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Non-cellular secretory components, including chemokines, cytokines, and growth
factors in the tumor microenvironment, are often dysregulated, impacting
tumorigenesis in Glioblastoma multiforme (GBM) microenvironment, where the
prognostic significance of the current treatment remains unsatisfactory. Recent
studies have demonstrated the potential of post-translational modifications (PTM)
and their respective enzymes, such as acetylation and ubiquitination in GBM etiology
throughmodulating signaling events. However, the relationship between non-cellular
secretory components and post-translational modifications will create a research
void in GBM therapeutics. Therefore, we aim to bridge the gap between non-cellular
secretory components and PTM modifications through machine learning and
computational biology approaches. Herein, we highlighted the importance of
BMP1, CTSB, LOX, LOXL1, PLOD1, MMP9, SERPINE1, and SERPING1 in GBM
etiology. Further, we demonstrated the positive relationship between the
E2 conjugating enzymes (Ube2E1, Ube2H, Ube2J2, Ube2C, Ube2J2, and Ube2S),
E3 ligases (VHLandGNB2L1) and substrate (HIF1A). Additionally,we reported thenovel
HAT1-induced acetylation sites of Ube2S (K211) and Ube2H (K8, K52). Structural and
functional characterization of Ube2S (8) and Ube2H (1) have identified their
association with protein kinases. Lastly, our results found a putative therapeutic
axis HAT1-Ube2S(K211)-GNB2L1-HIF1A and potential predictive biomarkers (CTSB,
HAT1, Ube2H, VHL, and GNB2L1) that play a critical role in GBM pathogenesis.
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Highlights

• BMP1, CTSB, LOX, LOXL1, PLOD1, MMP9, SERPINE1, and SERPING1 are linked
with poor prognosis in GBM patients.

• CTSB, HAT1, Ube2H, VHL, and GNB2L1 are predictive markers for GBM therapies.
• The poor prognostic markers BMP1, CTSB, LOX, LOXL1, PLOD1, and
SERPINE1 were positively linked with HIF1A.

• Ube2C (18, K33); Ube2E1 (K43); Ube2H (K8, K52); Ube2J2 (K64, K88); Ube2S (K198,
K210, K211, K215, K216) as putative acetylated sites.

• Ube2H (K8, K52) and Ube2S (K211) are associated with overexpressed
HAT1 enzymes in GBM.

• HAT1-Ube2S(K211)-GNB2L1-HIF1A-BMP1/CTSB/LOX/LOXL1/PLOD1/SERPINE1 as
a novel therapeutic axis in GBM.
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1 Introduction

Glioblastoma multiforme (GBM) is the most prevalent and
fatal brain tumor with a poor prognosis. The clinical prognosis
is still lacking despite several approved therapies for GBM,
including surgery, radiation, and chemotherapy (Miller et al.,
2021). The possible causes are the extensively invasive nature of
GBM cells, the chemo- and radio-resistance, the high degree of
vascularization, heterogeneity, and reduction of
chemotherapeutic drugs effusion due to the blood-brain
barrier (BBB), and heterogeneity of tumor microenvironment
(TME). Further, the extracellular matrix (ECM) structural
proteins are among the non-cellular components of the TME
that are released by tumor or stromal cells or extravasated from
the intravascular compartments other than cytokines,
chemokines, and growth factors (Patel et al., 2018).
Additionally, ECM structural proteins impact the
development of all blood cells and other cells that support
the body’s inflammatory and immunological reactions, which
promote anti-cancer behavior (Baghban et al., 2020). The use of
non-cellular secretory components as possible treatment targets
and biomarker tools is now being investigated in several

pre-clinical and clinical studies (Bridge et al., 2018; Liu C.
et al., 2021). Cytokine expression patterns in GBM are
distinctive, and aberrations in cytokine expression have been
linked to gliomagenesis. The complex cytokine network in the
diverse microenvironment facilitates interactions between the
tumor cells, healthy brain cells, immune cells, and stem cells
within the heterogeneous milieu of the GBM (Zhu et al., 2012).
In addition, chemokines recruit different immune cell
populations in TME by binding with their receptors. For
instance, microglia cells implicated in their recruitment at
the site of inflammation possess elevated amounts of
CCR1 expression. These affect tumor growth, metastasis, the
transition from low to high-grade gliomas, and treatment
outcomes (Zeren et al., 2023). Another study demonstrates
that the recurrence of GBM pathogenicity occurs when
neural stem cells crosstalk with microglial cells (Dai et al.,
2023). Moreover, studies have shown that post-translational
modifications (PTMs), namely, methylation, acetylation,
glycosylation, and ubiquitination of chemokines and
cytokines, influence biological activities, inflammatory
responses, and inflammasome-dependent innate immune
responses through modifying the protein stability, structure,

GRAPHICAL ABSTRACT
The workflow illustrates the process of identification of a novel therapeutic axis for targeting the GBM microenvironment. GBM: Glioblastoma
multiforme, TME: Tumor microenvironment.
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FIGURE 1
Methodology used in the current study: Workflow and steps considered along with the datasets collected and processed to identify prognostic and
predictive markers in GBM. The expression of non-cellular secretory components (cytokines, chemokines, and growth factors) was examined in GBM
transcriptome and proteomic data before the Kaplain-Meir plot was used to find prognostic markers. In addition, a common protein has been found that
is directly associated with prognostic indicators; of these, two have the ability to function as substrates in the UPS system, and only HIF1A was
elevated in GBM. Additionally, putative E3 ligases and E2s that are linked to HIF1A have been found. Additionally, a correlation study was done between
prognostic markers, HIF1A, E3 ligase, E2s, and HAT enzymes. Further, a potential acetylation site on the lysine residues of E2s was found. The figure
highlights the involvement of the acetylation mechanism, E2 conjugating enzymes, and E3 ligase’s finding novel therapeutic axis in GBM indication.
Furthermore, a characterisation investigation of the suggested treatment axis was carried out. GBM: Glioblastoma Multiforme; E2s E2 conjugating
enzymes, UPS: Ubiquitin proteasome systems.
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FIGURE 2
Data sorting and functional enrichment of significant non-cellular secretory biomarkers: (A) Venn diagram showing significant differentially
expressed genes from transcriptomics data (RNAseq and Microarray) datasets. 73 genes overlap in RNA and microarray datasets (B) Venn diagram
showing significant differentially expressed genes common in transcriptomics and proteomics datasets of GBM with the cut-off criteria of |log2FC| ≥
1.5 and p-value≤ 0.05. 44 genes are common with protein datasets. (C) Biological pathway analysis using KEGG pathway: Among the top
10 biological pathways based on combined score* (written in green color) calculated by Enrichr tool are ECM-receptor, P13K-Akt, Hypoxia, TNF, TGF, and
Hippo pathways with p-value≤0.05 in GBM. *Combined score is computed by taking the log of the value from the Fisher-exact test and multiplying that
by the z-score of the deviation from the expected rank. Potential biomarkers identified in the current study have been mapped in front of each pathway.
(D) Gene ontology (GO) analysis contains three sub-ontologies: molecular function, cellular components, and biological process associated with
44 biomarkers. Molecular function and cellular components showed maximum numbers of biomarkers involved in ECM structural constitute and

(Continued )
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and sequence (Liu J. et al., 2016; Vanheule et al., 2018). A recent
study by McCornack et al. (2023) discussed the significance of
histone acetylation and methylation along with the
consequences of targeted suppression of these enzymes by
therapy in GBM (McCornack et al., 2023). Moreover,
another study mentioned addressed the crucial role of
histone acetylation in determining cell fate (Liu et al., 2023).
Further, the exploration of new therapeutic interventions
requires a thorough understanding of pathways relevant to
GBM (Gallego-Perez et al., 2016). Additionally, protein
kinases serve a crucial role in the signaling processes that
regulate the traits of malignant cells, thereby making them
valuable targets for therapeutic intervention in the
management of cancer through the uptake of glucose,
signaling modulation, epigenetic modifications, and
progression of the cell cycle (Pang et al., 2022). Moreover, a
variety of non-cellular secretory components of TME, including
hormones, growth factors, chemokines, and cytokines bind to
receptor tyrosine kinase and initiate downstream signaling,
such as MAPK, PI3K/Ras that results in the proliferation and
survival of tumor cells (Alexandru et al., 2020). EGFR signaling
crosstalk with other major oncogenic signaling cascades, such
as PI3K/protein kinase B (Akt)/mTOR pathway and MAPK
pathway (Ramaiah and Kumar, 2021). However, in various
cancers, protein kinase also controls TME and its constituent
components. For example, in GBM tumor cells, IL-1β induces
an HIF1A/IL-1β autocrine loop via activating Wnt-1 and RAS,
which both contribute to the increase of HIF-1A (Chen et al.,
2022). In contrast, IL-1β also stimulates the p38 MAPK-
activated protein kinase 2-human antigen R (HuR), TLR-4,
and other inflammatory-associated signaling pathways, which
considerably enhance the levels of IL-6 and IL-8 in GBM tumor
cells, eventually leading to an inflammatory TME in support of
GBM invasion and growth (Gurgis et al., 2015). In addition,
Cytokines, such as CCL5, was associated with intracellular
calcium elevation. The activation of Akt and Ca2+/
calmodulin-dependent protein kinase II (CaMKII) in GBM
cells controlled the migratory and invasive activities (Yu-Ju
Wu et al., 2020). Further, Tyrosine kinase inhibitors (TKI) and
other kinase inhibitors (such as SI113) alone or in combination
with other drugs/therapy have the potential to manage GBM by
overcoming limitations such as BBB penetration, adaptation to
altered signaling pathways, and heterogeneity of GBM cells
(Alexandru et al., 2020) (Kim and Ko, 2020).

Moreover, histone acetyltransferases (HATs), besides
histones, acetylates a variety of non-histone substrates, and
thus, referred to as lysine acetyltransferases that play an

essential function in normal and malignant hematopoiesis
(Sun et al., 2015). Recent studies demonstrated that
abnormally high histone acetylation levels could trigger
chromatin-based mechanisms that promote tumorigenesis
and malignant transformation. Further, it is interesting to
note that most acetylated non-histone proteins are essential
for immunological processes, tumorigenesis, and cancer cell
growth (Spange et al., 2009). Evidence that lysine acetylation
modification affects the lysosomal clearance of specific
substrates and proteasomal degradation by either inhibiting
or enhancing polyubiquitination (Narita et al., 2019).
Additionally, studies have found that the UPS system
degrades HIF1A after interacting with von Hippel–Lindau
protein (pVHL) under normoxia, mediating its
ubiquitination. For instance, Jeong et al. (2002) found that
acetylation at specific lysine residues of HIF1A enhances its
interaction with pVHL and its subsequent ubiquitination and
degradation (Jeong et al., 2002). Likewise, acetylated
retinoblastoma (Rb) recruits MDM2, an E3 ligase, and
mutation in its acetylation hotspots is linked with an
increased risk of breast cancer (Ullah et al., 2022).
Acetylation has been studied extensively in proteosomes, Ub,
E1, and E3 ligase, but few have in E2s.

Hence, the current study was conducted to understand
better how acetylation affects E2s, which will fill the gap
between UPS and acetylation modification and its impact
on microenvironmental secretory protein regulations.
Herein, we aim to identify novel therapeutic targets in
GBM, including HATs, E1, E2s, and E3 ligases and
substrates, as well as possible acetylation sites on lysine
residues of E2 conjugating enzymes (E2s). We also
systematically investigate the prognostic and predictive
relevance of non-cellular secretory elements, such as
chemokines, cytokines, and growth factors in GBM, and
offer a model for clinical diagnosis. In addition, we have
also established the correlation between biomarkers and
dysregulated protein kinases in GBM. For the first time, we
have looked at the involvement of E2s and how PTM,
particularly acetylation, affects these enzymes. In typically,
researchers always target substrate or E3 ligase. Figure 1
provides a quick overview of our analytical methodology,
which adheres to the norms in bioinformatics
investigations. We investigated the wide-ranging functions
of non-cellular secretory components in the GBM
microenvironment using the cancer genome atlas (TCGA)
data. Hence, in-depth information about the expression of
the whole family of secretory components and insights into the

FIGURE 2 (Continued)
localized extracellular region. At the same time, top-ranked biological processes are extracellular matrix organization, cell migration, inflammation,
response to hypoxia, signal transduction, and angiogenesis. Blue text showing the p-value of this analysis. Potential biomarkers identified in the current
study have been mapped in front of each bar of the graph. (E) Survival Analysis of GBM Patients by Kaplan-Meier Method: The Cox proportional Hazard
ratio (HR) was plotted against prognostic markers. GEPIA and Osgbm perform overall survival (OS) or disease-free survival (DFS) analysis based on
gene expression. It uses the Log-rank test and the Mantel-Cox test for the hypothesis test. Threshold HR value > 1 signifies poor prognostic markers, and
HR < 1 represents good prognostic markers. Based on OS analysis over expression of BMP1, CTSB, LOX, LOXL1and PLOD1 and DFS overexpression of
MMP9, LOXL1, SERPINE1, and SERPING1 were significantly associated with poor prognosis in GBM. Green bar color: Data from GEPIA2.0 webtool; Blue
bar color: Data from Osgbm webtool.

Frontiers in Cell and Developmental Biology frontiersin.org05

Kumari and Kumar 10.3389/fcell.2023.1236271

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1236271


role of acetylation modification in UPS systems in GBM were
provided by the study for the first time.

2 Material and methods

2.1 Data collection and expression profiling
of non-cellular secretory components

The data for 306 non-cellular secretory components,
including chemokines, cytokines, and growth factors, were
extracted from PubMed, Google Scholar, and Scopus.
Chemokines, cytokines, and growth factors were expressed
differently in GBM patients when compared to normal tissue
utilizing several web servers that included GBM patients’
transcriptomics data such as RNA sequencing data [(Gene
Expression Profiling Interactive Analysis (GEPIA2.0, http://
gepia.cancer-pku.cn/index.html), UCSC Xena R2Q6 (https://
xena.ucsc.edu/), GlioVis-TCGA(http://gliovis.bioinfo.cnio.es/)]
and microarray data [GlioVis-REMBRANDT, GlioVis-
AGILENT, GlioVis-HG-U133, and GlioVis-GRAVENDEEL]
and proteomics data such as Osppc (https://bioinfo.henu.edu.
cn/Protein/OSppc.html) (Gravendeel et al., 2009; Madhavan
et al., 2009; Bowman et al., 2017; Tang et al., 2019; Goldman
et al., 2020; OSppc, 2022). GEPIA2.0 and UCSC XENA compare
TCGA and GDC tumor samples with matched Genotype-Tissue
Expression (GTEx) standard samples. Venn analysis was
performed using Venny2.1 (https://bioinfogp.cnb.csic.es/tools/
venny/) to identify common DEGs from transcriptomics (RNA
sequences and microarray) and proteomics data (CPTAC).

2.2 Gene-set enrichment and pathway
analysis of differentially regulated
proteomics signatures

Functional enrichment analysis of the Kyoto Encyclopaedia of
Genes (KEGG) pathways and gene ontologies (GOs) of candidate
DEGs were determined through a FunRich tool (version 3.1.3)
(http://www.funrich.org/) (Pathan et al., 2015) and Enrichr server
(https://amp.pharm.mssm.edu/Enrichr) (Chen et al., 2013;
Kuleshov et al., 2016). These tools identify and prioritize the
essential genes related to GBM, followed by exploring biological
pathways linked with them. A p-value ≤0.05 was deemed significant
for GO analysis and route analysis statistical evaluation, and the
fold-enrichment value was considered.

2.3 Analysis of prognostic relevance of
identified signatures and their subcellular
localization

To assess the prognostic relevance of DEGs, we performed
Kaplan-Meier (KM) plots to examine the overall survival (OS)
and disease-free survival (DFS) of the GBM cohorts through web
servers such as GEPIA2.0 and OSgbm (http://bioinfo.henu.edu.cn/
GBM/GBMList.jsp.) (Dong et al., 2020). OSgbm web server includes
684 samples with transcriptome profiles and clinical information

from TCGA, Gene Expression Omnibus (GEO), and Chinese
Glioma Genome Atlas (CGGA). We used the median expression
as the expression threshold to divide patient samples into high- and
low-expression groups for survival analyses of differentially
expressed genes between GBM cohorts, along with the hazard
ratio (HR), 95% confidence interval (CI), and log-rank test
p-value. The Cox proportional hazard regression model
calculated all HRs based on a high vs. low comparison. In
addition, CELLO v.2.5: subCELlular LOcalization predictor
(http://cello.life.nctu.edu.tw/) was used for predicting subcellular
localization of biomarkers.

2.4 Identification of potential E2 conjugating
enzyme, E3 Ligase, and substrate in GBM

E2s data was assembled through the Ubiquitin and Ubiquitin-
like Conjugation Database (UUCD) (http://uucd.biocuckoo.org)
(Gao et al., 2013). In addition, we collated human E3 ligase
enzyme from four distinct sources UUCD databases, Database of
Human E3 Ubiquitin Ligases (https://esbl.nhlbi.nih.gov/Databases/
KSBP2/Targets/Lists/E3-ligases/), Cell Signaling Incorporated
Database (http://www.cellsignal.com/common/content/content.
jsp?id=science-tables-ubiquitin), and UbiNet 2.0 (https://awi.cuhk.
edu.cn/~ubinet/index.php) (Li et al., 2021) database. Moreover, to
identify substrate associated with E3 ligase, we have explored
STRING (https://string-db.org/) (Szklarczyk et al., 2021) webtool
to perform protein-protein interactions based on experimental data
and >0.400 confidence score, UbiNeT2.0 and Ubibrowser 2.0
(http://ubibrowser.ncpsb.org.cn) (Wang et al., 2022).

2.5 Correlation study between a substrate,
E2 conjugating enzyme, and E3 ligase

Spearman’s correlation coefficient approach was used to
investigate the correlation between two proteins in GBM samples
using two web tools, GEPIA2.0 and TIMER2.0 (http://timer.
cistrome.org/) (Li et al., 2020). GEPIA2.0 provides pair-wise gene
correlation analysis of a given set of TCGA and/or GTEx expression
data. In addition, TIMER2.0 Modules examine associations between
gene expression and tumor features in TCGA. We have also
performed a purity adjustment. We have studied the correlation
between a) biomarker substrate with E3 ligase, and b) E2s with
E3 ligase and HAT enzymes. Proteins with significant positive
correlation were selected for further studies.

2.6 Prediction of Lysine signature for
acetylation and associated HATs enzymes

Two PTM prediction webservers based on deep learning
methods, such as Deep-PLA (http://deeppla.cancerbio.info) (Yu
K. et al., 2020) and GPS-PAIL 2.0 (http://pail.biocuckoo.org/)
(Deng et al., 2016), were used to predict acetylation sites on
internal lysine residues along with seven HATs enzymes,
including CREBBP, EP300, HAT1, KAT2A, KAT2B, KAT5 and
KAT8. The technique predicts acetylation sites based on the idea
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that various HATs have unique sequence specificities for the
substrate changes. GPS-PAIL trains a Group-Based Prediction
System previously developed method to create a computational
model for each HAT enzyme.

2.7 Structural analysis of selected
E2 conjugating enzyme

2.7.1 Prediction of secondary structure
PTM affects the secondary structure of the protein, which

governs its biological functions. PSIPRED: protein structure
analysis workbench (http://bioinf.cs.ucl.ac.uk/psipred/) (Buchan
and Jones, 2019) was used to predict the structural selectivity of
lysine acetylation sites. Subsequently, the relationship between the
protein’s secondary structure, fold recognition, and its
corresponding acetylating sites was established. The output result
was classified into three categories such as coiled, helix, and strand.

2.7.2 Protein intrinsic disorder prediction
The FASTA sequence of the protein was procured from the

Uniport (https://www.uniprot.org/) (Bateman et al., 2017) database.
DISOPRED3 (http://bioinf.cs.ucl.ac.uk/disopred) predicts structural
order and disorder regions along with protein binding sites within
disordered regions using a SVM that examines patterns of
evolutionary sequence conservation, positional information, and
amino acid composition of putative disordered regions. As
analyzed from the output, the extracted data were separated into
two categories: ordered and disordered regions.

2.8 Mutational analysis of Lysine
modification

The functional impact of lysine mutations was investigated with
the use of web applications such as PMut (http://mmb.irbbarcelona.
org/PMut/) (López-Ferrando et al., 2017), SNAP2 (https://rostlab.
org/services/snap/) (Hecht et al., 2015), Polymorphism Phenotyping
v2 (PolyPhen2) (http://genetics.bwh.harvard.edu/pph2/) (Adzhubei
et al., 2010), and MutPred2 (http://mutpred.mutdb.org/index.html)
(Pejaver et al., 2020). All these tools require protein sequences in the
FASTA format and a list of amino acid substitutions. The output
results were computed numerically, and the combined score of the
four web tools was determined. If a mutation’s confidence score
is ≥2.5, referred to as a threshold value, the mutation is considered
disease sensitive. The basic, charged lysine (K) residue was changed
into glutamine (Q), leucine (L), glutamate (E), and arginine (R).
Additionally, the software MutPred2 was employed to forecast the
physical impact of a lysine mutation on acetylation. The impacted
sites were divided into two groups based on whether neighbouring
sites gained or lost functionality.

2.9 Characterization of Therapeutic axis

2.9.1 ROC plotter: predictive marker identification
ROC plotter-an online ROC analysis tool (https://www.

rocplot.org/) (Menyhárt et al., 2021), was employed to

comprehend the association between gene expression and
therapeutic response using transcriptomic level data from
TCGA datasets of GBM and other cancer. This tool uses a
JetSet probe to select the optimal microarray probe
representing a gene. The package ‘ROC’ was used to calculate
the area under the curve (AUC). The integrated database
comprises 454 GBM patients from 3 independent datasets and
10103 genes. Patients were categorized as responders/non-
responders based on their survival status at 16 months post-
surgery.

2.9.2 Expression response to top mutated gene
in GBM

Literature was used to find the top 10 mutated genes in GBM.
“Gene_Mutation” module of TIMER2.0 was used to compare the
differential gene expression with different mutation statuses of
top mutated genes (such as PTEN, TP53, EGFR, PIK3R1,
PIK3CA, NF1, RB1, IDH1, PTPRD, and ERBB2) of GBM.

2.9.3 Correlation with protein kinase protein GBM
KinMap, (http://www.kinhub.org/kinmap/), a user-friendly

web interface for the human genome (the “kinome”) was
explored to retrieve 536 human protein kinases including
eight typical groups (AGC, CAMK, CK1, CMGC, STE, TK,
TKL, Other) and 13 atypical families (Eid et al., 2017). Using
the GEPIA2.0 tool, the expression of each kinase was examined in
GBM patient tumor samples. Network analysis was employed to
study the correlation between the putative ‘therapeutic axis’
proteins and significantly dysregulated kinases.

2.10 Statistically analysis

In GEPIA2.0, we used the ANOVA statistical method for
differential gene expression analysis, selected log2 (TPM +1)
transformed expression data for plotting, TCGA tumor
compared to TCGA normal and GTEx normal for matched
normal data in plotting, |log2FC| cut-off of 1.5, and a q-value
cut-off of 0.05. For survival analysis, it uses the Mantel-Cox test
for the hypothesis test. OSppc used Mann-Whitney Wilcoxon
tests to calculate the significant difference between proteomics
data of tumors and adjacent normal tissues. In the
TIMER2.0 database analysis, partial Spearman’s correlation
(ρ) was applied. When Rho, ρ > 0.1, it indicated a
correlation between the genes and immune cells. Red color
signifies: Positive correlation (p-value <0.05, ρ > 0), blue
color signifies: Negative correlation (p-value<0.05, ρ > 0),
and grey color signify: non-significant (p-value >0.05).

3 Results and discussion

3.1 Expression of secretory components in
GBM and normal tissue

The 306 non-cellular secretory components, including
chemokines, cytokines, and growth-factor of TME, have been
extracted from PubMed and Google Scholar. A total of
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53 chemokines, including all 4 subfamilies CXC, CC, CX3C, and C
(Gao et al., 2022), 253 cytokines and growth-factors including ILs,
IFNs family, TNFs family, TGFs superfamily (BMP-like family,
GDNFs family, TGF-β-like family), MMPs family, FGFs family,
PDGFs family, VEGFs, TIMPs, prolactin, GCSFs, GMCSFs, were
extracted. Firstly, we have studied the expression of chemokines,
cytokines, and growth factors in GBM at transcriptomics and
proteomics levels using a web tool based on TCGA data sets.
RNA sequence data were analyzed using GEPIA2.0 (163 GBM
tissue and 207 normal tissue, including GTEx normal tissue),
UCSC Xena (154 GBM tissues and 5 Normal tissues), GlioVis-
TCGA (156 GBM tissues and 4 Normal tissues), and microarray
data were analyzed using GlioVis-REMBRANDT (225 GBM tissues
and 28 Normal tissues), GlioVis-AGILENT (489 GBM and
10 normal tissues), GlioVis-HG-U133 (528 GBM tissues and
10 normal tissues), and GlioVis-GRAVENDEEL (117 GBM
tissues and 8 normal tissues), and protein data from CPTAC,
RPPA, and TCGA were analyzed using Osppc tool. We have
used the Venny2.1.0 database to identify all non-cellular secreted
components of TME that were significantly expressed in at least four
RNA sequence data and microarray data. 73 genes were commonly
expressed in RNA sequence and microarray data (Figure 2A).
Afterward, the protein expression of these 73 genes was checked.
A total of 44 biomarkers has significantly dysregulated expression
(log2FC score ≥1.5 and p-value ≤0.05), out of which 41 were
upregulated and 3 downregulated in patients with GBM
compared with its normal tissues (Figure 2B). Thus, the details
expression pattern of 306 secretory components has been tabulated
in Supplementary Information Supplementary Table S1, and
44 shortlisted biomarkers were tabulated in Table 1 (Description
in Supplementary Table S2. Previous studies also support our
observations. Out of 44, only 3 were chemokines in which
CCL5 and CXCL16 were upregulated, whereas CX3CL1 was
downregulated in GBM. A study by Dai et al., 2016 showed that
CCL5 chemokines influence tumor progression through various
mechanisms that directly affect cancer cell proliferation or indirectly
regulate angiogenesis and recruitment of immune cells that promote
tumor growth andmetastasis (Dai et al., 2016; Takacs et al., 2021). In
addition to tumors, tumor-associated cells such as CAF, EC, MSC,
MDSC, and TAM generate CXCL16 and influence tumor-associated
cells in glial tumors (Hattermann et al., 2013; Korbecki et al., 2021).
Cytokines and growth factors have a pleiotropic role in influencing
various biological functions, including immune response,
inflammation, and cell-to-cell communication. Studies on GBM
provide evidence to support our observation of cytokines.
For instance, Frei et al., 2015 demonstrated that TGFβ acts as a
critical molecule implicated in GBM malignancy (Frei et al., 2015).
Other studies show the importance of IL-18 in cell migration, which
is fatal and untreatable, and the mechanism through which GBM
cells release ECM proteins like fibronectin and vitronectin, in turn,
causes the surrounding normal brain microglia to secrete more IL-
18 (Yeh et al., 2012; Kast, 2015).

A comprehensive investigation of TIMPs in GBM by Han et al.
revealed that TIMP3 indirectly controls MMPs signaling and ECM
remodeling (Han et al., 2021). Multiple hormonal and non-hormonal
growth-stimulating agents are also present in GBM and can function as
biomarkers (Dahlberg et al., 2022). Recent research has also emphasized
the critical role played by these secretory components in the

pathogenesis of GBM and the creation of the immune milieu
through immunological regulation, which inhibits anti-tumor
responses and promotes the growth of tumors (Yeo et al., 2021).
Thus, our results further confirm these previous findings.

3.2 Functional enrichment and biological
pathway analysis of biomarkers

We have performed functional enrichment analysis using the
FunRich-functional enrichment analysis tool for (GO) and KEGG
pathway enrichment analysis to investigate the role of 44 differential
biomarkers in GBM. We selected only pathways that were involved
in the pathogenesis of the GBM microenvironment and had a large
number of genes with significant fold enrichment. We have also
looked at how biomarkers are involved in the biological processes
that lead to the pathology of GBM. According to the results of
cellular components, the bulk of biomarkers is located in
extracellular regions, the ECM, and extracellular vesicles (EVs).
These data corroborate earlier findings that secretory
components, which are located in the extracellular space of the
microenvironment and have a variety of clinical implications, have
the ability to function as biomarkers and potentially disrupt
signaling pathways implicated in tumorigenesis (Liu C. et al.,
2021). Cytokines are soluble factors released predominantly in
soluble or EV-associated forms and are involved in cell-cell
communications (Fitzgerald et al., 2018). Molecular function
analysis showed that the maximum number of biomarkers were
engaged in structural components of ECM, cytokines and
chemoattractant activities, integrin binding, growth-factors
activities, and Platelet-derived growth factor binding.
Chemokines act as chemoattraction, which binds to G protein-
coupled seven transmembrane cell surface receptors (GPCRs) and
thus activates a cascade of signaling G proteins, PI3K, protein kinase
C, phospholipase C, RAS, and MAPKs to mediate immune cells
migration, activation, cell chemotaxis, invasion, production of
mediators promoting angiogenesis, and transactivation of EGFR
(Zhou J. et al., 2014). Studies showed that the expression of specific
integrins is upregulated in both tumor cells and stromal cells in a
TME. Integrins receptors bind to specific secretory components
from TME, which regulate ECM detachment, migration, invasion,
proliferation, and survival through PI3K-AKT signaling (Ellert-
Miklaszewska et al., 2020).

Biological process analysis showed top six processes were ECM
organization, cell migration, inflammatory response, response to
hypoxia, and angiogenesis. Additionally, we used the Enrichr tool to
examine the KEGG Pathway 2021. We studied the biological
pathway causing the pathology of GBM. According to the tool’s
combined score, the top 10 biological pathways were ECM-receptor
interaction, proteoglycans in cancer, PI3K-Akt signaling pathway,
HIF1 signaling pathway, TNF signaling pathway, cytokine-cytokine
receptor interaction, lysine degradation, TGF-β signaling pathway,
and Hippo signaling pathway. Previous studies have found that
activation of the HIF1A pathway is a common feature of gliomas
and may explain the intense vascular hyperplasia often seen in GBM
(Kaur et al., 2005; Domènech et al., 2021).

Similarly, TNF signaling enhances invasion in GBM and
upregulates MEK-ERK signaling, NF-κB1, and STAT expression
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TABLE 1 Transcriptomics and proteomics expression analysis of non-cellular secretary components in GBM patients samples compared with normal tissues.

Webtools RNA sequence datasets Microarray datasets Protein
expression

Molecular function

GEPIA 2.0 UCSC XEna GLIOVIS GLIOVIS TCGA_GBM CPTAC

TCGA
GBM_GTX

TCGA GBM GDC TCGA GBA TCGA
RNA

sequence

REMBRANDT GRAVENDEEL HG-
U133A

AGILENT-
4502A

Osppc

Chemokine CCL5 The CCL5/CCR5 axis regulates the infiltration, and
interactions with, mesenchymal stem cells, which
constitute niches

CX3CL1 encourage pro-tumorigenic effects, angiogenesis

CXCL16 employs the CXCR6 receptor to trigger glial progenitor
cells to migrate and invade

Cytokines and Growth
factors

ANGPT2 a Tie2 antagonistic ligand has been linked with a poor
outcome in GBM patients

BMP1 oncogenic role and is implicated in the invasion of GBM
cells

BMP7 enhance transmigration, migration, and invasion of GBM
cells

COL1A1 important ECM component that encourages invasion and
tumor growth

COL1A2 increase GBM cell invasion and proliferation

COL3A1 promotes EMT and immune infiltration

COL4A1 boosted cancer-related pathways, including cell cycle
control and the JAK/STAT signaling pathway

COL4A2 correlates with immune cell infiltration

COL5A1 enhances tumor immune tolerance, which has a negative
prognosis

COL5A2 The outcome of LGG is negatively impacted by COL5A2
overexpression

CTSB immunosuppression, immune cell infiltration, and poor
prognostic indicators

HIF1A Under high HIF1A expression, T-cell exhaustion-related
gene expression levels and immune cell numbers increased

IL-18 IL-18 produced by microglia causes GBM cell movement
and encourages centrifugal migration

LAMA4 GBM selectively secreted protein in CSF

LAMA5 stimulates VEGF activity, which reduces invasion but
promotes tumor development by increasing GBM cell
adhesion to blood arteries

(Continued on following page)
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TABLE 1 (Continued) Transcriptomics and proteomics expression analysis of non-cellular secretary components in GBM patients samples compared with normal tissues.

Webtools RNA sequence datasets Microarray datasets Protein
expression

Molecular function

GEPIA 2.0 UCSC XEna GLIOVIS GLIOVIS TCGA_GBM CPTAC

TCGA
GBM_GTX

TCGA GBM GDC TCGA GBA TCGA
RNA

sequence

REMBRANDT GRAVENDEEL HG-
U133A

AGILENT-
4502A

Osppc

LAMB1 The ERK/c-Jun Axis-Mediated Upregulation of LAMB1
Enables Gastric Cancer Progression and Motility

LGALS3 relates to tumor risk and prognosis and results in treatment
resistance

LGALS9 Exosomal LGALS9 from GBM cells controls the growth of
tumors by preventing the presentation of DC antigens and
the activation of cytotoxic T cells

LOX regulates the expression of MMP2,9 and is involved in the
proliferation

LOXL1 interact with several antiapoptosis modulators (BAG2) to
display antiapoptotic action

LOXL3 associated with genomic stability, cell proliferation, and
metastasis in GBM

MMP14 involved in radiosensitivity, cell migration, and invasion

MMP17 tumorigenesis

MMP2 degradation of IV collagen, an important marker in glioma
genesis

MMP9 by virtue of their proteolytic action, degrades gelatin,
collagens IV, and V in the ECM

PLOD1 Promotes tumor via HSF1 signaling pathway

PLOD2 influences both tumor progression and the immune
microenvironment

PLOD3 promotes tumor progression and poor prognosis

PTGES2 not much studied in GBM. In breast cancer: high
expression has an immunomodulatory role

SDF2 overexpressed in breast cancer

SDF4 overexpresses in pancreatic cancer

SERPINE1 Influence cell-substrate adhesion and directional
movement of GBM cells through TGFβ signaling

SERPING1 produced primarily by monocytes and works by blocking
the traditional complement system pathway

SPP1 high SPP1 expression promotes the GSCs properties and
radiation resistance and is correlated with poor prognosis
of GBM

(Continued on following page)
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TABLE 1 (Continued) Transcriptomics and proteomics expression analysis of non-cellular secretary components in GBM patients samples compared with normal tissues.

Webtools RNA sequence datasets Microarray datasets Protein
expression

Molecular function

GEPIA 2.0 UCSC XEna GLIOVIS GLIOVIS TCGA_GBM CPTAC

TCGA
GBM_GTX

TCGA GBM GDC TCGA GBA TCGA
RNA

sequence

REMBRANDT GRAVENDEEL HG-
U133A

AGILENT-
4502A

Osppc

TGFβ1 modulates temozolomide resistance in GBM

TGFβ2 promote EMT

TIMP1 transcriptional factor Sp1 binds to the promoter of TIMP1
and triggers its expression and immune infiltration
in GBM.

TIMP3 high TIMP3 expression correlated with better overall
survival (OS) and disease-specific survival (DSS) in GBM
patient

TNFAIP6 promotes invasion and metastasis

TNFAIP6 promotes invasion and metastasis

VEGFA GSCs secrete the pro-angiogenic VEGF-A factor in
extracellular vesicles

Patient samples number used in the respective study

TUMOR 163 154 155 156 225 117 528 489 153

N0N-TUMOR 207 5 5 4 28 8 10 10 __

Upregulated in GBM p≤ 0.001 p≤ 0.001 p≤ 0.05

Downregulated in GBM p≤ 0.001 p≤ 0.001 p≤ 0.05

Not significant in GBM p > 0.05
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(Ramaswamy et al., 2019). In GBM, TNF secreted by the associated
macrophages with the tumor encourages the activation of
endothelial cells, which makes the patient resistant to anti-
angiogenic treatments (Wei et al., 2021). Similar to increased
PI3K-AKT activation, it has a distinct function in tumor growth
but does not cause resistance to treatment (Langhans et al., 2017).
There is mounting evidence that Hippo signaling has a role in a
number of cancers, including glioma, breast, lung, and colon cancer.
The concept that this route might represent a potential target
opening the door for alternative medicines is supported by the
fact that it is less studied in GBM and engaged in tumorigenesis and
metastasis (Masliantsev et al., 2021). Our pathways analysis results
also line up with previous findings (Ellert-Miklaszewska et al., 2020).
Herein, through the top-mentioned molecular functions and
biological pathways, we have demonstrated that the majority of
the shortlisted secretory biomarkers were localized in extracellular
space and were critical for tumorigenesis, migration, and invasion in
the pathology of GBM. As a result, these signaling pathways have the
potential to be further investigated in the context of GBM
development and can be therapeutically addressed if we intend to
target the GBM microenvironment in addition to the tumor cells.
Figures 2C,D demonstrate all biological pathways and GO analysis
of 44 biomarkers, respectively.

3.3 Relationship between biomarkers and
survivals of GBM patients

To evaluate the relation between 44 significantly differentially
expressed genes and the prognosis of GBM patients, GEPIA2.0 and
OSgbm web tools were used for plotting KM plots for OS and DFS
analysis. These tools use GBM data from TCGA. The data was
analyzed in KM plot where curves were stratified by median signal
expression (high vs. low expression group). The cox proportional
HR and p-values are displayed on survival curves. A
p-value ≤0.05 was considered statistically significant, HR > 1 was
considered a poor prognostic, and HR < 1 was a good prognosis.
Figure 2E and Supplementary Figure S1 illustrate the strong
association of overexpression of bone morphogenetic protein 1
(BMP1), cathepsin B (CTSB), lysyl oxidase (LOX), procollagen-
lysine,2-oxoglutarate 5-dioxygenase 1 (PLOD1) with poor OS (HR >
1 and p (HR) ≤ 0.05). CTSB proteases are essential in ECM
degradation and are overexpressed in most human colon and
other cancers. A recent study by Ma et al. (2022) also
demonstrates that CTSB is a negative prognostic biomarker and
biological pathway associated with immune suppression and
inflammation in glioma (Ma et al., 2022). Studies have
demonstrated that CTSB regulates several forms of cell death,
such as apoptosis, necroptosis, autophagy, pyroptosis, and
ferroptosis, and is associated with radio-resistance, tissue
invasion, and metastasis of GBM (Ding et al., 2022). BMP1
(secreted metalloprotease of the astacin metalloproteinase family)
recently emerged as a cancer-related protein in multiple cancer but
is less explored in GBM. Signaling such as TGFβ involving
BMP1 affects the proliferation and differentiation of glioma stem
cells. According to the study by Xiao et al. (2019), increased
expression of BMP1 reflects poor prognosis in clear cell renal cell
carcinoma (Xiao et al., 2019). Similarly, we first time reported that

BMP1 had poor OS in GBM patient samples. A study by Sachdeva
et al., in 2019 showed that in the GBM microenvironment
dysregulated BMP signaling via expression of p21 protein causes
GSCs to enter a quiescent state, rather than developed into the
differentiated astroglia cell (Sachdeva et al., 2019). In addition, a
study showed that increased expression of LOX expression was
strongly associated with the invasive features of malignant
astrocytes. LOX is well recognized as secreted matrix-modifying
enzyme. The key roles played by LOX include the regulation of gene
expression, protein-lysine 6-oxidase activity, protein binding, and
protein phosphorylation. It has an impact on cell cycle progression
and apoptosis in GBM and can be exploited as a target for early
detection and targeted treatment (Zhang P. et al., 2022; Zhang
S.et al., 2022). Li et al. (2021) showed that ECM-related gene
LOX correlated with poor OS in glioma patients (Li et al., 2022),
including GBM (Tang et al., 2020) and gastric cancer (Zhu et al.,
2021). Another investigation discovered a difference between Lysine
oxidase-like 1 (LOXL1) and poor OS in GBM (Liu Z. et al., 2021).
The antiapoptotic activity of LOXL1 is mediated via interactions
with a variety of antiapoptotic modulators, including BAG2, and by
Wnt/beta-catenin signaling (YuH. et al., 2020). Our finding revealed
that the upregulation of LOXL1 was accompanied by both poor OS
and DFS. Moreover, PLOD1 encourages cross-linking in ECM
molecules, enabling ECM structural stability and maturation. In a
study by Wang et al. (2020), increased PLOD1 expression in glioma
was linked with a worse prognosis (Wang et al., 2020). Significant
overexpression of PLOD1 may encourage the growth and colony
formation of U87 cells by triggering the HSF1 signaling pathway
(Yuan et al., 2022) however, in hypoxic settings could stimulate
invasiveness and the mesenchymal transition by inducing NF-κB
signaling pathway (Wang et al., 2021). Secondly, our data
demonstrated the overexpression of Matrix metallopeptidase 9
(MMP9), Serpin Family E Member 1 (SERPINE1), and serine
protease inhibitor family G1 (SERPING1) linked with poor DFS
(HR > 1 and p (HR)≤0.05) (Figure 2E and Supplementary Figure
S2A). Our finding supported previous studies that the
overexpression of MMP9 indicates a poor prognosis in glioma
(Zhou et al., 2019). In the microenvironment GBM-secreted
factors influence increased human brain vascular endothelial cell
migration as well as levels of MMP-9 and CXCR4 which result in
enhanced angiogenesis (De Oliveira Rosario et al., 2020). Indeed,
Seker et al. (2019) research shows that poor patient survival in GBM
is related to increased expression of SERPINE1 (Seker et al., n. d.). In
hypoxic microenvironment condition, ROS promotes tumor
progression, EMT in GBM through HIF1A-SERPINE1 signaling
(Zhang et al., 2023). In another study, it was found out that low
SERPING1 levels have been associated with poor DFS in prostate
cancer (Peng et al., 2018) In contrast, our study reported a higher
level of SERPING1 linked with poor DFS/prognosis in GBM. These
results showed that BMP1, CTSB, LOX, LOXL1, MMP9, SERPINE1,
and SERPING1 are poor prognostic indicators in GBM since they
had HR > 1 and p (HR) ≤ 0.05. Jia et al. (2018) also showed that
SERPINE1 and SERPING1link with poor prognosis in GBM (Jia
et al., 2018).

Moreover, we have also used CELLO v.2.5: subCELlular
LOcalization predictor for finding the localization of identified
prognostic markers. Results in Figure 3A showed that BMP1,
LOX, LOXL1, MMP9, SERPINE1, and SERPING1 localized in
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FIGURE 3
(A) Prediction of Protein subcellular localization by cello online predictor: BMP1, LOX, LOXL1, MMP9, SERPINE1, and SERPING1 localized in majorly
extracellular space. CTSB is majorly localized in lysosomes and PLOD1 in the cytoplasm, followed by extracellular space. (B) Expression analysis of
E2 conjugating Enzymes (E2s). Out of 35 reported E2s in humans, at the mRNA level, only 13 were dysregulated (including 12 up and 1 downregulated); at
the protein level, 10 were dysregulated (including 7 upregulated and 3 downregulated). (C) Correlation study analysis: E3 ligase, VHL, and
GNB2L1 showed a significant positive correlation with substrate HIF1A and E2s. VHL showed a significant positive correlation between Ube2E1, Ube2H,
and Ube2J2, while GNB2L1 showed a positive correlation with Ube2C, Ube2J2, and Ube2S. In addition, HIF1A positively correlates with poor prognosis
markers such as BMP1, CTSB, LOX, LOXL1, PLOD1, and SERPINE1. Heatmap 3 showed a significant correlation between HAT enzymes and E2s. Results
showed that Ube2H positively correlates with CREBBP, EP300, HAT1, KAT2B, and KAT5. Ube2S with HAT1, Ube2J2 with HAT1 and KAT5, and Ube2C
negatively correlate with KAT2B.
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extracellular space while PLOD1 localized majorly in cytoplasm
followed by extracellular space and CTSB localized in lysosome
followed by extracellular space. Studies have revealed a strong
correlation between a protein’s subcellular location and function.
Sequencing similarity is helpful in predicting subcellular localization
for sequences containing >30% sequence identity.

3.4 Identification of HIF1A as the substrate
from dysregulated biomarkers and its
associated E3 ligase

To find the therapeutic axis to understand ubiquitination
systems in GBM, we have focused on finding the possible
substrate from the list of 44 differentially expressed
biomarkers. We have used the STRING database to find the
experimentally validated (confidence score>0.400) substrate and
correspondence E3 ligase. The E3 ligase list was created by
combining E3 ligase protein from four different sources: the
Human E3 ligase database, CST, UUCD, and UbiNet 2.0. This list
was used to make an individual PPI network with every
44 biomarkers in the STRING database. This study’s results
showed that BMP1, HIF1A, and TNFRSF1B are the

biomarkers that also act as a substrate for E3 ligase and are
involved in the Ubiquitination pathway. Results showed E3 ligase
correspondence to substrate a) BMP1 was RMND5A, b) HIF1A
were EP300, GNB2L1, MDM2, PARK2, STUB1, TRAF6, VHL,
FBXW7, SIAH1, SIAH2, c) TNFRSF1B were TRAF1, TRAF2,
ASB3, SMURF2. Subsequently, mRNA and protein expression of
these substrate and their corresponding E3 ligases were studied in
GBM patients (Table 2). Based on the results, only substrate
HIF1A and its E3 ligase von Hippel-Lindau (VHL) and
GNB2L1 were dysregulated in GBM patients’ samples both at
transcriptomics and proteomics levels. Under the normoxic
condition, HIF1A is ubiquitinated by VHL and E3 ligase for
proteasome degradation in the cytoplasm. Once stabilized,
HIF1A translocate to the nucleus, guided by a nuclear
localization signal in its C-terminus (Tanimoto et al., 2000; Yu
et al., 2001).

In contrast, Aga et al. (2014) demonstrated that endogenous
HIF1A is detectable in exosomes (Aga et al., 2014) present in the
microenvironment, and studies suggest that exosomes reflect the
hypoxic status of glioma cells and mediate hypoxia-dependent
activation of vascular cells during tumor development
(Kucharzewska et al., 2013). In addition, HIF1A initiates TNFα
exosome-mediated secretion under hypoxic conditions (Yu et al.,

TABLE 2 Expression analysis of substrate and its associated E3 ligase in GBM patients samples.

Substrate (STRING, Ubibrowser2.0,
Ubinet2.0)

E3 ligase (UUCD, CST,
UbiNet2.0)

Combined score
(STRING)

Expression in GBM

Gene expression
(GEPIA2.0)

Protein expression
(Osppm)

BMP1 RMND5A 0.483

HIF1A

EP300 0.999

GNB2L1 0.998

MDM2 0.997

PARK2 0.762

STUB1 0.81

TRAF6 0.72

VHL 0.999

FBXW7 0.664

SIAH1 0.43

SIAH2 0.543

TNFRSF1B

TRAF1 0.761

TRAF2 0.881

ASB3 0.485

SMURF2 0.57

Sample size

Tumor tissues 163 153

Normal tissues 207 –

*Green gradient signifies: significantly overexpressed in GBM, patient’s samples (p < 0.05).

*Red gradient signifies: significantly downregulated in GBM, patient’s samples (p < 0.05).

*Combined score calculated by STRING, webtool based on experimentally determined interaction data.
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FIGURE 4
Prediction of Acetylation Site and AssociatedHAT Enzyme in E2Conjugating Enzyme: Potential acetylation site on lysine residues of Ube2J2, Ube2C,
Ube2E1, Ube2S, Ube2H and associated HAT enzymes were identified using DeepPLA and GPS-PAIL machine-learning based webtool. For UBE2C (K18,
K33), Ube2E1(K24, K31, K35, K43), Ube2H (K8, K52), Ube2J2 (K7, K64, K88) and Ube2S (K198, K205, K210, K211, K215, K216). HAT enzymes associated with
lysine residues are mentioned in the table. The lysine residue marked in blue color has a high confidence score: DeepPLA (FPR<5%) and GPS-PAIL
(score>1), and the red color has a medium confidence score: DeepPLA (FPR<10%) and GPS-PAIL (score>1). In addition, structural analysis using PSIPRED
and DISOPRED3 showed predicted lysine residue falls in coiled structure for Ube2C, Ube2E1, and Ube2J2 whereas, in helix structure for Ube2S.
Moreover, our investigation showed acetylation occurs in disordered regions compared to ordered regions. FPR: False positive rate.

Frontiers in Cell and Developmental Biology frontiersin.org15

Kumari and Kumar 10.3389/fcell.2023.1236271

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1236271


TABLE 3 Impact of Amino Acid Substitution of “K” Putative Mutation to Either L, Q, R, Or E On Disease Susceptibility Predicted with The Help of Pmut, SNAP2,
Polyphen2, and Mutpred2 tools.

Substitution Pmut SNAP2 PolyPhen-2 MutPred2 Total score

Ube2C

K18L 0.74 1 0.005 0.772 2.517

K18Q 0.64 1 0.027 0.536 2.203

K18R 0.42 1 0.32 0.38 2.12

K18E 0.66 1 0.262 0.662 2.584

K33L 0.71 1 0.194 0.908 2.812

K33Q 0.59 1 0.003 0.804 2.397

K33R 0.25 1 0 0.681 1.931

K33E 0.59 1 0.049 0.868 2.507

Ube2E1

K31L 0.49 1 0.037 0.156 1.683

K31Q 0.11 0 0.028 0.093 0.231

K31R 0.11 0 0 0.061 0.171

K31E 0.2 1 0 0.113 1.313

K24L 0.28 1 0.009 0.098 1.387

K24Q 0.09 0 0 0.066 0.156

K24R 0.09 0 0 0.044 0.134

K24E 0.11 0 0.002 0.079 0.191

K35L 0.58 1 0.09 0.196 1.866

K35Q 0.47 1 0.001 0.075 1.546

K35R 0.2 1 0 0.052 1.252

K35E 0.47 1 0.015 0.111 1.596

K43L 0.31 1 0.972 0.562 2.844

K43Q 0.2 0 0.924 0.368 1.492

K43R 0.12 1 0.007 0.211 1.338

K43E 0.35 1 0.896 0.369 2.615

Ube2H

K8L 0.53 1 0.016 0.872 2.418

K8Q 0.51 1 0.437 0.758 2.705

K8R 0.26 1 0 0.661 1.921

K8E 0.39 1 0.354 0.831 2.575

K52L 0.63 1 0.82 0.943 3.393

K52Q 0.53 1 0.762 0.894 3.186

K52R 0.26 1 0.001 0.821 2.082

K52E 0.57 1 0.532 0.924 3.026

Ube2J2

K7L 0.34 1 0.032 0.481 1.821

K7Q 0.37 0 0.897 0.266 1.533

(Continued on following page)
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TABLE 3 (Continued) Impact of Amino Acid Substitution of “K” Putative Mutation to Either L, Q, R, Or E On Disease Susceptibility Predicted with The Help of Pmut,
SNAP2, Polyphen2, and Mutpred2 tools.

Substitution Pmut SNAP2 PolyPhen-2 MutPred2 Total score

K7R 0.19 0 0.868 0.205 0.395

K7E 0.33 1 0.020 0.346 1.676

K64L 0.62 1 1 0.704 3.324

K64Q 0.59 1 0.96 0.504 3.054

K64R 0.39 0 0.542 0.208 1.14

K64E 0.59 1 0.996 0.509 3.095

K88L 0.55 1 0.908 0.877 3.335

K88Q 0.48 1 0.071 0.704 2.255

K88R 0.46 1 0.009 0.538 2.007

K88E 0.52 1 0.503 0.812 2.835

Ube2S

K198L 0.72 1 0.999 0.567 3.286

K198Q 0.45 1 0.997 0.285 2.732

K198R 0.4 1 0.996 0.186 2.582

K198E 0.44 1 0.779 0.383 2.602

K205L 0.36 1 0.133 0.529 2.022

K205Q 0.37 0 0.531 0.255 1.156

K205R 0.15 0 0.358 0.148 0.656

K205E 0.27 1 0.187 0.349 1.806

K210L 0.73 1 0.997 0.833 3.56

K210Q 0.52 1 0.999 0.559 3.078

K210R 0.29 1 0.996 0.39 2.676

K210E 0.45 1 0.996 0.686 3.132

K211L 0.68 1 0.997 0.683 3.36

K211Q 0.64 1 0.999 0.433 3.072

K211R 0.16 1 0.996 0.2 2.356

K211E 0.52 1 0.996 0.475 2.991

K215L 0.69 1 0.997 0.817 3.504

K215Q 0.7 0 0.999 0.576 2.275

K215R 0.48 0 0.996 0.365 1.841

K215E 0.79 1 0.996 0.664 3.45

K216L 0.88 1 0.997 0.859 3.736

K216Q 0.77 1 0.999 0.639 3.408

K216R 0.74 0 0.996 0.455 2.191

K216E 0.8 1 0.996 0.751 3.547

*For SNAP2 = Probable Benign: Marked as “0”; Probable damage: Marked as “1”.

*For Pmut, MutPred2, and PolyPhen-2: Effect or Probable damage = >0.5 threshold.

*Gradient of the Green color showed Total confidence score (cumulative score of Pmut, SNAP2, MutPred2, and PolyPhen-2): Higher green color signifies a high confidence score.
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2012). In human glioblastoma cells, Bensaad et al. showed that HIF-
1α was necessary to induce Fatty Acid Binding Protein 3 (FABP3)
and FABP7, leading to lipid droplet accumulations (Bensaad et al.,
2014). According to reports, HIF1A is essential for the growth and
development of GBM as well as for tumor cell migration, glucose
absorption, angiogenesis, and chemoresistance. A plethora of
research showed that hypoxia triggers glioma cells to release EVs
with distinct functional proangiogenic cargo, including cytokines,
growth factors, proteases, and miRNA to influence endothelial cells
to promote angiogenesis, metabolic, and transcriptional signaling
pathways such are the EGFR, PI3K/Akt and MAPK/ERK pathways.
Hypoxia-stimulated glioma EVs promote tumor vascularization,

pericyte vessel coverage, and cell proliferation, eventually
reducing tumor hypoxia in the GBM microenvironment (Yekula
et al., 2020). Hence, we have chosen HIF1A as substrate, VHL, and
GNB2L1 (another gene name: RACK1) as an E3 ligase for further
studies. Earlier investigations support our observation. Mutation in
VHL genes causes renal cell carcinomas, pheochromocytomas, and
cerebellar hemangioblastomas (Kim and Zschiedrich, 2018). We
were interested in exploring this interaction in GBM. However,
based on experimental data, our analysis also proposed
GNB2L1 interacting with HIF1A. Earlier, this interaction was
established in breast cancer (Zhou Z. et al., 2014). Here we will
discuss this in context with GBM.

TABLE 4 Correlation and expression analysis of HAT enzymes and prediction of therapeutic axis In GBM.

E3
ligase

E2
conjugating
enzymes

Potential K
residue
position

Histone acetyltransferases (HATs) enzymes Therapeutic
axis

Loss of
acetylation

site

Confidence
score >2.5

CREBBP EP300 HAT1 KAT2A KAT2B KAT5

VHL

UBE2E1 43

- - √ χ - - HAT1-
UBE2E1(K43)-

VHL

No

UBE2H

8
- - √ - - - HAT1-

UBE2H(K8)-VHL
Yes

52
- - √ - - - HAT1-

UBE2H(K52)-VHL
No

UBE2J2

64
- - √ - - - HAT1-

UBE2J2(K64)-VHL
No

88
- - √ - - χ HAT1-

UBE2J2(K88)-VHL
No

GNB2L1

UBE2C

18

- χ √ - - - HAT1-
UBE2C(K18)-

GNB2L1

No

33 - - - - χ - - Yes

UBE2J2

64

- - √ - - - HAT1-
UBE2J2(K64)-

GNB2L1

No

88

- - √ - - χ HAT1-
UBE2J2(K88)-

GNB2L1

No

UBE2S

198 - - - χ - - - Yes

210 - - - χ - - - Yes

211

- - √ χ χ - HAT1-
UBE2S(K211)-

GNB2L1

Yes

215 - - - χ - - - Yes

216 χ - - χ χ - - Yes

⁃ Lysine residues marked in blue are novel and have not been previously documented in the literature for acetylation modification in GBM, patients.

⁃ p-value≤0.05: significant; p-value>0.05; ns: not significant.
⁃√: signifies HAT1 enzymes expression is upregulated, with the significant positive correlation between HAT1 and Ube2E1, Ube2H and Ube2C, Ube2J2, Ube2S.

⁃ χ: signifies KAT2A enzyme expression is downregulated, with a not significant association between KAT2A and Ube2E1, Ube2A.

⁃ χ: signifies CREBBP, EP300, KAT2B, and KAT5 enzyme expression is not significant, with no significant association between CREBBP, and Ube2S; EP300 and Ube2C; KAT2B and Ube2C,

Ube2S; KAT5 and Ube2J2.

⁃ The pink rectangle box represents the first proposed therapeutic axis in GBM.

⁃ The brown rectangle box represents the second proposed therapeutic axis in GBM.
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FIGURE 5
(A) Proposed Therapeutic axis: Based on our findings, two axes were proposed. First, there was HAT1-Ube2S(K211)-GNB2L1-HIF1A-BMP1/CTSB/
LOX/LOXL1/PLOD1/SERPINE1. In this process, HAT1 will acetylate lysine residues at the 211* positions of Ube2S conjugating enzymes. This increases
transcription and upregulation, linked to GNB2L1, an E3 ligase that regulates HIF1A activity in GBM. HIF1A overexpression links with the identified poor
prognosis markers BMP1, CTSB, LOX, LOXL1, PLOD1, and SERPINE1. A solid pink colored line represents this axis. Second, HAT1-Ube2H(K8, K52)-
VHL-HIF1A-BMP1/CTSB/LOX/LOXL1/PLOD1/SERPINE1 is involved. A solid black colored line represents this axis. HAT1 acetylates Lysine residues at
K8 and K52* positions, and its overexpression has been linked to VHL, an E3 ligase, and HIF1A. This axis has been marked with a solid black line. Other
therapeutic axes involving Ube2J2, Ube2E1 and VHL ligase, Ube2C andUbe2J2, andGNB2L1 ligase are possible, as illustrated in the figurewith the dashed
black line. * Signifies novel acetylation site on lysine residue. (B) Pathway analysis of the therapeutic axis’s protein showed genes involved in signaling

(Continued )
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Evidence from the literature suggests that the poor prognostic
biomarkers LOX, BMP1, CTSB, LOXL1, PLOD1, MMP9, SERPINE1,
and SERPING1 are related to the hypoxic microenvironment. First,
there was a positive correlation between BMP1 and HIF1A and the
malignant grade of astrocytoma, although there was no evidence of a
direct or indirect association (Xiao et al., 2019). Additionally, Xiaofei
et al. (2018) demonstrated that hypoxia upregulates CTSB and HIF1A
in a fashion comparable to HepG2 cells. (Xiaofei et al., 2018). In several
cancer types, including breast, head and neck, prostate, colon, and renal
cell carcinomas, LOX controls HIF1A. The invasive and metastatic
characteristics of hypoxic cancer cells, including astrocytoma, are
caused by secreted LOX (Da Silva et al., 2015). Under hypoxic
conditions (<1% oxygen), LOX and LOXL1 promoted angiogenesis
(Xie et al., 2017). Recently, Wang et al. (2021) discovered that Hypoxia
causes the overexpression of PLOD1, which, through NF-kB signaling,
leads to the malignant phenotype of GBM (Wang et al., 2021). HIF1A
promotes the development of MMP9, which influences invasion in
breast cancer by weakening the basement membrane and the ECM
barrier. HIF1A is also implicated in the control of cell proliferation,
growth factor release, and angiogenesis (Choi et al., 2011). Furthermore,
hypoxia-induced overproduction of reactive oxygen species (ROS)
causes cancer to upregulate the SERPINE1 protein (protein that
regulates cell adhesion), which controls cell adhesion in breast
cancer (Azimi et al., 2017). In contrast, HIF2A, not HIF1A, controls
the expression of SERPING1, which is linked to immunological
infiltrations in glioblastoma (Xiao et al., 2020). Accordingly, we can
state that HIF1A is a crucial biomarker that correlates with all cancer
biomarkers that indicate a poor prognosis. As a result, we go forward
with HIF1A and want to investigate its potential role in the therapeutic
axis for treating GBM.

3.5 Identification of significant
E2 conjugating enzyme associated with VHL
and GNB2L1 in GBM

Ubiquitin-conjugating enzymes (E2s) are the central players in
the trio of enzymes responsible for the attachment of ubiquitin (Ub) to
cellular proteins. It plays a more prominent role in ubiquitin signaling
than a middleman. The UBC domain, a central catalytic domain in
E2s, has about 150 amino acids. This domain adopts an α/β-fold
typically with four α-helices and a four-stranded β-sheet. Important
loop regions form part of the E3-binding site and the E2 active site.
Several studies have suggested the dysregulation of E2 in multiple
cancer. Understanding of E2s regulation is still emerging, and it is
evident that E2s can be governed by various mechanisms

(Stewart et al., 2016). Hence, we explore how E2s regulate and
affect others, especially our shortlisted E3 ligases VHL and
GNB2L1 and substrate HIF1A in GBM. We have extracted 36 E2s
expressed in humans from previously published research.

In addition, we analyzed its expression at mRNA and protein
levels in GBM patient samples with the help of the GEPIA2.0 and
Osppc web applications (Figure 3B). We have found that at mRNA
levels, 13 E2 conjugative enzymes were significantly (p-value ≤0.05,
log2FC ≥ 1.5) dysregulated in GBM patient samples, including
11 upregulated (Ube2A, Ube2C, Ube2D2, Ube2D3, Ube2E1,
Ube2H, Ube2J1, Ube2J2, Ube2L6, Ube2L6, Ube2N, Ube2S,
Ube2T) and 1 downregulated (Ube2QL1). In addition, amongst
13 shortlisted enzymes, we found that protein levels of 7 were
upregulated (Ube2A, Ube2C, Ube2E1, Ube2H, Ube2J1, Ube2H,
Ube2J2, Ube2L6, Ube2S), 3 were downregulated (Ube2D2,
Ube2J1, Ube2N), 2 were (Ube2D3, Ube2QL1) were not available
in the database, and UBE2T were non-significant. Thus, based on
both transcriptomics and proteomics expression data analysis, we
moved further with 6 E2s named Ube2C, Ube2E1, Ube2H, Ube2J2,
Ube2L6, Ube2S that were overexpressed in GBM. A study by Xiang
and Yan (2022), Ube2C serves as both an oncogene and a tumor
suppressor gene, and its overexpression is crucial to the
development of thyroid cancer (Xiang and Yan, n. d.). Moreover,
another study by Pan et al. (2021) demonstrates that
Ube2D3 induces the ubiquitination of the SHP-2 protein, which
in turn activates STAT3 signaling, promoting tumorigenesis and
glycolysis in gliomas (Pan et al., 2021).

Further, we have also studied the correlation between E3 ligase
with substrate and shortlisted E2s in GBM patient’s samples using
GEPIA2.0 (GBM tumor sample size, n = 163) and TIMER2.0 (GBM
tumor sample size, n = 153). We have tabulated purity-adjusted
partial Spearman’s rho (ρ) value which gives the degree of their
correlation in the form of a heatmap (Figure 3C). We have used
spearman statistical analysis, and when |ρ| > 0.1, it indicated a
correlation between the genes. Red color signifies: Positive
correlation (p-value ≤0.05, ρ > 0), blue color signifies: Negative
correlation (p-value≤0.05, ρ > 0), and grey color signify: non-
significant (p-value>0.05). Results showed in GBM that both
E3 ligase VHL and GNB2L1 were positively correlated with its
substrate HIF1A. Moreover, VHL was positively correlated with
Ube2E1, Ube2H, and Ube2J2, whereas GNB2L1 was positively
correlated with Ube2C, Ube2J2, and Ube2S.

Furthermore, to investigate the PTM (e.g., acetylation) that can
modify lysine basic residues (lysine and/or arginine). Acetylation
affects a large number of histone and non-histone proteins. Growing
evidence suggests that reversible lysine acetylation of non-histone

FIGURE 5 (Continued)
pathways such as assembly of collagen fibrils, ECM organization, ECM degradation, Interferon-gamma response, hypoxia and angiogenesis, TNF
signaling and ubiquitin-proteasome pathway. (C) Receiver operating characteristic (ROC) curve for biomarkers involved in therapeutic expression in
Glioblastoma Multiforme. Area Under Curve (AUC) of time-dependent ROC curves verified the prognostic performance of the responder cohort after
16 months of treatment with Temozolomide (TMZ), chemotherapy, Angiogenesis, and Topoisomerase Inhibitors. The therapeutic axis includes
HAT1, E2 enzymes (Ube2H, Ube2S, Ube2E1, Ube2C, Ube2J2), E3 ligase (VHL, GNB2L1), Prognosis markers (BMP1, CTSB, LOX, LOXL1, PLOD1 and
SERPINE1). (A) In the TMZ responder cohort: CTSB and VHL expression was upregulated, and Ube2H and HAT1 were downregulated. (B) Chemotherapy
responder cohort: HAT1 and Ube2H were downregulated. (C) Angiogenesis inhibitor responder cohort: HAT1 downregulated (D) Topoisomerase
Inhibitors responder cohort: GNB2L1 upregulated in the responder. Tables show significant AUC and fold change expression between responder and
non-responder patients to drug treatment.
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FIGURE 6
Differentiational expression analysis of prognosis biomarker with a top mutation in GBM. HAT1, E2 enzymes (Ube2H, Ube2S, Ube2E1, Ube2C,
UbeJ2), E3 ligase (VHL, GNB2L1), Prognosis markers (BMP1, CTSB, LOX, LOXL1, PLOD1 and SERPING1) (A) PTEN mutation: LOX, LOXL1 and
SERPINE1 were upregulated in GBM mutant group, (B) TP53 mutation: SERPING1 were downregulated in mutant GBM group, (C) IDH1 mutation: LOX,
LOXL1, SERPINE1 and SERPING1 downregulated in the mutant group, (D) NF1 mutation: CTSB, LOXL1, SERPINE1, PLOD1 and HIF1A were
upregulated in the mutant group. (E) RB1 mutation: Ube2S was upregulated, and (F) PTPRD: GNB2L1 was upregulated in the mutant group. PTPRD:
Protein Tyrosine Phosphatase Receptor Type D; NF1: neurofibromin-1; RB1: Retinoblastoma gene; IDH1: isocitrate dehydrogenase 1 gene; PTEN:
phosphatase and tensin homolog.
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proteins regulates mRNA stability, protein localization and
degradation, and protein-protein and protein–DNA interactions.
The dynamic regulation of genes governing cellular proliferation,

differentiation, and death depends largely on the recruitment of
HATs and histone deacetylases (HDACs) to the transcriptional
machinery. Several oncogenes or tumor-suppressor genes produce

FIGURE 7
Correlation of dysregulated protein kinases (upregulated in GBM patient tumor samples) with the proteins involved in the proposed therapeutic axis.
PPI network of kinases with (A) Putative biomarkers (BMP1, CTSB, LOX, LOXL1, PLOD1, SERPINE1); (B) E2s conjugating enzymes (Ube2S, Ube2H, and
others Ube2E1, Ube2C, Ube2J2); (C) HIF1A; (D) HAT1 enzymes. GBM: Glioblastoma multiforme; PPI: Protein-Protein Interaction.
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many non-histone proteins specifically targeted by acetylation.
These proteins have a direct role in carcinogenesis, tumor
growth, and metastasis (Singh et al., 2010). Researchers have
found acetylation sites on Ub molecules and showed how
acetylated Ub modulates E1 enzyme (Uba1) catalytic activity. On
a similar note here, we explore the potential acetylation site on lysine
residues and its impact on selected E2s such as Ube2E1, Ube2H,
Ube2J2, Ube2C, and Ube2S in GBM (Lacoursiere and Shaw, 2021).
Moreover, these E2s have in patients with anaplastic gliomas, a
greater Ube2C expression was linked to mitotic cyclin degradation
and a significantly reduced OS duration (Ma et al., 2016).
Additionally, Ube2S is controlled by the PTEN/Akt pathway and
participates in DNA repair, particularly NHEJ-mediated DNA
repair, which makes chemotherapeutic drugs more sensitive to
GBM (Maksoud, 2021). In a recent study, Shin et al. found a
mutation (de novo missense variant) that resembles a variant
found in a patient with neurodevelopmental abnormalities,
induces irregular Ube2h function in zebrafish embryos, and
results in abnormal brain development (Shin et al., 2023). In
addition, according to Lim and Joo (2020), circulating Ube2H
mRNA is potentially used to diagnose and treat Alzheimer’s
disease (Lim and Joo, 2020). However, Ube2H has been studied
in cancer, although there is little information about it in GBM (Zuo
et al., 2020).

3.6 Identification of potential lysine (K)
residues for acetylation in E2s and prediction
of associated HAT enzymes

Herein, we identified acetylation sites on lysine (K) residue of
shortlisted E2s such as Ube2C, Ube2E1, Ube2H, Ube2J2, Ube2S and
associated HATs enzymes, including CREBBP, EP300, HAT1,
KAT2A, KAT2B, KAT5, and KAT8 with using deep learning
methods such as Deep-PLA and GPS-PAIL. The total ‘K’
modification sites for Ube2C, Ube2E1, Ube2H, Ube2J2, and
Ube2S are 12, 15, 13, 15, and 16, respectively. We have selected
only those ‘K’ residues that fall under the filter (High confidence:
DeepPLA: False positive rate (FPR) % <5 and GPS-PAIL score >1;
Medium confidence: DeepPLA: FPR% <10 and GPS-PAIL score >1).
The extracted acetylation sites were mapped to respective proteins.
Figure 4 illustrate all predicted acetylation site on ‘K’ residues and
associated HATs enzymes. Our analysis observed potential
acetylation ‘K’ residues that pass our filter criteria were Ube2C:
K18, K33; Ube2E1 for K24, K31, K35, K43; Ube2H: K8, K52; Ube2J2:
K7, K64, K88; Ube2S: K198, K205, K210, K211, K215, K216.
Lacoursiere et al. (2022) have beautifully described the
acetylation site in the UBC domain of 33 different E2s and its
involvement in various cancer, including prostate cancer, gastric
carcinoma, and leukemia. Mounting evidence from earlier studies
has demonstrated acetylation sites for Ube2C (K18, leukemia),
Ube2E1(K43, breast cancer), and Ube2H (K8, breast cancer)
(Lacoursiere et al., 2022). Our analysis has shown novel putative
acetylation sites for E2s at lysine residues are Ube2C (K33); Ube2E1
(K24, K31, K35); Ube2H (K52); Ube2J2 (K7, K64, K88); Ube2S
(K198, K205, K210, K211, K215, K216).

Further, we have identified associated HAT enzymes to E2s such
as for a) Ube2C: EP300, HAT1 and KAT2B; b) Ube2E1: KAT2B,

CREBBP, KAT2A and HAT1; c) Ube2H: HAT1; d) Ube2J2: HAT1,
KAT5; e) Ube2S: HAT1, KAT2A, KAT2B and CREBBP. These
E2 can be the potential substrate for HAT enzymes. Many
additional HAT substrates have been discovered in the past as a
result of acetylome research, and numerous non-histone HAT
substrates, including AML1, AML1-ETO (AE), p53, c-Myc, NF-
κB, cohesin, and tubulin, have been identified to be crucial for a
variety of cellular functions (Sun et al., 2015). Furthermore, the
expression of these HAT enzymes was studied in GBM patient
samples using GEPIA2.0 and OSppc tools. Analysis showed that
HAT1 was upregulated while KAT2A was downregulated in GBM
patient samples. Other HAT enzyme expressions, such as CREBBP,
EP300, KAT2B, and KAT5, were insignificant. Hence, we moved
with only upregulated HAT1 enzymes for further analysis. mRNA
and protein expression data are shown in Supplementary
Figure S2B.

3.7 Structural characterization and impact of
lysine modification

Selected E2s Ube2C, Ube2E1, Ube2H, Ube2J2, and Ube2S have
undergone structural characterization of the anticipated ‘K’
acetylation site as mutational investigation and its effect on
disease susceptibility. Firstly, structure analysis of Ube2C,
Ube2E1, Ube2H, Ube2J2, and Ube2S was performed. Our
analysis demonstrated that Ube2E1 (3) and Ube2J2 (2) had a
higher rate of acetylated ‘K’ sites falling in the coiled region,
while Ube2S (6) and Ube2H (1) had a greater rate of these sites
falling in helix region. Secondary structure analysis demonstrated
the significance of the coiled structure in the PTM region compared
to the helix and strand. Coiled areas govern protein interactions and
aggregation propensity. Therefore mutations that damage coiled
regions depress aggregation and protein activity, whereas mutations
that improve coiled structure boost aggregation propensity (Fiumara
et al., 2010).

Narasumani and Harrison (2018) demonstrated that PTMs
preferred disordered regions compared to the ordered region,
affecting their functions and interactions. Furthermore, the
involvement of PTM in the disordered region influences disorder
to order transition, thus altering the protein’s stability and associated
mechanisms. In the context of eukaryotic histones, the function of
acetylation has been thoroughly investigated. Acetylation of
disordered tail sections stimulates gene expression by removing
inhibition (Christensen et al., 2019a). However, not all PTMs prefer
disordered regions (Narasumani and Harrison, 2018; Mészáros
et al., 2021). Hence, we predicted the distribution of predicted
acetylation in protein intrinsic ordered and disordered regions
using the machine-learning-based method DISOPRED3. Results
indicated that the disordered area was more likely to include
possible ‘K’ acetylation residues for all five E2s, Ube2C, Ube2E1,
Ube2H, Ube2J2, and Ube2S, than the ordered region. Furthermore,
the localization of putative ‘K’ residue in the sequence has also been
predicted; for example, the sequence containing K31 of
Ube2E1 involves protein binding. Secondly, we have investigated
the pathology of mutation (amino acid substitution) by substituting
lysine (K) residue, which is a positively charged amino acid with
each polar amino acid (glutamine, Q), non-polar (leucine, L),
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negatively charged (glutamate, E), and positively charged (arginine,
R) through mutational analysis tools such as PMut, SNAP2,
PolyPhen2 and Mutpred2. Our results observed that mutation at
‘K’ acetylation sites impacts disease susceptibility. For each tool, we
have selected a score >0.5. Each numerical prediction score value has
been tabulated in Table 3. However, Ube2H (K52), Ube2J2 (K64,
K88) and Ube2S (K198, K210, K211, K215, K216) exhibit higher
confidence scores (cumulative confidence score value > 2.5) on
impact disease susceptibility. This signifies that a single amino acid
substitution or mutation at identified ‘K’ residues leads to
pathogenic and results in disease. Previous evidence also
suggested that any mutation in these intrinsically disordered
protein regions causes cancer (Mészáros et al., 2021).

Subsequently, we were interested in anticipating the molecular
mechanism of pathogenicity due to mutation at the ‘K’ acetylation
site through the Mutpred2 web application. Supplementary
Information Supplementary Table S3 demonstrates the functional
impact of putative ‘K’ residue mutation on acetylation. The
combined results depict the role of putative ‘K’ mutation on
other cellular functions. The results revealed that mutation in
Ube2C (K33), Ube2H (K8), and Ube2S (K198, K205, K210,
K211, K215, and K216) results in loss of acetylation on the same
site. These findings confirm what we had already noticed. Thus, loss
of acetylation with a mutation at K8 for Ube2H and at K198, K205,
K210, K211, K215, and K216 for Ube2S signifies our predicted lysine
residue is site acetylation, and any mutation will lead to disease.
Other mechanisms, along with affected motifs, have been elaborated
in Supplementary Information Supplementary Table S3. Moreover,
selected disease-susceptible mutations were subjected to investigate
their impact on protein structure stability. Mutation at Ube2C (K18)
with (E), Ube2H (K8) with (R) and Ube2S (K210, K216) with (E)
and (Q) leads to the gain of helix structure. This also signifies
mutation at these acetylation sites will cause a topological change in
the secondary structure.

3.8 Prediction of therapeutic axis in GBM
pathology

To comprehend how HIF1A biomarkers and their associated
E3 ligases, as well as HAT enzymes and E2s, are involved, we have
collated all of our research data. Table 4 demonstrates the strategy for
choosing the dysregulated final axis in GBM. It revealed that Ube2E1
(K43), Ube2H (K8, K52) were connected with VHL enzymes and
Ube2C (K18, K33), Ube2S (K168, K210, K211, K215, K216) linked
with GNB2L1, while Ube2J2 (K64, K88) was associated with both
VHL and GNB2L1 enzymes. Only a few of the predicted acetylation
sites K8 of UBE2H, K33 of Ube2C, K198, K210, K211, K215, and
K216 of Ube2S were verified with the MutPred2 predictor outcome
“loss of acetylation site” following a single amino acid substitution
mutation. The GBM was examined for each E2s connection with the
HATs enzymes. Using the GEPIA2.0 program, the mRNA expression
of eachHATs enzyme was examined in a GBM patient sample. Out of
all the enzymes, only HAT1 was connected to E2s at specific lysine
residues. As a result, we suggested two novel pathways that may be
therapeutic targets: HAT1-Ube2S(K211)-GNB2L1-HIF1A and
HAT1-Ube2H(K8)-VHL-HIF1A. We anticipated a new route axis
HAT1-Ube2S(K211)-GNB2L1-HIF1A implicated in the pathogenesis

of GBM because K8 of Ube2H has already been identified in the
literature (Lacoursiere et al., 2022). Thus, we predicted a new route
axis, HAT1-Ube2S(K211)-GNB2L1-HIF1A, implicated in the
etiology of GBM. We have demonstrated that in this pathway,
HAT1 acetylates E2s, and Ube2S (a non-histone protein) at lysine
residue K211 (near C-terminal), causing its overexpression.
Numerous studies have demonstrated that non-histone protein
acetylation is one of the critical factors influencing gene
transcription. Alaei et al. (2018) found that the C-terminal
acetylation of lysine modulates protein turnover and stability
(Alaei et al., 2018). In contrast, early research showed that
ubiquitin-mediated protein degradation could be stopped when the
N-terminal-amino group is acetylated, and this degradation can
happen to proteins with free-amino groups. Several signaling
pathways along with the cell cycle can be regulated by protein
acetylation (Hwang et al., 2010; Zhuang, 2013; You et al., 2022).
Most HATs have a nucleus-specific location and operate as co-
activators of transcription. The degradation of proteins is also
connected to protein acetylation (Sterner and Berger, 2000;
Varshavsky, 2019). Acetylation is a modification that can
significantly modify a protein’s function by changing its
hydrophobicity, solubility, and surface characteristics. These
changes may impact the protein’s conformation and interactions
with substrates, cofactors, and other macromolecules (Christensen
et al., 2019b). As a result, C-terminal acetylation controls lysine’s
ubiquitination and impacts its turnover. We postulated that
acetylation of Ube2S at position 211, near the protein’s
C-terminus, promotes and regulates GNB2L1’s protein turnover
and ubiquitination modification. As a result of increased protein
aggregation, the ability of GNB2L1 to ubiquitinate HIF1A is reduced,
which further increases the expression level of the HIF1A protein
(prevents its degradation by the UPS system).

Overexpressed Ube2S is linked with increased GNB2L1 and
elevated HIF1A substrate. As per earlier research, acetylation is
essential for p53 activation because it prevents the ubiquitin
E3 ligase Mdm2 from inhibiting its ability to bind p53 for
ubiquitination and proteasomal destruction. According to the
theory of inter-protein acetylation-ubiquitination crosstalk,
acetylation of Mdm2 by p300/CBP may prevent p53 from being
subsequently ubiquitinated, increasing p53’s stability and
transcriptional activity (Wang et al., 2004). Additionally, Sirt1’s
ubiquitination and degradation may control the acetylation status of
the histones in the downstream region, which would further
epigenetically restrict the expression of the autophagy gene and
encourage the spread of colorectal cancer (Shen et al., 2018).

Further, this significantly correlates with the GBM
biomarkers BMP1, CTSB, LOX, LOXL1, PLOD1, and
SERPINE1. Critical biological pathways, such as canonical and
noncanonical TGF signaling, are regulated by BMP1, LOX, and
LOXL1. Figure 5A illustrates the putative therapeutic axis and its
influence on biological pathways in GBM. According to studies,
TGF signaling regulates VEGF expression through SMAD-
dependent signaling, which is crucial for angiogenesis in
GBM. It contributes to the pathophysiology of tumors by
controlling tumor growth, maintaining GSCs, and suppressing
anti-tumor immunity (Lin et al., 2010; Sachdeva et al., 2019; Yu
H. et al., 2020). Besides this, extracellular secreted CTSB can
modify the TME through various non-cellular components and
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degrade the ECM. Cathepsins are a crucial class of proteins that
are involved in the growth and propagation of cancer since they
also interfere with the cell-cell adhesion molecules which
encourage cell invasion and metastasis (Ding et al., 2022).
Additionally, each contributes to the formation of collagen
fibrils in the ECM. The normal brain contains minimal
collagen, but it has been found that collagen gene expression
is elevated in GBMs (Pointer et al., 2017). Moreover, LOX and
LOXL1 isoforms are cleaved by BMP1-related proteases implies
that these enzymes are matrix-oriented enzymes and possess
strong binding with other ECM components including
fibronectin, fibulin-4 and fibulin-5, and tropoelastin. In fact,
research has revealed that inactivating the Lox and
Loxl1 genes in mice models causes severe vascular problems
because it disrupts the development of elastic fibers (Yang et al.,
2020). Figure 5B depicts the study of different biological
pathways of biomarkers associated with the proposed
treatment axis in GBM. According to our findings, these
expected axes in GBM may be targeted in GBM patient
samples, which show that all proteins and enzymes associated
with these pathways are noticeably enhanced at both the
transcriptional and proteomic levels. Furthermore, they
significantly connect with the appropriate partner proteins in
GBM. So, we identified strategies that may be used to block the
development of GBM.

3.9 Characterization of putative biomarkers
involved in the proposed therapeutic axis
in GBM

3.9.1 Predictive markers response to GBM
treatment

Despite advances in the molecular characterization of GBM,
only a handful of predictive biomarkers exist with limited clinical
relevance. We embraced the receiver operator characteristic
(ROC) plotter webtool to link with protein expression
amongst our proposed therapeutic axis in GBM tumor
samples with therapies including temozolomide (TMZ),
chemotherapy, Angiogenesis inhibitor (including Vatalanib,
Vandetanib, Thalidomide, Bevacizumab) and topoisomerase
inhibitors (including Irinotecan, Topotecan, Etoposide,
Teniposide). For each protein, HAT1, Ube2E1, Ube2H,
Ube2J2, Ube2S, Ube2C, VHL, GNB2L1, HIF1A, BMP1, CTSB,
LOX, LOXL1, PLOD1, and SERPINE1, the expression was
compared between responders and non-responder’s patients’
data with a Mann–Whitney U-test and area under curve
(AUC). In response to TMZ, we discovered the enhanced
expression of CTSB (AUC = 0.648) and VHL (AUC = 0.667).
In response to TMZ and chemotherapy, it was shown that the
expression of Ube2H (AUC = 0.635, 0.627 respectively) and
HAT1 (AUC = 0.576, 0.599 respectively) had decreased.

Additionally, HAT1 expression was downregulated in
angiogenesis inhibitor treatment responders (AUC = 0.677).
In addition, patients who responded well to topoisomerase
inhibitor medication had increased expression of GBN2L1
(AUC = 0.683). Hu et al. (2020) discovered YWHAB, PPAT,
and NOL10 as novel biomarkers and validated their diagnostic

and prognostic value for Hepatocellular carcinoma, and Zhang
et al. (2020) found ELANE, GPX4, GSDMD, and TIRAP as a
prognosis marker in Endometrial Cancer using ROC plotter tool
(Hu et al., 2020; Zhang and Yang, 2021). Therefore, based on our
findings, it can be concluded that CTSB, VHL, GNB2L1, Ube2H,
and HAT1 have the potential to serve as candidates for predictive
markers of response, provide a framework for preclinical
investigations and perhaps improve patient classification for
GBM in the future (Figure 5C).

3.9.2 Correlation of therapeutic axis with top
mutated genes in GBM

Here, we studied the differential expression of all proteins
involved in the proposed therapeutic axis (HAT1, Ube2E1,
Ube2H, Ube2J2, Ube2S, VHL, GNB2L1, HIF1A) along with
prognostic biomarker (BMP1, CTSB, LOX, LOXL1, PLOD1,
MMP9, SERPINE1, SERPING1) with top 10 genes mutated
genes in GBM using “gene_module” tool of
TIMER2.0 webserver. Research evidence suggests that the top
10 mutated genes in GBM are PTEN, TP53, EGFR, PIK3R1,
PIK3CA, NF1, RB1, IDH1, PTPRD, and ERBB2 (Liu A. et al.,
2016; Zhang et al., 2019). The incidence rate of each mutation in
400 GBM patient samples has been shown as PTEN (30.75%),
TP53 (30.25%), EGFR (23.5%), NF1 (11%), PIK3CA (8.75%),
PIK3R1 (8.5%), RB1 (7.75%), IDH1 (6.5%), PTPRD (1.75%),
ERBB2 (1.25%). The expression of the interested protein was
compared between GBM patients (n = 148) with wild-type and
mutant-type genes. We have observed that GBM patient samples
having a) PTEN mutation have higher expression of LOX,
LOXL1, SERPINE1 protein, b) p53 mutation have decreased
levels of SERPING1, c) IDH1 mutation have decreased levels
of LOX, LOXL1, SERPINE1 and SERPING1, d) NF1 mutation
have higher levels of CTSB, LOXL1, SERPINE1, PLOD1 and
HIF1A, e) RB1 mutation have higher levels of Ube2S, f) PTPRD
mutation have higher levels of GNB2L1. Figure 6 shows the
boxplot of all significant biomarkers regulated with mutated
genes in GBM.

3.9.3 Association with human protein kinases
in GBM

We have studied the expression of 536 human protein kinases in
GBM and showed that 71 kinases were upregulated and 46 kinases
were downregulated. Using protein-protein network analysis, we
have studied the interaction between biomarkers (BMP1, CTSB,
LOX, LOXL1, PLOD1, SERPINE1) with dysregulated kinases. We
have shown (Figure 7A) LOX interacts with PDGFRA, KDR,
TGFBR2, TGFBR1, ERBB2, EGFR; b) SERPINE1 interacts with
EGFR, ERBB2, KDR, TGFBR2, TGFBR1; c) CTSB interact with
EGFR, ERBB2, and d) BMP1: ACVR1. In addition, we have
discussed the protein-protein interaction (PPI) between E2s with
kinases and showed that the proposed E2s Ube2S interact with
8 kinases including CDK2, AURKB, BUB1B, PLK1, NEK2, AURKA,
CDK1, MAP3K1 whereas Ube2H interact only with
TRIM28 kinases (Figure 7B). Further the association of kinases
with HIF1A biomarker and HAT1 enzymes. Results shows HIF1A
interact with only BUB1 and BUB1B kinases whereas
HAT1 enzymes interact with 14 kinases, namely, CHEK1, CDK1,
CDK2, CDK4, CDK6, PIM1, TGFBR1, EGFR, SGK1, KDR,
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TGFBR2, CSF1R, ERBB2, and TRIM28 (Figures 7C,D). Here, we
have briefly discussed the crucial role kinases play in the
pathogenesis of GBM. For example, prior research confirmed
that CDKs such as CDK2, 4, and 6 are stimulated in GBM which
increases proliferation, radio, and chemoresistance; thus, inhibiting
these will increase chemosensitivity to TMZ (Wang et al., 2016; Cao
et al., 2020). Enhanced BUB1/BUB1B expression encourages growth
and proliferation, whereas TRIM28 induces GBM cells to go into an
autophagic phase and is associated with a bad prognosis for GBM
patients (Peng et al., 2019; Long et al., 2021). Additionally, AURKA
inhibits FOXM1 ubiquitination and increases the development of
GBM (Zhang P. et al., 2022). While ERBB2, a member of the EGF
receptor family, regulates glioma cell proliferation, immunological
response, and activation of downstream signaling cascades (Mei
et al., 2021). Other studies demonstrated that around 60% of initial
GBMs have EGFR amplification, and 23% of classical tumors have a
particular EGFR-III mutation, which makes them excellent
candidates for therapeutic intervention. In contrast, a recent
study investigated how EGFR functions as a tumor suppressor in
EGFR-amplified GBM that is controlled by EGFR ligands (Xu et al.,
2017; Guo et al., 2022).

4 Conclusion

Together, our investigations offer fresh insights into the
expression of secretory components and their prognostic
significance in the pathogenesis of the GBM microenvironment.
In GBM patient samples, 8 elevated biomarkers, such as BMP1,
CTSB, LOX, LOXL1, PLOD1, MMP9, SERPINE1, and SERPING1,
were linked to poor prognosis in patients, and only BMP1, HIF1A,
and TNFRSF1B, have been identified as substrates involved in the
ubiquitination process corresponding E3 ligases. Only E3 ligase
VHL and GNB2L1 recognize HIF1A was highly expressed after
mRNA and protein levels were analyzed for expression.
Interestingly, we found that the E2s Ube2C, Ube2E1, Ube2H,
Ube2J2, Ube2L6, and Ube2S are highly expressed in GBM. After
that, the correlation between E2s and VHL and GNB2L1 revealed a
positive connection between VHL and Ube2E1, Ube2H, and
Ube2J2 and GNB2L1 and Ube2C, Ube2J2, and Ube2S. Similarly,
there was a significant association between VHL, and GNB2L1 with
HIF1A. In addition, we have discovered all potential acetylation
sites on the lysine residue of the E2s: UBE2C (12), Ube2E1 (15),
Ube2H (13), Ube2J2 (15), and Ube2S (16). Only five E2s have
confidence scores ≥2.5: K33 of Ube2C, K43 of Ube2E1, K8 and
K52 of Ube2H, K64 and K88 of Ube2J2, and K198, K210, K211,
K215, and K216.

According to the mutational analysis results, the acetylation site is
lost due to amutation at K33 of Ube2C or K8 of Ube2HwithQ, L, R, or
L. The Ube2S mutation causes the lack of acetylation at the
corresponding “K" residue at K198 and K211 with L; at K210 and
K216with L, Q, and E; andK215with L andQ.We have also discovered
HATs enzymes that attack acetylated lysine residues in E2s. In GBM
patient samples, we found that HAT1 positively correlated with the
Ube2E1, Ube2H, Ube2J2, and Ube2S enzymes. In contrast, there is no
correlation between HAT1 and Ube2C in GBM patient samples. Our
study revealed that only HAT1 is overexpressed in GBM patient
samples among the eight HAT enzymes. HAT1’s role as an

oncogene is well known, and solid tumors, including esophageal,
lung, liver, and pancreatic cancer, have been shown to overexpress
the gene (Wu et al., 2019). After analyzing and collating all of the data
from the study, we identified two pathways, one of which targeted either
of the proteins’ components and the other, which was significantly
active in GBM. HAT1-Ube2S(K211)-GNB2L1/HIF1A-BMP1/CTSB/
LOX/LOXL1/PLOD1/SERPINE1 and HAT1-UbeH(K8)-VHL-
HIF1A-BMP1/CTSB/LOX/LOXL1/PLOD1/SERPINE1 had high and
medium confidence scores, respectively. HAT1 enzymes acetylate
Ube2S’s 211-position lysine residue, increasing GNB2L1’s protein
turnover while decreasing its ability to ubiquitinate its substrate
HIF1A. This causes HIF1A to accumulate and overexpress itself in
GBM. Being a transcription factor, HIF1A also controls the expression
of BMP1, CTSB, LOX, LOXL1, PLOD1, and SERPINE1 indicators of
poor prognosis in GBM. Major biological processes regulated by our
identified axis were hypoxia, angiogenesis, ECM structure and
degradation, EMT, IFN response, and TGF and TNF signaling.
These signaling processes are essential to the pathophysiology of
GBM. Therefore, we could target these cellular processes and reduce
tumor burden by focusing on our identified therapeutic axis. We have
also discovered the predictive markers CTSB and VHL for TMZ
therapy, GNB2L1 for topoisomerase inhibitor therapy, Ube2H and
HAT1 for TMZ and chemotherapy. HAT1 is also a hazard to
angiogenesis inhibitors. The top 10 mutations already identified in
GBM have been used to study alterations in the expression level of our
therapeutic axis. Our work sheds light on the potential to investigate the
use of secretory microenvironmental components in focusing on the
GBM microenvironment. We have also demonstrated the protein-
protein interaction between E2s with kinases and showed that the
proposed E2s Ube2S interact with 8 kinases including CDK2, AURKB,
BUB1B, PLK1, NEK2, AURKA, CDK1, MAP3K1 whereas Ube2H
interact only with TRIM28 kinases. Thus, using computational and
machine-learning-based tools and webservers to anticipate acetylation
sites of E2s greatly facilitates the study of acetylation and saves valuable
research time. More research and scientific studies are required to
explore non-cellular components of the GBM microenvironment,
PTM, especially acetylation, and E2s. However, the current study is
accompanied by limitations, such as the small number of patient
samples, in vitro and in vivo validation of biomarkers and
acetylation sites, and lack of predictive biomarkers, substrates, and
signaling molecules expression in GBM. Although, despite a
computational study, the current study aims to bridge the gap
between GBM, biomarkers, acetylation, and ubiquitination enzymes.
The study opens the way for the researchers to validate the identified
biomarkers in GBM therapeutics. Further, in vitro or in vivo validation
of acetylating sites and ubiquitination factors (E3 ligases and
E2 enzymes) through proteomic studies will lead to enhanced GBM
therapeutics, which might cause an increased overall survival rate.
Additionally, validation of identified therapeutic axis will have the
potential to reverse the GBM etiology or help in drug discovery and
development.
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Glossary

GBM Glioblastoma Multiforme

E2s E2 Conjugating Enzymes

BBB Blood-Brain Barrier

TME Tumor Microenvironment

ECM Extracellular Matrix

PTMs Post-Translational Modifications

HATs Histone Acetyltransferases

UPP Ubiquitin-Proteasome Pathway

Ub Ubiquitin

UPS Ubiquitin-Proteasome System

GEPIA2.0 Gene Expression Profiling Interactive Analysis

GTEx Genotype-Tissue Expression

TCGA The Cancer Genome Atlas

RPPAs Reverse-Phase Protein Arrays

CPTAC The National Cancer Institute’s Clinical Proteomic Tumor Analysis Consortium

GO Gene Ontologies

KEGG Kyoto Encyclopaedia Of Genes

KM Kaplan-Meier

OS Overall Survival

DFS Disease-Free Survival

GEO Gene Expression Omnibus

HR Hazard Ratio

CI Confidence Interval

SVM Support Vector Machines

UUCD Ubiquitin And Ubiquitin-Like Conjugation Database

EVs Extracellular Vesicles

BMP1 Bone Morphogenetic Protein

CTSB Cathepsin B

LOX Lysyl Oxidase

LOXL1 Lysine Oxidase Like 1

PLOD1 Procollagen-Lysine,2-Oxoglutarate 5-Dioxygenase 1; Matrix Metallopeptidase 9

SERPINE1 Serpin Family E Member 1

SERPING1 Serine Protease Inhibitor Family G1

VHL Von Hippel-Lindau

FPR False Positive Rate

ROC Receiver Operator Characteristic

AUC Area Under Curve

TMZ Temozolomide

ROS Reactive oxygen species
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