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Cell migration is essential for many biological and pathological processes.
Establishing cell polarity with a trailing edge and forming a single
lamellipodium at the leading edge of the cell is crucial for efficient directional
cell migration and is a hallmark of mesenchymal cell motility. Lamellipodia
formation is regulated by spatial-temporal activation of the small GTPases Rac
and Cdc42 at the front edge, and RhoA at the rear end. At a molecular level,
partitioning-defective (Par) protein complex comprising Par3, Par6, and atypical
Protein Kinase (aPKC isoforms ζ and λ/ι) regulates front-rear axis polarization. At
the front edge, integrin clustering activates Cdc42, prompting the formation of
Par3/Par6/aPKC complexes to modulate MTOC positioning and microtubule
stabilization. Consequently, the Par3/Par6/aPKC complex recruits Rac1-GEF
Tiam to activate Rac1, leading to lamellipodium formation. At the rear end,
RhoA-ROCK phosphorylates Par3 disrupting its interaction with Tiam and
inactivating Rac1. RhoA activity at the rear end allows the formation of focal
adhesions and stress fibers necessary to generate the traction forces that allow cell
movement. Nox1-based NADPH oxidase is necessary for PDGF-induced
migration in vitro and in vivo for many cell types, including fibroblasts and
smooth muscle cells. Here, we report that Nox1-deficient cells failed to
acquire a normal front-to-rear polarity, polarize MTOC, and form a single
lamellipodium. Instead, these cells form multiple protrusions that accumulate
Par3 and active Tiam. The exogenous addition of H2O2 rescues this phenotype and
is associated with the hyperactivation of Par3, Tiam, and Rac1. Mechanistically,
Nox1 deficiency induces the inactivation of PP2A phosphatase, leading to
increased activation of aPKC. These results were validated in Nox1y/- primary
mouse aortic smooth muscle cells (MASMCs), which also showed PP2A
inactivation after PDGF-BB stimulation consistent with exacerbated activation
of aPKC. Moreover, we evaluated the physiological relevance of this signaling
pathway using a femoral artery wire injury model to generate neointimal
hyperplasia. Nox1y/- mice showed increased staining for the inactive form of
PP2A and increased signal for active aPKC, suggesting that PP2A and aPKC
activities might contribute to reducing neointima formation observed in the
arteries of Nox1y/- mice.
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1 Introduction

Cell migration is a fundamental process for embryological
development and tissue repair, while aberrant migration
participates in diseases such as cancer, atherosclerosis, and
restenosis (Schwartz, 1997).

Different cells in higher organisms display various migration
modes depending on tissue environment, genetic background, and
extracellular stimuli. Mesenchymal migration types, similar to those
observed in fibroblasts and vascular smooth muscle cells, are
characterized by strong adhesion to the substrate and
cytoskeleton-mediated cell polarization.

In order to polarize, the cell relies upon specialized signaling
domains to define the direction of eventual movement. During this
process, the plasma membrane extends towards the stimulus in the
form of a lamellipodium (Lauffenburger and Horwitz, 1996;
Carpenter, 2000; Ballestrem et al., 2001; Small et al., 2002;
Raftopoulou and Hall, 2004). Lamellipodia formation is driven by
actin dynamics regulated by various signaling pathways (Petrie et al.,
2009). Notably, the spatial-temporal activation of the small GTPases
Rac and Cdc42 at the front and RhoA at the rear end leads to
directional migration (Nobes and Hall, 1995; Raftopoulou and Hall,
2004).

At the molecular level, cell polarity and directional cell motility
are regulated by a group of highly evolutionarily conserved proteins
named partitioning-defective (Par) complex, consisting of Par3
(Pard3, aka Bazooka in Drosophila), Par6, and atypical Protein
Kinase C (aPKC comprising isoforms ζ and λ/ι). The Par
complex signals through Rho GTPases to control the basal-apical
polarity of epithelial cells, asymmetric cell division, and the front-
rear axis polarization during directional and persistent cell
migration (Goldstein and Macara, 2007; Etienne-Manneville,
2008; Petrie et al., 2009; Chen and Zhang, 2013).

The role of Par3 in directional cell migration relies on its
spatially regulated interaction with PAR6-aPKC during the
establishment of front-rear cell polarity. Integrin clustering
activates Cdc42 at the leading edge triggering the formation
of Par3/Par6/aPKC complexes, which modulates MTOC
positioning through dynein/dynactin and microtubule
stabilization (Etienne-Manneville and Hall, 2001; Etienne-
Manneville et al., 2005; Gundersen et al., 2005; Jaffe and
Hall, 2005; Vicente-Manzanares et al., 2005; Osmani et al.,
2006; Pegtel et al., 2007). Additionally, when the Par3/Par6/
aPKC complex is formed, the Rac1-GEF Tiam (T-lymphoma
invasion and metastasis-inducing protein) is recruited, leading
to Rac activation and lamellipodium formation (Etienne-
Manneville and Hall, 2001; Nishimura et al., 2005; Pegtel
et al., 2007). At the rear end, the RhoA effector ROCK
phosphorylates Par3 and disrupts its interaction with Tiam
inactivating Rac. This allows focal adhesions and stress fibers
to lead to the traction force that allows cell movement
(Nakayama et al., 2008).

The role of reactive oxygen species (ROS), such as superoxide
(O2•-) and hydrogen peroxide (H2O2) as signaling molecules, is
widely accepted (Griendling et al., 2000; Lennicke and Cocheme,
2021). Furthermore, redox-dependent signaling is required for
agonist-induced cytoskeleton reorganization and migration
(Sundaresan et al., 1995; Nishio and Watanabe, 1997; Wang

et al., 2001). However, the molecular targets of redox-sensitive
signaling during migration are not fully elucidated.

NADPH oxidases are a primary enzymatic source of ROS in
various biological systems. NADPH oxidases are multi-subunit
enzymes whose superoxide-producing catalytic subunit consists
of one of the Nox proteins and several structural and regulatory
proteins (Lassegue et al., 2012). Nox1 activity is essential in
fibroblast and smooth muscle cell migration (Lassegue et al.,
2001; San Martin et al., 2007; Schroder et al., 2007; Lee et al.,
2009; Maheswaranathan et al., 2011; Jagadeesha et al., 2012;
Maheswaranathan et al., 2020). We have previously shown that
the Nox1-based NADPH oxidase is necessary for PDGF-induced
migration in vitro and in vivo (Lee et al., 2009).

This work aims to gain insight into the distinct molecular
mechanisms by which Nox1 mediates the early cellular events
leading to directional migration. Our results show that after
PDGF stimulation, Nox1 deficient cells lose the ability to acquire
normal front-rear polarity and to form a single lamellipodium.
Instead, these cells form multiple protrusions that resemble little
lamellipodia that amass Par3 protein and active Tiam.

Mechanistically, this effect is mediated by the Nox1-dependent
mislocation and inactivation of the phosphatase PP2A leading to
increase phosphorylation and aberrant activation of the Par3/aPKC/
Tiam/Rac polarity complex.

2 Material and methods

2.1 Animals

Nox1y/- mice were generated by Dr. K. H. Krause (Gavazzi et al.,
2006) and backcrossed onto a C57Bl/6 background. The
Institutional Animal Care and Use Committee of Emory
University School of Medicine approved the animal protocol
used in this study.

2.2 Mouse femoral artery injury model

Transluminal mechanical injury of bilateral femoral arteries was
induced by introducing a large wire, as previously reported (Sata
et al., 2000; Lee et al., 2009). At 21 days, the mice were sacrificed and
pressure-perfused at 100 mmHg with 0.9% sodium chloride,
followed by pressure fixation with 10% formalin. Arteries were
then carefully excised, embedded in paraffin, and processed for
histological analysis.

2.3 Histological analysis

Histology sections from WT and Nox1y/- mice femoral arteries
subjected to wire-induced injury were kindly provided by Dr. Kathy
Griendling (Lee et al., 2009). Antigen retrieval was heat-induced in
citrate buffer. Immunohistochemistry followed by DAB staining was
performed using antibodies against phospho-Y307-PP2A-CA
(Santa Cruz) and phospho-T410/403-PKCζ/λ (Cell Signaling) to
determine the levels of inactivation of PP2A-CA and activation of
aPKC, respectively. Images of the whole femoral artery were
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captured using a NanoZoomer SQ (Hamamatsu) using the 40X
scanning mode. Approximately 3-5 femoral artery sequential slices
were evaluated per animal, and a total of 5 animals were used per
phenotype. In addition, the relative intensity of DAB staining was
assessed using ImageJ.

2.4 Preparation of mouse embryonic
fibroblast and mouse aortic smooth muscle
cells

Mouse embryonic fibroblasts (MEFs) were prepared from wild-
type (WT) and Nox1y/- mouse embryos as described before (Brown
et al., 2014). Briefly, E13.5 embryos were isolated with their yolk sacs
and dissected to remove and discard the head and internal organs.
The yolk sac was removed and retained for genotyping. The
dissected embryo was passed through an 18G needle and
subsequently plated on gelatin-coated dishes in Dulbecco’s
modified Eagle’s medium (DMEM) high glucose (Sigma)
supplemented with 15% fetal bovine serum (Sigma). After two
passages, MEFs were immortalized by expression of the
SV40 large T-antigen (Addgene plasmid 13,970). MEFs were
subcultured at a 1:10 ratio for nine passages upon reaching
confluence. Immortalized MEFs were grown in DMEM high
glucose supplemented with 10% fetal bovine serum (Atlanta
Biological), 1% penicillin-streptomycin, and 1% Glutamax
(Gibco) and used for experiments for additional 15 passages.

Mouse aortic smooth muscle cells (MASMCs) were isolated
from wild-type (WT) and Nox1y/- mice by enzymatic dissociation

(Fernandez et al., 2015). Cells were cultured in Dulbecco’s Modified
Eagle’s Medium (DMEM) supplemented with 10% fetal bovine
serum), 1% penicillin-streptomycin, and 1% Glutamax (Gibco).
All cultures were used between passages 6 and 10 for
experiments. Cultures at 70%–80% confluence were made
quiescent by incubation in serum-free media for 16 h before the
experiments.

All the cell lines were grown in a 5% CO2 atmosphere at 37 °C.

2.5 Antibodies and reagents

Antibodies used in these experiments are described in Table 1.
Rabbit polyclonal anti-Par3 antibodies were used for
immunoprecipitation (Proteintech) and immunofluorescence
(Millipore). Rabbit anti-pY307PP2A-CA (Upstate/Millipore and
Santa Cruz), Rabbit anti-PKCζ/ι, anti-Cortactin, Rabbit anti-α/β
Tubulin (Cell Signaling), rabbit anti-Tiam1, mouse PKCζ/ι (Santa
Cruz), mouse anti-GST (Proteintech), anti-Actin (Sigma), anti-
FITC (Invitrogen), PDGF-R (EMD Millipore). Primary antibodies
were used in 1/1,000 dilution for immunoblotting and 1:200 for
immunofluorescence and immunohistochemistry experiments. All
secondary antibodies conjugated to HRP or to Alexa fluorophores
were from Jackson ImmunoResearch and were used 1/3,000 for
immunoblotting and 1/200 for immunofluorescence and
immunohistochemistry experiments. Okadaic Acid (Cayman
Chemical Company) was used at 1 μM for 30 min before PDGF-
BB (R&D systems) stimulation. EZ-Link Sulfo-NHS-SS-Biotin (Life
Technologies) and 5-Iodoacetoamido-fluorescein (Sigma) were used
according to manufacture protocols.

2.6 siRNA and adenoviral infection

FlexiTube siRNA formouse PP2A-CA sequences #4 and #7 were
obtained from (Qiagen). Cells were seeded on coverslips and, after
16 h, were co-transfected with siGlo RNAi (GE Dharmacon) and
siCtrl AllStars (Qiagen) or siRNA against PP2A-CA, using
Lipofectamine RNAiMAX reagent (Thermo Fischer Scientific)
according to the manufacturer recommendations. After 24 h of
transfection, cells were serum starved and processed for
immunofluorescence.

pAdEasy vector, which contains green fluorescent protein
(GFP), was used to prepare viruses without an insert (pAdEasy-
Ctrl) or hemagglutinin (HA)-tagged Nox1 (pAdEasy-Nox1-HA) as
described before (Hanna et al., 2004). Cells were infected with the
adenoviruses for 16 h in complete media. Subsequently, cells were
trypsinized and seeded on coverslips for immunofluorescence
assays.

2.7 Phospho-protein analysis

Cells were seeded on 15 cm dishes, allowed to attach for 5-6 h,
and then serum-starved overnight. The following day, the media was
refreshed, and cells were stimulated with PDGF 10 ng/mL for
30 min. We analyzed phosphorylated proteins by affinity
chromatography using PhosphoProtein Purification Kit (Qiagen)

TABLE 1 Antibodies used in this manuscript.

Antibody Company Catalog #

p-Y307-PP2A-CA Santa Cruz sc-12615

p-Y307-PP2A-CA Upstate/Millipore 05–547 (clone 4B10)

p-T410/403-PKCζ/λ Cell Signaling 9378S

p-T410/403-PKCζ/λ Abcam ab76129

PKCζ/ι Santa Cruz Biotechnology sc-17781

PKCζ/ι Santa Cruz Biotechnology sc-216

PKCζ/ι Santa Cruz Biotechnology sc-7262

Cortactin Cell Signaling 3503S

α/β-Tubulin Cell Signaling 2148S

Tiam1 Santa Cruz sc-872

GST Proteintech 66001-1-Ig

β-Actin Sigma A5441

FITC Invitrogen 71–1900

PDGFRβ EMD Millipore 05-825R

Par3 EMD Millipore 07–330

Par3 Proteintech 11085-1-AP

Control non-immune IgG Santa Cruz sc-2025
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according to the manufacturer’s indications. Purified
phosphoproteins were resolved by electrophoresis and blotted for
Par3, Cortactin, and Actin.

In other experiments, to analyze phosphorylation of pY307-
PP2A-CA and pThr410/403-PKCζ/ι, cells were lysed in boiling-2x
Lamelli buffer, sonicated, and immediately subjected to
electrophoresis.

2.8 Rac1 activity assay

Activation of Rac1 was determined by G-LISA kit (Cytoskeleton).
Briefly, cells were seeded on 6-well plates, serum-starved overnight, and
stimulated with PDGF-BB 10 ng/mL for the indicated times. Protocol
was followed according to the manufacturer’s recommendations.
Results were the average of three independent experiments in which
each condition was performed in triplicate.

2.9 Immunofluorescence

Cells were seeded on acid-washed coverslips coated with Collagen
type I (Corning). After cell attachment (5–6 h), cells were serum starved
for 16 h. The media was refreshed the following day. Cells were
stimulated with PDGF-BB 10 ng/mL for 30 min. Media was
removed, cells were immediately fixed in 4% Paraformaldehyde for
10 min, followed by permeabilization with 0.1% Triton X-100 for
10 min. Subsequently, coverslips were blocked for 10 min with 2% IgG-

free BSA (Jackson Immuno Research), 0.1% Fish gelatin (Sigma) in UB
buffer (50 mMTris-HCl, pH 7.6; 0.15 N NaCl and 0.1% sodium azide).
Primary antibodies were added for 1 h at room temperature andwashed
three times for 5 min each time with UB-0.1% Tween-20. Cells were
blocked again as described above and then incubated with secondary
antibodies conjugated to fluorophores, phalloidin, and DAPI for 1 h at
room temperature. Coverslips were washed three times for 5 min in
UB-0.1% Tween-20 and mounted in Mowiol solution. In some
experiments, cells were seeded, and the next day they were co-
transfected with siGlo RNAi and siRNA Control or siRNA PP2A-
CA. During the Nox1 rescue experiments, cells were infected with the
control virus (pAdEasy-Ctrl) or Nox1-HA (pAdEasy-Nox1-HA), and
24 h later, they were trypsinized and seeded on coverslips and processed
as described above.

Lamellipodia formationwas evaluated by double staining of cortactin
and phalloidin using a Zeiss LSM 510 META or an LSM 800 Airyscan
Laser Scanning ConfocalMicroscopes (Plan-Apo 63xNA 1.4 oil or Plan-
Apo 20 × 0.8 NA). Pictures and analysis were performed blinded. Results
are mean ± SEM of at least three independent experiments in which
10–100 cells were evaluated per condition.

2.10 Far immunofluorescence for active
Tiam

MEFs were seeded on coverslips. After 24 h, cells were serum
starved for 2 h and stimulated with 10 ng/mL PDGF-BB for 30 min.
Then, cells were processed for a modified protocol of Far-

FIGURE 1
Nox1 is required for MTOC polarization. WT and Nox1y/- mouse embryonic fibroblast (MEFs) cells were seeded in 2 well silicone inserts (Ibidi) on
Collagen-I-coated coverslips and allowed to grow to confluency overnight. Cells were serum starved for 2 h, and after removing the insert, they were
allowed to migrate to the space in the presence of 10 ng/mL PDGF-BB. After 30 min, cells were fixed and stained for (A) γ-Tubulin (MTOC, green), (B)
GM130 (Golgi, green), and nucleus (DAPI, Blue). Graphs show the quantification of cells that polarize theMTOC (A) or Golgi (B) in front of the nucleus
facing the wound area. Differences between genotypes were analyzed with unpaired t-test (****p < 0.0001, n = 3 for MTOC, and n = 5 for Golgi.
50–80 cells were counted in each experiment). Scale bar = 50 μm.
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immunofluorescence as previously described (Bustos et al., 2012;
Pelletan et al., 2015; Valdivia et al., 2020). Briefly, cells were fixed,
permeabilized, and blocked as described for immunofluorescence
above. Subsequently, samples were incubated with 25 μg GST-
Rac1G15A purified recombinant protein for 60 min and washed.
Then, samples were blocked and incubated with anti-Tiam (Santa
Cruz) and anti-GST antibodies for 60 min and washed. Coverslips

were then blocked and incubated with anti-mouse AlexaFluor
568 and anti-rabbit AlexaFluor 633 (Jackson Immunological).
Purified recombinant GST was used as a negative control. Both
GST and GST-Rac1G15A were prepared as previously described
(Garcia-Mata et al., 2006). Images were captured with LSM
800 Airyscan Laser Scanning Confocal Microscopes (Plan-Apo
63x NA 1.4 oil). Pictures and analysis were performed blinded.

FIGURE 2
Nox1 is required for PDGF-induced polarized lamellipodia formation. WT and Nox1y/- mouse embryonic fibroblasts (MEFs) were seeded on
collagen-I-coated coverslips, serum starved for 16 h, and stimulated with 10 ng/mL PDGF-BB for 30 min. Cells were fixed and stained for cortactin
(green), F-actin (phalloidin, red), and nucleus (DAPI, blue). (A) Representative images of morphology observed forWT and Nox1y/- cells. Scale bar = 10 μm.
(B) Quantification of cells that showed a polarized shape. Statistical significance was analyzed with an unpaired t-test (***p < 0.001, n = 4 and
~150 cells analyzed per experiment). We considered the cells polarized when they showed a rear-to-front shape, including a tail and a single
lamellipodium at the leading edge (as in A, WT panel). (C) Cells were infected with a control virus (CTRL) or a virus expressing Nox1-HA. After 24 h of
infection, cells were plated and treated as described above. Staining was performed for F-actin (phalloidin, red), and infected cells showed green
fluorescence. Arrowheads show cells with polar shapes (single lamellipodium), and stars show cells with multiple lamellipodia. Scale bar = 10 μm (D)
Quantification of cells that showed a polarized shape. A two-way ANOVA test with multiple comparison was used to determine statistical significance
from three independent experiments (n = 3) where ~585 cells were analyzed in each experiment (***p < 0.001, ****p < 0.0001, ns: no significant). (E)
Quantification of cells with single lamellipodium (black bars), multiple lamellipodia (white bars), or no lamellipodia (grey bars). Data were analyzed with a
one-way ANOVA within each phenotype. Each group was compared with the control sample in basal (WT) (n = 4, ~585 cells per experiment; **p <0.01).

Frontiers in Cell and Developmental Biology frontiersin.org05

Valdivia et al. 10.3389/fcell.2023.1231489

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1231489


Results are mean ± SEM of at least three independent experiments in
which 5–7 cells were evaluated in each condition.

Colocalization was quantified using Pearson’s R coefficients between
two different channels within specific ROI located at the membrane of
lamellipodium and lamellipodia-like protrusions using theColoc2macro
in ImageJ. Values between 0.7 and 1 were considered true colocalization.

2.11 Migration assays

Migration was measured using a Boyden chamber. Cells were
serum starved and allowed to migrate towards 10 ng/mL PDGF for
3 h. Migrated cells were stained with DAPI. Four random fields were
visualized using Plan-Neo 20 × 0.5 NA in a Zeiss Axioskop2 wide-
field microscope and quantified with ImageJ.

WT and Nox1y/- MEFs were seeded in 2 well silicone inserts
(Ibidi) for the wound healing assays and let grow to confluency

overnight. Cells were serum starved for 2 h, and the external part of
the dish was filled with starvation media containing 10 ng/mL PDGF-
BB. Then, the silicone inserts were carefully removed, allowing the
cells to migrate to the empty area for 30 min. In some experiments,
cells were fixed and processed for immunofluorescence, as described
above. The staining was performed using γ-Tubulin (Sigma) as a
marker ofMTOC andGM130 (ECMBioscience) as amarker of Golgi.
Cells were considered polarized when Golgi or MTOC were
positioned within an angle of 120° in front of the nucleus facing
the wound area and as not polarized when the signal was behind this
angle or on top of the nucleus.

2.12 Statistical analysis

Data are expressed as the mean ± standard error of mean (mean ±
SEM from at least three independent experiments (n = 3). In every

FIGURE 3
Nox1 effect on polarity and lamellipodia number is rescued with H2O2. MEF cells were seeded on collagen-I-coated coverslips, serum starved for
16 h, and stimulated with 10 ng/mL PDGF-BB in the presence or absence of 10 μm H2O2. Cells were fixed and stained for cortactin (green), F-actin
(phalloidin, red), and nucleus (DAPI, blue). (A) Representative images of morphology observed for WT and Nox1y/- cells. Arrows show cells with polar
shapes (single lamellipodium), and stars show cells with multiple lamellipodia. Scale bar = 10 μm (B)Quantification of cells that showed a polarized
shape, including a single lamellipodium. A two-way ANOVA test with multiple comparison was used to determine statistical significance from three
independent experiments (n = 3) where ~320 cells were analyzed in each experiment (*p < 0.05, **p < 0.02, ***p < 0.0002, ****p < 0.0001). (C)
Quantification of cells with single lamellipodium (black bars), multiple lamellipodia (white bars), or no lamellipodia (grey bars). Data were analyzed with a
one-way ANOVA within each phenotype. Each group was compared with the control sample in basal (WT) (n = 3, 320 cells per experiment; **p < 0.01,
***p<0.001).
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independent experiment, for each experimental conditions we
evaluated either 5–10 random field of view and counted
10–700 cells depending on the magnification used to capture the

images. Data were compared using t-student test, 1-way or 2-way
ANOVA analysis, accordingly. Significant differences were established
at p < 0.05.

FIGURE 4
Nox1 controls Par3 activity. (A) Rac activity was determined using GLISA assay in WT and Nox1y/−cells after PDGF-BB stimulation for the indicated
times. Differences between genotypes was analyzed with one-way ANOVA (*p < 0.05, **p < 0.01, n = 4). (B) WT and Nox1y/- MEFs, were seeded on
collagen-I-coated coverslips, serum starved for 16 h, and stimulated with 10 ng/mL PDGF-BB for 30 min. Cells were fixed and incubated with GST-
Rac1G15A and then immunostained for GST and Tiam. Tiam activation depended on Nox1 and was tracked by colocalization of GST, and Tiam
signals at the membrane of lamellipodia and protrusions. Look up table (LUT) panels correspond to the magnification of the lamellipodia area shown on
merge images (white boxes). Scale bar = 10 μm (C)Quantification of colocalization between Tiam and GST-Rac1G15A signal. The graph shows Pearson’s
R values at the lamellipodium area for WT and protrusion area for Nox1y/- cells. Differences were evaluated with an unpaired t-test (****p < 0.001, n = 3,
and 5-7 cells per condition in each independent experiment). (D) MEF cells were serum starved for 16 h and stimulated with 10 ng/mL of PDGF-BB for
3 min. Phosphorylated proteins were isolated by affinity chromatography and analyzed by immunoblot using an antibody against Par3. Cortactin and
actin were used as controls. Graph shows densitometric analysis of observed levels of phosphoproteins for the 180, 150, and 100 KDa bands
corresponding to different Par3 isoforms from three independent experiments. Statistical significance was evaluated with a two-way ANOVA (*p < 0.05,
n = 3). (E) Cells were serum starved for 16 h and stimulated for 15 and 30 min with 10 ng/mL PDGF-BB. Cell lysates were analyzed for immunoblot for
pThr410/403-PKCζ/λ corresponding to the activation loop of atypical PKCs. Graphs show the densitometric analysis of four independent experiments.
Statistical significance was evaluated with a two-way ANOVA (*p < 0.02, p**<0.003, n = 4).
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3 Results

3.1 Nox1-derived ROS regulate cell
polarization

Similar to what has been reported in a variety of cell types (Schroder
et al., 2007; Sadok et al., 2008; Lee et al., 2009; Shinohara et al., 2010;
Khoshnevisan et al., 2020), Nox1 deficient (Nox1y/-) MEFs have
impaired PDGF-induced migration (Supplementary Figure S1)

despite having no differences in PDGFR levels at the plasma
membrane when compared to control cells (Supplementary Figure S2).

Previous work by our laboratory and other researchers have
established that Nox1 activity is required for protrusion
extension at the leading edge (San Martin et al., 2008;
Maheswaranathan et al., 2011) and directional persistence
(Sadok et al., 2009) during migration. Because the
establishment of agonist-induced polarity precedes cell
protrusion formation and is required for persistence during

FIGURE 5
Nox1 regulates polarity through PP2A phosphatase activity. (A) Cells were serum starved for 16 h and stimulated for 15 and 30 min with 10 ng/mL
PDGF-BB. Cell lysates were analyzed for immunoblot for the inactivating-phosphorylation of PP2A-CA using an antibody against pTyr307. Graphs show
the densitometric analysis of 4 independent experiments. Data were analyzed with a two-way ANOVA (*p < 0.05, **p < 0.01, ****p < 0.0001, n = 4). (B)
Cells were co-transfected with siGlo and siRNA Control (CTRL) or siRNA against PP2A-CA (sequence #4 or #7). Representative images of
morphology observed for WT and Nox1y/- cells. Arrows show cells with polar shapes (single lamellipodium), and stars show cells with multiple
lamellipodia. Scale bar = 10 μm (C). Efficiency of knockdown using the siRNA Control (CTRL) or siRNA against Par3 (sequence #4 or #7). (D)
Quantification of cells that showed a polarized shape, including a single lamellipodium. Statistical differences were determined with two-way ANOVA
from three independent experiments (n = 3). Each group was compared (n = 3, 200 cells, ****p < 0.001). (E) Quantification of cells with single
lamellipodium (black bars), multiple lamellipodia (white bars), or no lamellipodia (grey bars). Data were analyzed with a one-way ANOVA within each
phenotype. Each group was compared with the control sample in basal (WT) (n = 3, 200 cells; ***p < 0.001).
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migration, we posited that Nox1-derived ROS are required for
establishing agonist-dependent cell polarity. To examine this
hypothesis, we assessed one of the first manifestations of cell
polarization: the redistribution of the Golgi apparatus and the
microtubule organization centers (MTOCs). Using a wound-
healing assay, we found that in wild-type MEFs, PDGF
induces the reorientation of the Golgi apparatus and the
centrosome towards the wounded area at the front of the
nucleus (Figure 1A). Interestingly, while correctly positioning
their Golgi apparatus toward the wounded area, Nox1-deficient
cells failed to redistribute the MTOC properly (Figure 1B).

It is believed that the orientation of the MTOC dictates the
polarity of the microtubule (MT) network, which is critical for

establishing the leading edge (Schutze et al., 1991; Palazzo et al.,
2001). We observed that Nox1 deficient cells fail to relocate their
MTOC properly, thus, prompting us to investigate if the formation
of polarized lamellipodia was affected by Nox1 expression. We
found that, in wild-type cells, 30 min of PDGF treatment induces
a front-to-rear polarization characterized by a single polarized
lamellipodium and a distinguishable tail (Figures 2A,B). In
contrast, we observed that in Nox1 deficient cells, PDGF
treatment does not produce a front-to-rear polarity axis, inducing
multiple lamellipodia-like structures instead (Figures 2A,B). This
aberrant phenotype was indeed due to a lack of Nox1 activity since
cell polarization was recovered by re-expression of Nox1 (Figures
2C–E) or by exogenous addition of hydrogen peroxide (H2O2,

FIGURE 6
PP2A expression affects GST-Rac1G15A/Tiam colocalization at the lamellipodium. WT and Nox1y/- MEFs, were seeded on collagen-I-coated
coverslips, co-transfected with siGlo and siRNA against PP2A CA (sequence #4 or #7: siPP2A#4 and siPP2A#7) or siRNA control (siCTRL), serum starved
for 16 h and stimulated with 10 ng/mL PDGF-BB for 30 min. Cells were fixed, incubated with GST-Rac1G15A, and then stained for GST and Tiam.
Representative images are shown. Tiam activation at the lamellipodia area is observed in yellow by the colocalization of GST and Tiam. Scale bar =
10 μm .
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10μM, Figures 3A–C). These data demonstrate that Nox1-produced
ROS is required to form a single polarized lamellipodium.

3.2 Nox1-deficient cells display exacerbated
activation of the Par3/aPKC/Tiam complex

Several Partitioning-defective (PAR) proteins control polarization
during cell migration in fibroblasts, astrocytes, and T-cell (Ludford-
Menting et al., 2005; Wang et al., 2012). The Par3 homolog (Par3)
polarity protein has been directly implicated in regulating centrosome re-
localization during cell polarization and lamellipodium formation at the
leading edge (Schmoranzer et al., 2009; Hong et al., 2010). The active
Par3/aPKC complex couples with the guanine nucleotide exchange factor
(GEFs) Tiam1 at the leading edge ofmigrating cells to activate Rac, which
induces lamellipodia formation and cell migration (Etienne-Manneville
and Hall, 2001; 2003).

Since Nox1-deficient cells display altered lamellipodia and
centrosome polarization, we posited that Nox1 is implicated in
the Par3/aPKC/Tiam/Rac complex activation. We first quantified
Rac activity before and after PDGF treatment in WT and Nox1y/-

cells to test this hypothesis. We found that in basal the levels of active
Rac (Rac-GTP) are similar in both genotypes. However, after 1 and
2 min with PDGF, Nox1y/- cells showed significantly higher levels of
Rac-GTP compared with WT cells (Figure 4A). The differential Rac
activation observed between WT and Nox1y/- cells lead us to look
for active Tiam in the lamellipodia. We visualized the localization of
active Tiam1 through its colocalization with the Rac nucleotide-free
mutant GST-Rac1G15A, known to bind with high affinity to the

active GEFs (Valdivia et al., 2020). We observed the highest levels of
colocalization between Tiam1 and GST-Rac1G15A in the multiple
lamellipodia-like protrusions of Nox1y/- cells, while in WT cells, the
colocalization was limited to the main lamellipodium (Figures
4B,C). We used recombinant GST protein (Supplementary Figure
S3) and a non-immune IgG (data not shown) as specificity controls.

Numerous studies have shown that Par3 binding capacity is
regulated by phosphorylation. Par3 phosphorylation can block or
facilitate the recruitment of binding partners. Par3’s binding to Tiam
and the ability to localize to the cells’ edge are associated with its
phosphorylation status (Hurd et al., 2003; Goldstein and Macara, 2007;
Ling et al., 2010). Therefore, we evaluated Par3 phosphorylation by
selectively purifying phosphorylated proteins fromwild-type andNox1y/-

cells before and after PDGF stimulation. The isolated phosphoproteins
and phosphoprotein-containing complexes were analyzed by
immunoblots using specific antibodies. In wild-type cells, PDGF
induces the phosphorylation of the two spliced variants of Par3
(180kDa and 100 kDa), while in Nox1 deficient cells, we observed
exacerbated phosphorylation of Par3 after PDGF stimulation
(Figure 4D). In contrast, PDGF-induced phosphorylation of cortactin
reached a similar level in both genotypes (Figure 4D), indicating that the
increase in Par3 phosphorylation is unlikely to result from a widespread
increase in protein phosphorylation.

Par3 is phosphorylated by the aPKC (Lin et al., 2000; Li et al.,
2010; Morais-de-Sa et al., 2010). Thus, we investigated whether
Nox1 expression affects aPKC activity. We found the
phosphorylation of the activation loop of the aPKC (PKCζ/λ)
decreased after PDGF stimulation in WT whereas it increased in
Nox1y/- cells (Figure 4E).

FIGURE 7
PP2A controls Par3 localization.WT andNox1y/- cells were co-transfected with siGlo and siRNAControl (CTRL) or siRNA against PP2A-CA (sequence
#4 or #7: siPP2A#4 and siPP2A#7), serum starved for 16 h and stimulated with 10 ng/mL PDGF-BB for 30 min. Cells were fixed and immunostained for
Par3 (green) and nucleus (DAPI, blue). Representative images of Par3 localization observed for WT and Nox1y/- cells. Scale bar = 10 μm.
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Together, these data indicate that Nox1y/- cells display a higher
activation of the Par3/aPKC complex, probably driven by
hyperphosphorylation.

3.3 PP2A is inactivated by Nox1 deficiency

Several protein phosphatases have been associated with the de-
phosphorylation of the Par3/aPKC complex (Nam et al., 2007;
Traweger et al., 2008; Krahn et al., 2009; Ogawa et al., 2009;

Schumann et al., 2012). In particular, it is well established that the
aPKC is a substrate for the protein phosphatase 2A (PP2A) (Nunbhakdi-
Craig et al., 2002). Since aPKC shows increased phosphorylation in
Nox1y/- cells, we tested the hypothesis that PP2A undergoes inactivation
in Nox1-deficient cells.

Several post-translationalmodifications regulate PP2A: one is the Tyr
307 phosphorylation within the catalytic subunit of PP2A (PP2A-CA),
which is associated with loss of phosphatase activity (Chen et al., 1992).
Figure 5A shows that PP2A-CA Tyr 307 phosphorylation decreases
shortly after PDGF stimulation in WT while increasing in Nox1y/- cells.

FIGURE 8
Okadaic acid affects cell polarity, the number of lamellipodia, and Par3 localization in lamellipodia. Cells were seeded on Collagen I-coated
coverslips, allowed to attach, and serum starved for 16 h. Then, they were incubated with 1 μM of Okadaic acid (OKA) for 30 min and stimulated with
10 ng/mL of PDGF-BB for an additional 30 min. Cells were fixed and stained for (A) Cortactin (red), F-actin (phalloidin, green), and nucleus (DAPI, blue).
The lower panel corresponds to themagnification of the above pictures, showing F-actin distribution in single lamellipodia and protrusion inWT and
NOX1y/- cells with and without OKA. Scale bar = 10 μm. (B)Quantification of the percentage of polarized cells and (C) Number of lamellipodia after OKA
treatment. Percentage of polarized cells (B) and number of lamellipodia (C) were calculated from images of 8–10 random field of view per condition
(807 cells total from three independent experiments). Data were analyzed with one-way ANOVA (*p < 0.05, **p < 0.01, ns: no significant). (D) Cells were
treated as before and stained with an antibody raised against Par3 (green) and DAPI for nucleus (blue). Representative pictures show the distribution of
Par3 along the lamellipodia of WT and Nox1y/- cells in basal and OKA-treated cells. Scale bar = 10 μm.
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This result indicates that after PDGF stimulation, PP2A is activated in the
wild type while it is inhibited in Nox1y/- cells. Furthermore, the pattern of
PP2A inactivation mirrors the phosphorylation in the activation loop of
the aPKC (Figure 4E), suggesting that increased aPKC phosphorylation
in Nox1-deficient cells is the result of PP2A inactivation.

Consistent with a role for PP2A phosphatase activity in agonist-
mediated polarization downstream of Nox1, wild-type cells treated
with siRNA against PP2A-CA exhibit the same phenotype of
aberrant polarization (Figures 5B–E) and increased Tiam
localization to lamellipodia-like protrusions (Figure 6) as Nox1-
deficient cells. Regarding the localization of the polarity complex, we
observed that, in control cells, Par3 is distributed to the edge of the
lamellipodium while amassing at the edge of multiple small
lamellipodia-like structures in Nox1y/- cells and in wild-type cells
when PP2A-CA expression is silenced (Figure 7).

Finally, we observed that in the presence of the PP2A inhibitor
okadaic acid (OKA, 1 μM), PDGF treatment in wild-type cells
accurately recapitulates the phenotype of aberrant polarization
(Figures 8A–C) and Par3 accumulation observed in Nox1 deficient
cells (Figure 8D). BecauseOKAhas no effect inNox1 deficient cells, this
experiment suggests that protein phosphatase activity is already
inhibited and cannot be inhibited further in Nox1y/- cells. This result
is consistent with the idea that PP2A is a downstream effector of Nox1-
induced cell polarization after PDGF treatment.

To further confirm the role of PP2A activity downstream of
Nox1 in lamellipodia formation, we observed that endogenous
PP2A-CA localized at the edge of lamellipodium in WT cells

while getting excluded from the multiple lamellipodia in Nox1y/-

cells (Figure 9A). Although H2O2 can quickly diffuse in the cell, our
results imply a proximity-based relationship between Nox1 and
PP2A. Since Nox1 is expressed in low amounts in MEFs, making it
hard to detect, we overexpressed Nox1 with an HA-tag. By staining
for the HA tag, we observed that Nox1-HA localizes to the
lamellipodia and to lateral zones at the edge of the cell
(Figure 9B). Additionally, to rule out the possibility that reactive
oxygen species (ROS) derived from Nox1 could affect the activity of
PP2A, we used the thiol-reactive probe 5-IAF (5-
iodoacetoamidofluorescein). Nox1 expression levels did not affect
the redox status of PP2A-CA (Supplementary Figure S4).

These experiments demonstrate that PP2A is not localized at
the proximity of the leading edge and that its activity is inhibited
in Nox1-deficient cells. Furthermore, PP2A activity is
responsible for the agonist-induced aberrant polarity in these
cells.

3.4 Nox1 effects are also observed in primary
mouse aortic smooth muscle cells
(MASMCs) and femoral artery neointimal
hyperplasia

After vascular injury, PDGFR beta activation by PDGF
induces vascular smooth muscle migration and contributes to
vascular diseases (Banai et al., 1998; Kohno et al., 2013; Guan

FIGURE 9
PP2A and Nox1-HA localize in lamellipodium. (A) WT and Nox1y/- cells seeded and treated as described before, were stained for PP2A-CA (green),
nucleus (blue), and F-actin (magenta). 3D images were created using Imaris software. Bar = 10 μm. (B)WT cells were infected with Nox-1-HA adenovirus.
After 24 h, Nox1 localization in cells was assessed by using an anti-HA antibody (red) and phalloidin (magenta), Scale bar = 10 μm.
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et al., 2014; Wu et al., 2021). In addition, PDGF also increases
ROS production by activating Nox1 (Marumo et al., 1997;
Lassegue et al., 2001; Lavigne et al., 2001). Because
Nox1 expression increases after injury and is required for the
injury-induced formation of neointima in small animal models
(Lee et al., 2009; Xu et al., 2012), we speculate that our signaling
pathway is conserved in this cell type.

Indeed, as we observed in mesenchymal cells (MEFs),
Nox1 depletion affected the polarization of primary mouse aortic
smooth muscle cells (MASMCs) in response to PDGF, also inducing
multiple lamellipodia in these cells (Figures 10A,B). Accordingly,
Nox1y/- MASMC also showed an aberrant inactivation of PP2A after
PDGF treatment, consistent with exacerbated atypical PKCζ/λ
activation (Figures 10C,D).

It is well-accepted that vascular smooth muscle cell migration
contributes to the injury-induced neointimal formation (Inoue

and Node, 2009). Therefore, to evaluate the physiological
relevance of our pathway in vivo, we performed the murine
model of femoral artery wire injury followed by histological
analysis. Our results showed that the inhibition of neointimal
hyperplasia in Nox1y/- mice was accompanied by increased
staining for the inactive form of PP2A-CA and an increased
signal for active aPKCζ/λ (Figures 11A–C). These results suggest
that the inactivation of PP2A and the aberrant activation of aPKC
may contribute to reducing neointima formation observed in the
Nox1y/- mice arteries.

4 Discussions

Cell migration is essential for many biological processes,
including embryological development, tissue architecture,

FIGURE 10
Nox1 effect on polarity is observed in vascular smooth muscle cells. (A) Primary mouse aortic smooth muscle cells (MASMCs) derived fromWT and
Nox1y/- mice were seeded on collagen-I-coated coverslips, serum starved for 16h, and stimulated with 10 ng/mL PDGF-BB for 30 min. Cells were fixed
and stained for cortactin (green), F-actin (red phalloidin), and nucleus (DAPI, blue). Scale bar = 10 μm (B) graph shows the quantification of cells that
showed a polarized shape, including a single lamellipodium. Statistical significance was analyzed with an unpaired t-test (*p < 0.005, n = 4 and
~50 cells analyzed per experiment). MASMCs cells were serum starved for 16 h and stimulated for 15 and 30 min with 10 ng/mL PDGF-BB. Cells lysates
were analyzed by immunoblot for the (C) inactivating-phosphorylation of PP2A-CA using an antibody against pTyr307 and for (D). pThr410/403-PKCζ/λ
corresponding to the activation loop of atypical PKCs. Graphs below each figure show the densitometric analysis of 4 independent experiments (*p <
0.05, **p < 0.01).
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immune surveillance, angiogenesis, and wound healing (Escandon
et al., 2022). Similarly, cell migration contributes to pathological
processes such as atherosclerosis and restenosis (Schwartz, 1997).
Establishing cell polarity with a well-defined trailing edge and
forming a single lamellipodium at the cell’s leading edge is
essential for directed cell migration and is a hallmark of
mesenchymal cell migration.

Previous studies by us and others have shown that
Nox1 deficiency inhibits cell migration in various cell types,
including fibroblast and smooth muscle cells. Here we further
characterize the mechanistic role of Nox1 during migration and
show that Nox1y/- cells treated with PDGF fail to properly reorient
their MTOC toward the front to initiate directional migration.
Surprisingly, these cells still correctly position the Golgi
apparatus and function by distributing cargo to the plasma
membrane since we do not observe differences in the amount of
PDGF-R at the membrane. The Golgi apparatus can nucleate and
stabilize non-centrosomal microtubules to regulate their position,
shape, and polarized cargo transport (Zhu and Kaverina, 2013; Rios,
2014; Sanders and Kaverina, 2015). However, Golgi-derived
microtubule arrays are nucleated, stabilized, and tethered
differently than the microtubules in the MTOC. Therefore, our
observation suggests that the Nox-1 effect may be directed toMTOC
rather than Golgi microtubules.

We also showed that Nox-1-derived ROS is necessary for a
single lamellipodium formation and that the lack of Nox1 leads
to multiple lamellipodium-like structures. Previous work has
posited Nox1-derived ROS as responsible for actin
polymerization at the lamellipodia [reviewed in (San Martin
and Griendling, 2010)]. In this case, the initial ROS burst
produced by Nox1 after PDGF stimulation activates Src >
PAK > LIMK pathway to induce cofilin inactivation (F-actin
stabilization). Here we described a new function for Nox1-
produced ROS dictating the formation of a single polarized
lamellipodium. Although ROS can quickly diffuse through the
cell, forming a single lamellipodium implies a spatial-temporal
tethering of Nox1 to a particular membrane area. Accordingly,
we showed that Nox1-HA is widely distributed in the cell and
localizes at the lamellipodium edge. We speculate that the Par
polarity complex is also responsible for recruiting Nox1 to the
membrane, similar to what has been described in endothelial
cells under shear stress, where Tiam acts as an adaptor between
VE-cadherin, p67phox (a Nox1 and Nox2 subunit), and Par3
(Liu et al., 2013). In this case, the authors also described the
local activation of Rac and ROS production (Liu et al., 2013).
Many examples in the literature exist in which ROS can induce
more ROS production. Since Rac activity can induce Nox1-
derived ROS, it is possible that this is also the case in our system,

FIGURE 11
Nox1 effect on the inactivation of PP2A phosphatase and activation of PKCζ/λ is also observed in the femoral arteries of wire-injured mice. Femoral
arteries from WT and Nox1y/- mice were injured using a wire, as described in the Material and Methods section. After 21 days, arteries were carefully
excised and processed for histological analysis. (A) Sequential sections from 5 animals were used for Hematoxylin and Eosin staining and for the
inactivating-phosphorylation of PP2A-CA using an antibody against pTyr307 and for pThr410/403-PKCζ/λ corresponding to the activation loop of
atypical PKCs. Graphs show the relative intensity of DAB staining assessed using ImageJ. For pTyr307-PP2A-CA (B) and pThr410/403-PKCζ/λ
(C). Differences were assessed with a t-test (n = 5, **p < 0.001), Scale bar = 250 μm.
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and there is more than one ROS wave. Perhaps an initial ROS
burst after PDGF stimulation is responsible for the spatial
localization of the Par polarity complexes to initiate the
lamellipodium formation, while a second burst is responsible
for the actin polymerization driven by Nox1-SSH1L at the
lamellipodium. Further experiments are necessary to rule out
this possibility.

Furthermore, we also believe that the multiple lamellipodia
observed after the absence of Nox1 indicate a lack of cell polarity
rather than a transition from directional cell migration to amoeboid
migration (Petrie et al., 2009; SenGupta et al., 2021). This is
supported by the observation that in our chemotaxis assay,
Nox1-/y cell still showed a decreased migration rate.

Redox signaling regulates protein phosphatases activity in a
positive (Kim et al., 2009; Maheswaranathan et al., 2011) and
negative manner (Meng et al., 2002; Ostman et al., 2011). Our
results showed that Nox1-derived ROS does not oxidizes PP2A CA,
suggesting an indirect mechanism is controlling PP2A activity. Our
previous work has shown that Nox1-derived ROS are required for
SSH1L/14-3-3 complex disruption (Maheswaranathan et al., 2011)
and activation of the phosphatase SSH1L leading to cofilin
dephosphorylation (San Martin et al., 2008; Lee et al., 2009). In
the present study, we demonstrate that Nox1-derived ROS is
required to locate and activate the phosphatase PP2A properly.
Additional research is necessary to determine if the oxidation of
chaperone regulatory proteins such a 14-3-3 can also control PP2A
activity.

Alternatively, redox signaling can also regulate kinase activity
(Maheswaranathan et al., 2011; Rochaix, 2013; Truong and
Carroll, 2013). Of relevance for our work, Src has been
described as one of the kinases that phosphorylates PP2A CA
Y307 (Barisic et al., 2010), and Src activity can be inhibited by
ROS (Tang et al., 2005). Further experiments are necessary to
corroborate that Nox1-derived ROS controls PP2A activity by
inhibiting Src function.

Our current working model propose that the lack of
Nox1 inhibits the activity of the phosphatase PP2A, leading to
the hyperphosphorylation of the polarity complex Par3/aPKC/
Tiam. This aberrant activation, amasss the polarity complexes at
the membrane leading to the formation of multiple lamellipodia-like
structures (Figure 12).

In conclusion, our results here point to a specific function
for Nox1 during the establishment of cell polarity driven by the
Par polarity complex. Furthermore, our data support a
mechanistic model in which Nox-1-induced ROS can control
the phosphorylation status of aPKC and Par3 by regulating the
activity of PP2A, leading to unique and functional
lamellipodia.
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FIGURE 12
Nox1 regulates the activity and localization of the Par3/aPKC/Tiam polarity complex by regulating PP2A activity. In WT cells, PDGF stimulation
induces the polarized formation of a single lamellipodium via the assembly of Par3/aPKC/Tiam and the activation of Rac at the leading edge. At the rear
end of the cell, Par6 interacts with aPKC and Par3 is not binding Tiam. Our current working model propose that the lack of Nox1 (Nox1y/-) inhibits the
activity of the phosphatase PP2A, inducing the aberrant phosphorylation and activation of the Par3/aPKC/Tiam polarity complex. Par3, PP2A, Nox1-
HA, and active Tiam amass at multiple membrane locations forming multiple lamellipodia-like structures probably by Rac activation.
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