,
2004). SLIT-3 is expressed in a variety of tissues and has been linked
to angiogenesis and stem cell function (Paul et al., 2013; Qiu et al.,
2015). Several studies have explored the role of SLIT-3 in bone
tissue, demonstrating its ability to enhance the formation of type H
vessels and increase bone mass (Kim et al., 2018; Xu et al., 2018).
Additionally, Xu et al. discovered that osteoblasts are the primary
source of SLIT-3 secretion. The knockout of SLIT-3 in mouse
osteoblasts resulted in a reduction of type H vessels, impaired
osteoblast function, and decreased osteogenic activity. Exogenous
injection of SLIT-3 can increase the number of type H vessels,
accelerate fracture healing, and alleviate osteoporosis (Xu et al.,
2018). However, Kim et al. found that SLIT-3 can be secreted by
osteoclasts and that SLIT-3 could promote the proliferation and
migration of osteoblasts. The knockout of SLIT-3 in mouse
osteoclasts resulted in an observed increase in osteoclasts, as well
as a decrease in type H vessels and bone mass (Kim et al., 2018). The
aforementioned studies have shown that the source of SLIT-3 in the
bone is controversial, but targeting SLIT-3 can increase the number
of type H vessels and promote osteogenic activity.

Notch
The Notch signaling pathway in vascular endothelial cells has

angiogenic and osteogenic functions. During angiogenesis, a small
number of endothelial cells activated by VEGF will become the tip
cells that lead to the growth of blood vessels. Meanwhile, VEGF
activates the Notch pathway of the tip cells adjacent to the
endothelial cells by upregulating the Notch ligand Dll4,
producing stalk cells and completing the process of angiogenesis
(Ramasamy et al., 2014; Wang et al., 2017). Studies have shown that
the Notch signaling pathway in bone marrow vascular endothelial
cells promotes the production of type H vessels, while inhibition of
the Notch signaling pathway impairs angiogenesis and osteogenesis
(Ramasamy et al., 2014). The effect of the Notch signaling pathway
on osteogenesis mainly stems from its promotion of the expression
of Noggin in endothelial cells. Noggin inhibits the BMP signaling
pathway in pre-osteoblasts expressing osterix, thereby promoting
the proliferation and differentiation of osteoblasts (Ramasamy et al.,
2014). Additionally, mechanical stimulation influences the
activation of the Notch pathway. High blood flow can stimulate
Notch signaling, whereas a low blood flow reduces the Notch
signaling pathway. Reduced blood flow in aged mice has been
demonstrated to result in a decrease in type H vessels and in the
development of osteoporosis. Surprisingly, it has been found that
activation of the Notch pathway or increasing the skeletal blood flow
using the bisphosphonate drug alendronate can reverse the vascular
and bone loss phenotype (Ramasamy et al., 2016). Zinc-finger
E-box-binding homeobox 1 (ZEB1) is a significant zinc finger
transcription factor in vivo. Researchers have conducted an
investigation into the expression of ZEB1 in type H vessels
within the bone. It has been found that ZEB1 plays a crucial role
in regulating the expression of Dll4 and Notch signaling through the
regulation of H3K4Ac, H3K14Ac, and H3K18Ac. Exogenous
ZEB1 can increase type H vessels and treat osteoporosis (Fu
et al., 2020).
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Other contributing factors
Angiogenesis is closely related to osteogenic activity. Therefore,

numerous cytokines exhibit the capacity for bidirectional secretion
and regulation. Type H vessels are known to express various growth
factors, including transforming growth factor β (TGFβ)1, TGFβ3,
PDGF-A, and fibroblast growth factor (FGF). These growth factors
play crucial roles in regulating osteoblast-related cells (Wan et al.,
2010). Meanwhile, established vital pathways during embryogenesis
and bone modeling could have important impact on the formation
of type H vessels, including Hedgehog, WNT, BMP, FGF, EGF, IGF,
and mTORC pathways, via a local or systematic effect (Huang et al.,
2016; Zhu et al., 2020). For example, epidermal growth factor-like
protein 6 (EGFL6) is an angiogenesis factor that promotes
endothelial cell proliferation and migration. Notably, EGFL6 was
among the most dominantly expressed proteins during late-stage
osteoblast differentiation, and EGFL6 deficiency decreases type H
vessel and bone formation during bone repair (Chen et al., 2021).
Nephronectin (NPNT), a homolog of EGFL6, was also proven to
regulate angiogenesis and osteogenesis in vitro, highlighting that
osteoblast-originated epidermal growth factors may function as
significant regulators of bone marrow angiogenesis (Kuek et al.,
2016). The classic osteoclast induction pathway RANK/RANKL was
also found to regulate vascular cell survival and proliferation
through PI3K and Akt pathways (Kim et al., 2003). RANK/
RANKL secreted by type H vessels also supports the
aforementioned VAOs (Romeo et al., 2019). Liu et al. found that
osteoclasts maintain type H vessels by secreting angiogenin, and
decreased angiogenin led to the loss of type H vessels and bone mass
(Liu et al., 2021). Nerves usually accompany blood vessels, and nerve
growth factors can promote angiogenesis. Tropomyosin-receptor
kinase A (TrkA) is a nerve growth factor receptor that activates
TrkA on the surface of endothelial cells to directly promote
angiogenesis (Lu et al., 2018). The interaction between the nerve
growth factor (NGF) and TrkA in sensory terminals has been found
to facilitate the release of angiogenic neuropeptides. These
neuropeptides bind to NK1 and CGRPR receptors located on the
surface of endothelial cells, thereby inducing angiogenesis (Lu et al.,
2018). Sema3A, another nerve growth factor, has been demonstrated
to inhibit osteoclasts and enhance osteoblast proliferation through
the activation of the neuropilin-1 receptor. Thus, it has been
observed that Sema3A has the potential to enhance the process
of osteogenesis (Hayashi et al., 2012; Fukuda et al., 2013). Addition
of silicon to engineered materials could promote bone formation
though Sema3A secreted by nerve endings (Ma et al., 2022).
Vascular endothelial cells have the ability to secrete significant
quantities of Sema3A, which can enhance their own
functionality. However, the specific role of Sema3A secreted by
endothelial cells in bone remains unclear. Exosomes are a type of
extracellular vesicles that are generated by cells. As a crucial
component of intercellular communication, extracellular vesicles
play a significant role in the transport of nucleic acids, proteins,
lipids, and metabolites. They facilitate intercellular information
transmission through various mechanisms, including the
ligand–receptor interaction, membrane fusion, and endocytosis.
Recent studies have demonstrated that non-coding RNA
molecules present in exosomes, including miR-210, lncRNA
MEG3, and lncRNA H19, play a significant role in the regulation
of angiogenesis (Su et al., 2015; Xie et al., 2019; Behera et al., 2021).

Sex hormones were also found to be vital regulators of bone blood
vessels and might explain sex specificity in bone metabolism. For
instance, estrogen was found to regulate lipid use and FA uptake of
the bone blood endothelium. Low estrogen levels were associated
with accumulated lipid peroxides (LPOs) and accelerated vascular
aging, while inhibition of LPO generation improved bone health in
aged mice (Rodrigues et al., 2022).

The role of type H vessels in bone diseases

The dysregulation of osteoblast–osteoclast activity can give rise
to a range of bone disorders. For instance, an imbalance between
osteoblasts and osteoclasts can result in the development of
osteoporosis, a deficiency in osteogenesis can impede proper
fracture healing, and an excessive amount of osteogenesis can
contribute to the onset of osteoarthritis. Type H blood vessels
have been demonstrated to exhibit associations with a diverse
range of bone diseases, which will be discussed in subsequent
sections (Figure 2).

Fracture healing
After a fracture, the bone tissue sustains damage and the local

blood flow is disrupted, resulting in the exudation of inflammatory
cells and the formation of hematoma. Subsequently, the blood vessels
originating from the bone marrow, cortical bone, and periosteum
will gradually extend toward the site of fracture. Following
hematoma formation, fibroblasts and chondrocytes will undergo a
process of cartilage callus formation, leading to the eventual
development of a new bone (Bolander, 1992). Increased
neovascularization is essential for fracture healing. Research
reported that the use of VEGF could accelerate vascularization
and fracture healing. Antagonizing VEGF or its receptor
VEGFR1 reduced the number of new blood vessels and the
mineralization of fracture callus, ultimately slowing down fracture
healing (Street et al., 2002; Kleinheinz et al., 2005). FGF2, BMP2, and
BMP7 have also been shown to promote angiogenesis and bone
repair (Sivaraj and Adams, 2016). Xu et al. found that injection of
SLIT3 could facilitate fracture healing in mice by increasing type H
vessels (Xu et al., 2018). Low-frequency pulsed ultrasound has been
shown to promote the increase in blood vessels after spinal fusion
and improve prognosis (Xu et al., 2016).

Osteoporosis
Osteoporosis is characterized by the deterioration of bone tissue

resulting from an imbalance between the formation of a new bone
(osteogenesis) and the breakdown of an existing bone (osteoclastic
activity). Wang et al. found that type H vessels can serve as a reliable
indicator for assessing bone mass in the elderly population (Wan
et al., 2010). Previous research has consistently shown that the
presence of type H vessels decreases to varying extents in individuals
with osteoporosis resulting from menopause, glucocorticoid use,
and advanced age (Kusumbe et al., 2014; Yang et al., 2018; Li et al.,
2020). The decline in type H vessels in individuals with osteoporosis
is directly correlated with the reduction in angiogenic factors.
Research studies have demonstrated that both menopausal factors
and glucocorticoids could decrease the production of PDGF-BB by
downregulating the population of pre-osteoclasts, leading to a
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decline in type H vessels. The augmentation of pre-osteoclasts led to
an increase in the production of PDGF-BB, subsequently resulting in
the enhancement of type H vessels and bonemass (Yang et al., 2018).
Angiogenin, which was derived from osteoclasts, played a crucial
role as an angiogenic factor in the maintenance of blood vessels. The
reduction in osteoclasts induced by glucocorticoids resulted in a
decrease in angiogenin levels and subsequently led to the senescence
of blood vessels (Liu et al., 2021). Of note, in grown mice,
glucocorticoids caused bone marrow adipocyte senescence, which
could cause secondary senescence of bone blood vessels and
subsequent bone loss (Liu et al., 2023a). VHL (von
Hippel–Lindau)-E3 ubiquitin protein ligase is a crucial protein
involved in the regulation of HIF-1α stability. Knocking out the
von Hippel–Lindau (VHL) gene in osteoblasts has been shown to
upregulate the expression of VEGF and increase type H vessels and
bone mass in mice subjected to ovariectomy. In aging mice, the
targeted deletion of VHL in vascular cells has been shown to
enhance the preservation of type H vessels and increase bone
mass. These results suggested that augmenting angiogenic factors
could be a potential approach for treating osteoporosis (Hu and

Olsen, 2016). Gao et al. found that the local administration of
tetramethylpyrazine (TMP) rescued vascular proliferation and
bone volume through the AMPK-mTORC-HIF1-α signaling
pathway in aging mice (Gao et al., 2018). It is worth noting that
certain rehabilitation therapies, such as electromagnetic pulse, as
well as traditional Chinese medicine preparations like Gushukang
and harmine, have also demonstrated the ability to alleviate
osteoporosis by promoting blood vessel formation. The findings
suggested that the upregulation of type H vessels could potentially
serve as a mechanism in the treatment of osteoporosis through
rehabilitation or traditional Chinese medicine (Huang et al., 2018; Li
et al., 2020; Wang et al., 2022).

Osteoarthritis
Osteoarthritis is a prevalent joint disease among individuals in

middle-aged and elderly populations. It is primarily characterized by
the degeneration and deterioration of cartilage, as well as the
abnormal vascularization and osteogenesis of the subchondral
bone (Hunter and Bierma-Zeinstra, 2019). Among the various
pathological changes observed in osteoarthritis, angiogenesis,

FIGURE 2
Role of type H vessels in bone disorders. Decreased type H vessel is associated with bone loss and increased fracture risk. After fracture, type H
vessels are formed in the callus in response to increased factors (VEGF, FGF2, BMP2, BMP7, SLIT3, etc.) to facilitate bone formation. Type H vessels are
decreased in osteoporosis conditions due to decreased HIF-1α/VEGF and PDGF-BB. In osteoarthritis, type H vessel formation in the subchondral bone
causes aberrant bone formation and bone marrow sclerosis, which leads to cartilage degeneration. PDGF-BB, mTOR, MMP-2, and TGF-β are
involved in the infiltration and overgrowth of type H vessels in osteoarthritis. Decreased blood supply to the femoral head caused partly by diminished
type H vessels contributes to development of osteonecrosis. Metastasis tumor cells in bone type L vessels tend to seed in the bone marrow
microenvironment. Type H vessels support tumor cell proliferation by providing oxygen, nutrients, and growth factors. During radiation and
chemotherapy, increased type H vessels and surrounding pericytes generate a quiescent microenvironment, which impairs treatment outcomes.
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abnormal hyperemia, and bone marrow edema of the subchondral
bone play significant roles in disease development (Hu et al., 2021).
Mapp et al. conducted a study that demonstrated the occurrence of
subchondral bone angiogenesis in the early stages of osteoarthritis,
leading to the development of subchondral bone sclerosis and
osteophyte formation (Mapp and Walsh, 2012). Additionally, Cui
et al. observed an increase in type H vessels in mouse models of
osteoarthritis. The excessive proliferation of type H vessels in the
subchondral bone and subchondral bone sclerosis can be mitigated
by the traditional Chinese medicine halofuginone through the
inhibition of MMP-2 and TGF-β (Kleinheinz et al., 2005). Lu
et al. conducted a study to investigate the relationship between
the activation of mammalian targets of the rapamycin complex
(mTOR) in chondrocytes and the secretion of VEGF, as well as the
formation of type H vessels in the subchondral bone. Inhibition of
the mTOR pathway has been shown to have a potential therapeutic
effect in reducing the formation of type H vessels and slowing down
the progression of osteoarthritis (Lu et al., 2018). Cartilage tissue is
usually avascular. In osteoarthritis, certain blood vessels infiltrate the
interface between the cartilage and the subchondral bone, thereby
invading the cartilage tissue (Mapp et al., 2008). Recent studies have
indicated that in the initial stages of mouse arthritis models, there is
a notable increase in the secretion of PDGF-BB and the development
of type H vessels in the subchondral bone, which is accompanied by
nerve growth. Overexpression of PDGF-BB in osteoclasts has been
shown to result in subchondral bone vascularization and
spontaneous cartilage destruction. Conversely, inhibiting PDGF-
BB expression in osteoclasts has been found to improve the arthritis
phenotype (Su et al., 2020). Metformin was found to inhibit
metabolic-associated osteoarthritis partly though inhibition of
type H vessels (Liu et al., 2023b). Type H vessels have the ability
to facilitate the resorption of cartilage tissue in juvenile mice through
the secretion of MMP-9. This finding suggests a potential novel
mechanism for cartilage tissue degradation in osteoarthritis.
However, further investigation is required to provide in vivo
evidence for this hypothesis (Romeo et al., 2019).

Femoral head necrosis
Femoral head necrosis refers to the death of bone tissue in the

femoral head due to a compromised or disrupted blood supply,
resulting in avascular necrosis (Weinstein, 2012). Weinstein et al.
discovered that the rate of bone metabolism in the femoral head is
higher than that in the distal femur (Weinstein et al., 2017). Due to
the significant association between type H vessels and bone
metabolism processes, it is plausible to hypothesize that the
abundance of type H vessels in the femoral head region is greater
than that in the distal femur. However, this hypothesis requires
additional verification (Weinstein et al., 2017). Weinstein et al. also
demonstrated that glucocorticoids have the potential to induce
reduced blood vessel density and fragmentation in the femoral
head, thereby exacerbating femoral head edema (Weinstein et al.,
2017). However, the administration of parathyroid hormone
therapy in the model of steroid-induced femoral head necrosis
has been found to increase the blood vessel density in the
femoral head, but it does not alleviate femoral head necrosis. It
could be posited that the etiology of femoral head necrosis is not
solely associated with the reduction of type H vessels (Lane et al.,
2018).

Tumor bone metastasis
Bone tissue is frequently targeted by tumor cells for

metastasis, making it one of the most prevalent sites for such
spread. The unique anatomical and physiological characteristics
of blood vessels in the bone marrow play a crucial role in the
process of tumor bone metastasis. Corresponding to the type H
vessels located at the metaphysis on both sides of the long bone,
the blood vessels present in the diaphysis are referred to as L-type
blood vessels (type L vessel). These vessels are characterized by
low expression of EMCN and CD31 and are commonly known as
sinusoids (Sivaraj and Adams, 2016). Type L vessels lack
perivascular cells. The high permeability of the sinusoidal
endothelium is attributed to the lack of tight junctions
between endothelial cells. In addition, the large diameters and
slow blood flowmake type L vessels ideal for frequent exchange of
substances and cells. Additionally, these vessels play a crucial role
in the homing and maintenance of hematopoietic stem cells.
CXCL12 that is expressed by the type L endothelium has the
ability to bind to the CXCR4 receptor found on circulating tumor
cells. This binding facilitates the attachment of circulating tumor
cells to the bone marrow microenvironment, resembling the
process of stem cell homing (Bussard et al., 2008; Kusumbe,
2016). In conclusion, the aforementioned attributes of type L
vessels contribute to the preservation of the microenvironment of
bone marrow cells and facilitate bidirectional transportation of
hematopoietic cells. In addition to their role in invasion and
planation of circulating tumor cells within the bone marrow
microenvironment, type L vessels have been found to contribute
to the development of bone metastases (Kusumbe, 2016). It has
been observed that tumor cells have a higher tendency to localize
in areas where type L vessels are present, as opposed to type H
vessels. However, it is worth noting that type H vessels exhibit a
higher level of metabolic activity and proliferation. The role of
type H vessels in tumor cells is significant as they transport
oxygen, nutrients, cells, and growth factors (Ghajar et al., 2013;
Kusumbe, 2016). Studies have demonstrated that reducing the
volume of type H vessels in the bone marrow can enhance the
sensitivity of breast cancer bone metastases to chemoradiotherapy. In
a more recent work, Singh et al. showed that type H-associated
PDGFRβ+ pericytes maintained the quiescent microenvironment in
the bonemarrow, which was compromised in aging conditions (Singh
et al., 2019). Radiation or chemotherapy promoted proliferation of
type H vessels and pericytes, which further strengthened the
quiescence-promoting secretome of these vascular cells, and
thereby contributed toward chemoresistance. Interestingly, simply
reducing the blood flow of the bone marrow could inhibit pericyte
expansion and render cancer cells susceptible to radiation and
chemotherapy (Singh et al., 2019).

Summary

The blood vessels within the bone marrow serve as conduits for
the transportation of oxygen, nutrients, and cells. It is the living
environment for different bone marrow cell groups. Therefore,
blood vessels play a crucial role in bone metabolism. Type H
vessels are a subtype of bone marrow vessels discovered in recent
years, which play an important role in regulating bone
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development, osteogenesis, and bone remodeling. Numerous
studies have demonstrated that osteoblasts, osteoclasts, and
other bone marrow cells establish an intricate regulatory
network with blood vessels via various signaling pathways,
including HIF-1α, VEGF, PDGF, SLIT-3, and Notch. Therefore,
these communications achieve precise regulation of bone
metabolism by controlling the formation of new blood vessels.
The current treatment methods for bone diseases mainly focus on
inhibiting osteoclasts or promoting osteoblast function. The
investigation into type H vessels and their interaction with bone
marrow cells is anticipated to yield novel insights for bone
treatment and establish a stronger theoretical foundation for
future therapeutic approaches.
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