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Pancreatic cancer is the eighth leading cause of cancer-related deaths worldwide.
Chemotherapy including gemcitabine, 5-fluorouracil, adriamycin and cisplatin,
immunotherapy with immune checkpoint inhibitors and targeted therapy have
been demonstrated to significantly improve prognosis of pancreatic cancer
patients with advanced diseases. However, most patients developed drug
resistance to these therapeutic agents, which leading to shortened patient
survival. The detailed molecular mechanisms contributing to pancreatic cancer
drug resistance remain largely unclear. The growing evidences have shown that
noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs
(lncRNAs) and circular RNAs (circRNAs), are involved in pancreatic cancer
pathogenesis and development of drug resistance. In the present review, we
systematically summarized the new insight on of various miRNAs, lncRNAs and
circRNAs on drug resistance of pancreatic cancer. These results demonstrated
that targeting the tumor-specific ncRNAmay provide novel options for pancreatic
cancer treatments.
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Introduction

Pancreatic cancer (PC), a highly lethal human malignancy, ranks the fourth leading
cause of cancer-related death in the United States and the eighth worldwide. PC patients
had only 5% overall survival rate at 5-years after diagnosis (Von Hoff et al., 2009). A total
of 458,918PC cases were diagnosed all around the world and 432,242 deaths were
reported in 2018 (Bray et al., 2018). Pancreatic ductal adenocarcinoma (PDAC) is the
most common pathological type, accounting for 85%–90% of all PC patients. Due to lack
of the effectively early diagnosis methods, the vast majority of PC patients are diagnosed
at advanced disease stages and tumors are unresectable. Systematical therapy with
chemotherapy, immunotherapy and targeted therapy drugs with or without radiation
therapy is only viable alternative for advanced PC patients. Currently, chemotherapeutic
agents applied in PC treatments include gemcitabine (GEM), 5-fluorouracil (5-FU),
adriamycin (ADM), cisplatin (DDP), oxaliplatin, nab-paclitaxel, irinotecan and

OPEN ACCESS

EDITED BY

Qinong Ye,
Beijing Institute of Biotechnology, China

REVIEWED BY

Boshi Wang,
Shanghai Cancer Institute, China
Pietro Carotenuto,
Telethon Institute of Genetics and
Medicine (TIGEM), Italy

*CORRESPONDENCE

Ming Yang,
aaryoung@yeah.net,
myang@sdfmu.edu.cn

RECEIVED 22 May 2023
ACCEPTED 17 July 2023
PUBLISHED 25 July 2023

CITATION

Wei L, Sun J, Wang X, Huang Y, Huang L,
Han L, Zheng Y, Xu Y, ZhangN and YangM
(2023), Noncoding RNAs: an emerging
modulator of drug resistance in
pancreatic cancer.
Front. Cell Dev. Biol. 11:1226639.
doi: 10.3389/fcell.2023.1226639

COPYRIGHT

© 2023 Wei, Sun, Wang, Huang, Huang,
Han, Zheng, Xu, Zhang and Yang. This is
an open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Cell and Developmental Biology frontiersin.org01

TYPE Review
PUBLISHED 25 July 2023
DOI 10.3389/fcell.2023.1226639

https://www.frontiersin.org/articles/10.3389/fcell.2023.1226639/full
https://www.frontiersin.org/articles/10.3389/fcell.2023.1226639/full
https://www.frontiersin.org/articles/10.3389/fcell.2023.1226639/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2023.1226639&domain=pdf&date_stamp=2023-07-25
mailto:aaryoung@yeah.net
mailto:aaryoung@yeah.net
mailto:myang@sdfmu.edu.cn
mailto:myang@sdfmu.edu.cn
https://doi.org/10.3389/fcell.2023.1226639
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2023.1226639


capecitabine (Springfeld et al., 2019). Targeted therapy drugs for
PC include small molecule tyrosine kinase inhibitor (TKI)
erlotinib targeting epidermal growth factor receptor (EGFR),
oral mammalian target of rapamycin (mTOR) inhibitor
everolimus and small molecule multi-target receptor TKI
sunitinib which targets RTK. GEM combined with erlotinib is
commonly used to treat locally advanced PC or metastatic PC
(Irigoyen et al., 2017; Halfdanarson et al., 2019). Everolimus and
sunitinib were applied in PC patients with progressive
neuroendocrine tumors that cannot be resected or have
metastatic spread (Angelousi et al., 2017; Nunez et al., 2019).
In the aspect of immunotherapy, there are several monoclonal
antibodies of immune checkpoint inhibitors (ICIs), such as ICIs
of cytotoxic T lymphocyte antigen-4 (CTLA-4) (ipilimumab and
trimetamumab), as well as ICIs of programmed cell death protein
1(PD-1) (pidilizumab, nivolumab and pembrolizumab) (Weiss
et al., 2018; Kamath et al., 2020). Unfortunately, intrinsic drug
resistance or acquired drug resistance severely limits the
applications of these therapeutic agents. The deregulations of
cell cycle control, apoptosis, DNA damage repair, autophagy,
epithelial-mesenchymal transition (EMT), ABC transporters and
cancer stem cells (CSCs), have been reported to be associated
with drug resistance in PC (Modi et al., 2016; Kuwada et al., 2018;
Liu Q G et al., 2018; Ma T et al., 2018; Knudsen et al., 2019; Qian
et al., 2019; Yang Z et al., 2020). Up to now, the molecular
mechanisms for development of drug resistance in PC still
remain largely unclear.

Noncoding RNAs (ncRNAs) transcripts, a series of RNA
molecules lacking of proteins coding potentials, constitute
about 70% of human genome and modulate most signaling
pathways, physiological and pathological processes (Jadeja
et al., 2020; Song et al., 2020; Su et al., 2020; Wang et al.,
2020; Wei et al., 2020). Multiple types of ncRNAs have been
identified, such as microRNAs (miRNAs), long ncRNAs
(lncRNAs), circular RNAs (circRNAs), small nucleolar RNAs
(snoRNAs) and PIWI-interacting RNAs (piRNAs) (Huang et al.,
2020; Pammer et al., 2020; Qin et al., 2020; Xu W et al., 2020;
Zhang Y et al., 2020; Zhao et al., 2020). A number of miRNAs,
lncRNAs and circRNAs have been shown to be related to various
cell behaviors, such as cell growth, apoptosis, cell cycle
progression, EMT and autophagy (Luo et al., 2023; Xu, 2023).
It has been demonstrated that many dysregulated ncRNAs in PC
not only might serve as biomarkers of diagnosis and prognosis,
but also contribute to resistance development to therapeutic
agents and irradiation (Hao et al., 2019; Xu et al., 2019; Li
et al., 2020b; Franses et al., 2020; Nguyen et al., 2020; Ye
et al., 2020; Yu et al., 2020). Although a large number of
ncRNAs have been found to be involved in PC
chemoresistance, only a few ncRNAs were reported to confer
resistance to targeted therapy in PC. miR-142-5p has been shown
to modulate the expression of PD-L1 in PC cells and promote
anti-tumor immunity (Jia et al., 2017), nevertheless, no studies
have reported the impacts of ncRNAs on immunotherapy
resistance of PC cells.

Considering the critical and complicated roles of ncRNAs in PC
drug resistance development, herein, we systematically summarized
the underlying molecular mechanisms how miRNAs, lncRNAs and
circRNAs confer drug resistance in PC.

miRNAs and drug resistance

miRNAs, a subclass of sncRNAs, negatively regulate target gene
expression through binding to the 3′-untranslated region (3′-UTR)
of the target mRNA and are involved in multiple cellular process,
such as cell difference, proliferation, apoptosis, cell cycle
progression, angiogenesis, EMT and CSC formation. Several
dysregulated miRNAs, functioning as oncogenes or tumor
suppressors, have been identified to be involved in resistance
development to therapeutic agents in PC (Li et al., 2020a; An
and Zheng, 2020; Guo et al., 2020; Jiang et al., 2020; Wu et al.,
2020). Compared with naive cells, some abnormally expressed
miRNAs have been reported in various drug-resistant PC cells
(Dhayat et al., 2015; Shen et al., 2015; Tian et al., 2016). The
involvement of miRNAs in PC resistance to GEM, 5-FU and
other drugs are summarized below.

MiRNAs and GEM resistance

GEM, a kind of cytosine nucleoside derivative, is currently the
first-line standard chemotherapeutic agent to treat PC patients.
However, only a few PC patients can maintain sensitivity to
GEM chemotherapy and subsequently, inevitable drug resistance
often leads to low response rate and poor treatment efficacy. A
variety of miRNAs have been found to be associated with GEM
resistance in PC. Multiple mechanisms, such as diminished
apoptosis, increased DNA repair, disordered cell cycle, decreased
intracellular drug accumulation due to increased expression of drug
efflux transporters, EMT, as well as CSCs, play crucial roles in
miRNAs-mediated development of GEM resistance in PC.
Oncogenic and tumor suppressor miRNAs involved in GEM
resistance are summarized in details (Table 1; Table 2).

Oncogenic miRNAs and GEM resistance

Several miRNAs, such as miR-17-5p, miR-21, miR-29a, miR-
365, miR-155 and miR-181, have been found to confer GEM
resistance through promoting proliferation and reducing
apoptosis of PC cells. For example, silencing of oncogenic miR-
17-5p, which targeting Bim, could potentiate GEM sensitivities,
activate caspase-3 and promote apoptosis in human PANC-1 and
BxPC3 PC cell lines (Yan et al., 2012). Similarly, inhibition of miR-
29a could increase apoptotic cells, upregulate S phase fraction, and
reverse GEM resistance via elevating expression of Dikkopf-1
(Dkk1), Kremen2, secreted frizzled related protein 2 (sFRP2) and
activating the Wnt/β-catenin signaling in human MIAPaCa-2 and
PSN-1 PC cells (Nagano et al., 2013). miR-21, which has been found
to be upregulated in several cancers, could confer GEM resistance in
PC by affecting expression of multiple target genes, including
phosphatase and tensin homologue deleted on chromosome ten
(PTEN)/RECK, programmed cell death 4 (PDCD4), Bcl-2, FasL,
matrix metalloproteinase-2 (MMP-2), MMP-9 and VEGF (Park
et al., 2009; Giovannetti et al., 2010; Bhatti et al., 2011; Dong
et al., 2011; Wang et al., 2013). Interestingly, patients with GEM-
resistance PDAC demonstrated highly activated cancer-associated
fibroblasts (CAFs) and elevated miR-21 expression. Overexpression
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of miR-21 in CAFs could significantly promote GEM resistance in
PDAC. On the contrary, silencing of miR-21 in CAFs diminished
GEM resistance. Meanwhile, CAFs with high miR-21 level also
displayed increased expression of platelet-derived growth factor
(PDGF), MMP-3, MMP-9 and chemokine (C-C motif) ligand 7
(CCL7) (Zhang L et al., 2018). Through directly suppressing
expression of the apoptosis-promoting protein BAX and adaptor
protein Src Homology 2 Domain Containing 1 (SHC1), miR-365 has
been shown to potentiate the resistance against GEM in PC cells

(Hamada et al., 2014). Moreover, overexpressed miR-365 in
macrophage-derived exosomes (MDE) could also contribute to
GEM resistance through increasing the triphospho-nucleotide
pool and enzyme cytidine deaminase in PDAC cells (Binenbaum
et al., 2018). In addition, oncogenic miR-181 has also been shown to
promote GEM resistance of PC cells via modulating expression of
Bcl-2, nuclear factor kappa B (NF-κB) and cylindromatosis (CYLD)
as well as activation of the Hippo signaling (Cai et al., 2013; Takiuchi
et al., 2013; Chen et al., 2015). Interestingly, accumulating data has

TABLE 1 Oncogenic miRNAs modulating gemcitabine resistance in pancreatic cancer.

miRNAs Expressiona Genes and pathways References

miR-17-5p upregulated Bim Yan et al. (2012)

miR-29a upregulated Dkk1/Kremen2/sFRP2/Wnt/β-catenin Nagano et al. (2013)

miR-21 upregulated PTEN/RECK Park et al. (2009)

PDCD4 Bhatti et al. (2011)

Bcl-2 Dong et al. (2011)

FasL Wang et al. (2013)

MMP-2/MMP-9/VEGF Giovannetti et al. (2010)

MMP-3/MMP-9/PDGF/CCL-7/PDCD4 Zhang L et al. (2018)

miR-365 upregulated SHC1/BAX Hamada et al. (2014)

cytidine deaminase Binenbaum et al. (2018)

miR-181b upregulated Bcl-2 Cai et al. (2013)

NF-κB/CYLD Takiuchi et al. (2013)

miR-181c upregulated Hippo signaling Chen et al. (2015)

miR-155 upregulated - Mikamori et al. (2017)

CAT, DCK Patel et al. (2017)

miR-106b upregulated TP53INP1 Fang et al. (2019)

miR-210 upregulated mTOR Yang Q et al. (2020)

miR-301 upregulated CDH1 Funamizu et al. (2019)

miR-301a-3p upregulated PTEN Xia et al. (2017)

miR-301a upregulated TAp63 Luo et al. (2018)

miR-296-5p upregulated BOK/vimentin/N-cadherin Okazaki et al. (2020)

miR-1246 upregulated CCNG2/CSC Hasegawa et al. (2014)

miR-125a upregulated A20 Yao et al. (2016)

miR-10a-5p upregulated TFAP2C Xiong et al. (2018)

miR-342-3p upregulated KLF6 Ma et al. (2019)

miR-744 upregulated - Miyamae et al. (2015)

miR-135b upregulated BMAL1/YY1 Jiang et al. (2018)

miR-320c upregulated SMARCC1 Iwagami et al. (2013)

miR-93-5p upregulated PTEN/PI3K/Akt Wu et al. (2021)

miR-331-3p upregulated Wnt/β-Catenin, ST7L Zhan et al. (2020)

miR-3178 upregulated RhoB/PI3K/Akt, ABC transporters Gu et al. (2022)

amiRNAs, upregulated in gemcitabine resistant pancreatic cancer cells. This table shows 23miRNAs, whose expression levels and potential targets in gemcitabine resistance of pancreatic cancer.
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TABLE 2 Tumor suppressive miRNAs modulating gemcitabine resistance in pancreatic cancer.

miRNAs Expressiona Genes and pathways References

miR-33a downregulated Pim-3/Akt/GSK-3β/β-catenin Liang et al. (2015b)

β-catenin Liang et al. (2015a)

miR-497 downregulated FGF2/FGFR1 Xu et al. (2014)

miR-210 downregulated ABCC5 Amponsah et al. (2017)

miR-1285 downregulated YAP1/EGFR/β-catenin Huang et al. (2017)

miR-608 downregulated RRM1/CDA Rajabpour et al. (2017)

miR-506 downregulated SPHK1/Akt/NF-κB Li et al. (2016)

miR-30a-5p downregulated FOXD1/ERK Zhou et al. (2019)

miR-146a-5p downregulated TRAF6/NF-kBp65/P-gp Meng et al. (2020)

miR-34a downregulated Bcl-2/Notch1/Notch2 Ji et al. (2009)

miR-34 downregulated Slug/PUMA Zhang Q A et al. (2018)

miR-494 downregulated c-Myc/SIRT1 Liu et al. (2015)

miR-373-3p downregulated CCND2 Hu et al. (2018)

miR-101 downregulated DNA-dependent protein kinase catalytic subunit (DNA-PKcs) Hu et al. (2017)

miR-101-3p downregulated RRM1 Fan et al. (2016)

miR-153 downregulated Snail Liu et al. (2017)

miR-374b-5p downregulated bcl-2 Sun et al. (2018)

miR-410-3p downregulated HMGB1 Xiong et al. (2017)

miR-29c downregulated USP22 Huang et al. (2018)

miR-127 downregulated CCNE1, CDKN1A, CDKN1B, CCND1, CDK2 Panebianco et al. (2021)

miR-509-5p downregulated E-cadherin/ZO-1/ZEB1/Snail Hiramoto et al. (2017)

miR-1243 downregulated E-cadherin/ZO-1/ZEB1/Snail Hiramoto et al. (2017)

miR-200c downregulated CSCs Ma et al. (2015)

miR-200b downregulated ZEB1/ZEB2/CDH1 Funamizu et al. (2019)

miR-125a-3p downregulated Fyn Liu B et al. (2018)

miR-3656 downregulated RHOF Yang R M et al. (2017)

miR-17-92cluster downregulated NODAL/ACTIVIN/TGF-β1/p21/p57/TBX3 Cioffi et al. (2015)

miR-205 downregulated TUBB3/RRM1/ZEB1 Chaudhary et al. (2017)

miR-497 downregulated NF-κB1 Yu Y et al. (2022)

miR-142-5p downregulated - Ohuchida et al. (2011)

miR-145 downregulated p70S6K1 Lin et al. (2016)

miR-429 downregulated PDCD4 Yu et al. (2017)

miR-30a downregulated SNAI1/IRS1/ERK/AKT Wang T et al. (2019)

miR-760 downregulated MOV10/ITGB1 Yang et al. (2019)

let-7 downregulated RRM2 Bhutia et al. (2013)

miR-211 downregulated RRM2 Maftouh et al. (2014)

miR-20a-5p downregulated RRM2 Lu et al. (2019)

miR-7 downregulated PARP1/NF-κB Ye et al. (2021)

(Continued on following page)
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shown that exosomes play a role in the development of
chemoresistance. Mikamori et al. found that miR-155, an over-
expressed miRNA in GEM-resistant PANC-1-GR PDAC cells, could
potentiate exosome secretion and confer GEM resistance in PDAC
via anti-apoptosis effects. On the contrary, blocking exosome
delivery could alleviate miR-155 induced GEM resistance
(Mikamori et al., 2017). In addition, through inhibiting the
expression of deoxycytidine kinase (DCK), an important enzyme
involved in GEM metabolism, miR-155 could promote exosome-
mediated acquired resistance to GEM in PC cells (Patel et al., 2017).
Recently, it has been found that exosomal miR-106b deriving from
CAFs, could confer GEM resistance through targeting TP53INP1 in
PC (Fang et al., 2019). By contrast, exosomes deriving from
pancreatic CSCs with GEM resistance could deliver miR-210 and
transform GEM-sensitive cells to drug-resistance cells via activating
the mTOR signaling pathway (Yang Q et al., 2020).

EMT and CSCs also play crucial roles in development of drug
resistance. It has been shown that several miRNAs conferred GEM
resistance of PC via modulating EMT and CSCs. miR-301, a highly
expressed miRNA in GEM-resistant Capan-2 and PANC-1 cells,
could trigger EMT and potentiate GEM resistance through
inhibiting cadherin 1 (CDH1) expression (Funamizu et al., 2019).
miR-301a-3p has also been shown to confer GEM resistance via
suppression of PTEN expression (Xia et al., 2017). Hypoxia, a
prevalent phenomenon during tumorigenesis, has been found to
promote resistance of chemotherapy and radiotherapy in PC. miR-
301a, a hypoxia-sensitive miRNA, has been shown to be involved in
hypoxia-induced GEM resistance via targeting P63 family member
TAp63 in PC (Luo et al., 2018). In addition, through suppressing a
pro-apoptotic gene of Bcl2-related ovarian killer (BOK) and EMT
marker vimentin and N-cadherin, exogenous expression of miR-
296-5p has been found to weaken the apoptosis induced by GEM,
indicating that targeting miR-296-5p may have therapeutic potential
to overcome GEM resistance of PC patients (Okazaki et al., 2020).
Ectopic expression of miR-1246 could promote CSC-like properties
and GEM resistance via inhibiting expression of CCNG2. Moreover,
high expression levels of miR-1246 in PC tissues predicted poor
prognosis of patients (Hasegawa et al., 2014).

In addition, oncogenic miR-125a, miR-10a-5p and miR-342-3p
have also been found to enhance GEM resistance of PC cells through
targeting A20, transcription factor activating protein 2 gamma
(TFAP2C) and Krüppel-like factor 6 (KLF6), respectively (Yao
et al., 2016; Xiong et al., 2018; Ma et al., 2019). Plasma miR-744
might be a valuable marker to predict poor prognosis and GEM
resistance through PC patients’ plasma miRNA profiling analyses
(Miyamae et al., 2015). Interestingly, a novel miR-135b-BMAL1-
YY1 signaling, which could promote tumorigenesis and GEM
resistance in pancreas, has been identified (Jiang et al., 2018). In
addition, miR-320c could confer GEM resistance via modulating

expression of SMARCC1, a core subunit of chromatin remodeling
complex of switch/sucrose nonfermentable (SWI/SNF) in PC cells
(Iwagami et al., 2013). Also, miR-93-5p could promote GEM
resistance in PC cells through silencing expression of its target
gene PTEN and, thus activating the PI3K/Akt pathway. miR-331-3p
could confer GEM resistance in PC cells through targeting ST7L and
activating the Wnt/β-Catenin signaling (Zhan et al., 2020; Wu et al.,
2021). miR-3178 has also been found to promote GEM resistance via
activating the RhoB/PI3K/Akt signaling and upregulation ABC
transporters (Gu et al., 2022).

Tumor suppressive miRNAs and GEM
resistance

Multiple tumor suppressive miRNAs also participate in
regulating GEM resistance of PC cells through different
mechanisms, such as apoptosis, cell proliferation, cell cycle, EMT,
CSCs, autophagy and glycolysis. miR-33a, for example, could
suppress GEM resistance and cell proliferation in PC via
targeting Pim-3 and inhibiting the Akt/GSK-3β/β-catenin
signaling pathway (Liang et al., 2015b). Similarly, miR-33a could
enhance the sensitivity to GEM in human PC cells through
inhibiting β-catenin nuclear translocation, suppressing survivin,
cyclin D1 (CCND1) and multi-drug resistance 1 (MDR-1)
transcription, as well as reducing protein expression of
N-cadherin, slug and vimentin (Liang et al., 2015a). miR-497, a
downregulated miRNA in GEM-resistant PC cells, could reverse
GEM resistance through silencing expression of its target genes
FGF2 and FGFR1 (Xu et al., 2014). It has been shown that over-
expression of miR-210 could also potentiate GEM sensitivity via
suppressing expression of its target gene ABCC5 (Amponsah et al.,
2017). In addition, tumor suppressors miR-1285, miR-608, miR-
506, miR-30a-5p and miR-146a-5p have been demonstrated to
impair GEM resistance of PC by silencing expression of YAP1/
EGFR/β-catenin, ribonucleotide reductase M1 (RRM1)/CDA,
sphingosine kinase 1 (SPHK1)/Akt/NF-κB, FOXD1/ERK and the
tumor necrosis factor receptor-associated factor 6 (TRAF6)/NF-kB
p65/P-gp signaling, respectively (Li et al., 2016; Huang et al., 2017;
Rajabpour et al., 2017; Zhou et al., 2019; Meng et al., 2020). miR-34
has been found to induce apoptosis, cell cycle arrest in G1 and G2/M
phase and sensitize PC cells to GEM via suppressing expression of its
target genes Bcl-2 and Notch1/2. Moreover, miR-34 could inhibit
growth of CSCs and tumor spheres in vitro and tumorigenesis in
vivo (Ji et al., 2009). Additionally, miR-34 has also been shown to
potentiate GEM-induced apoptosis of PC cells through inhibiting
expression of Slug and elevating expression of p53 upregulated
modulator of apoptosis (PUMA) (Zhang Q A et al., 2018). miR-
494, a miRNA with decreased levels in PC tissues and cells, could

TABLE 2 (Continued) Tumor suppressive miRNAs modulating gemcitabine resistance in pancreatic cancer.

miRNAs Expressiona Genes and pathways References

miR-136-5p downregulated ZNF32 Xu Y et al. (2020)

miR-3662 downregulated HIF-1ɑ, glycolysis Liu S L et al. (2021)

amiRNAs, downregulated in gemcitabine resistant pancreatic cancer cells. This table shows 39 miRNAs, whose expression levels and potential targets in gemcitabine resistance of pancreatic

cancer.
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lead to apoptosis, senescence, G1 phase accumulation and the
impaired GEM resistance, through directly silencing the c-myc/
sirtuin1(SIRT1) signaling (Liu et al., 2015). In addition, tumor
suppressors miR-373-3p, miR-101, miR-101-3p, miR-153 and
miR-374b-5p have also been found to reverse GEM resistance in
PC via promoting apoptosis (Fan et al., 2016; Hu et al., 2017; Liu
et al., 2017; Hu et al., 2018; Sun et al., 2018). It has been found that
tumor suppressor miR-410-3p and miR-29c could attenuate the
resistance to GEM in PC through inhibiting expression of High
mobility group box 1 (HMGB1) and ubiquitin specific peptidase-22
(USP22) and, thus, reducing autophagy, respectively (Xiong et al.,
2017; Huang et al., 2018). Similarly, miR-127 could confer GEM
sensitivity of PC cells through down-regulating expression of
CCNE1, CDKN1A, CDKN1B, CCND1 and CDK2, and promoting
cell cycle arrested in S phase (Panebianco et al., 2021).

Tumor suppressive miRNAs are also involved in regulating the
EMT process and/or CSC formation which have been associated
with development of GEM resistance in PC. For instance, tumor
suppressors miR-509-5p and miR-1243 have been found to enhance
GEM sensitivity through modulating expression of EMT markers
E-cadherin, Z O -1, Zinc finger E-box binding homeobox
transcription factor 1 (ZEB1) and Snail in PC (Hiramoto et al.,
2017). In addition, miR-200c, a miRNA with significantly reduced
levels in human CSCs of PC (PCSCs), could effectively overcome
GEM resistance and diminish colony formation of PCSCs (Ma et al.,
2015). Similarly, in Capan-1, Capan-2, PANC-1, MIAPaCa-2,
BxPC-3 and PL45 PC cell lines, miR-200b levels have been found
to be negatively correlated with GEM resistance. Moreover, miR-
200b overexpression could enhance GEM sensitivity by modulating
expression of EMTmarkers ZEB and CDH1 (Funamizu et al., 2019).
In addition, miR-125a-3p and miR-3656 could also potentiate GEM
sensitivity of PC cells through silencing Fyn and RHOF and
interfering EMT process, respectively (Yang S Z et al., 2017; Liu
B et al., 2018). The miR-17-92 cluster miRNAs, which were
downregulated in chemoresistant PCSCs, could reverses GEM
resistance and quiescence through the NODAL/ACTIVIN/TGF-
β1 signaling (Cioffi et al., 2015). Moreover, miR-205 has been
shown to suppress the PCSCs proliferation and reduce GEM
resistance via silencing expression of tubulin beta 3 class III
(TUBB3), RRM1 and ZEB1 (Chaudhary et al., 2017). Similarly,
tumor suppressor miR-497, downregulated in CSCs from BxPC-3
and ASPC-1 PC cells and PC tissues, has also been found to inhibit
GEM resistance andmetastasis via directly targetingNF-κB1. On the
contrary, suppression of miR-497 could dramatically contribute to
GEM resistance, migration and invasion of PC CSCs (Yu Q et al.,
2022).

Additionally, levels of tumor suppressor miR-142-5p in
surgically resected PC tissues have been found to be as a
prospective marker to predict GEM response (Ohuchida et al.,
2011). Multiple tumor suppressor miRNAs, such as miR-145,
miR-429, miR-30a and miR-760, could also reverse GEM
resistance of PC through inhibiting expression of p70S6K1,
PDCD4, SNAI1/IRS1/ERK/AKT, moloney leukemia virus 10
(MOV10) and Integrin β1 (ITGB1), respectively (Lin et al., 2016;
Yu et al., 2017; Wang T et al., 2019; Yang et al., 2019). Interestingly,
let-7, miR-211 and miR-20a-5p have also been shown to improve
the sensitivity to GEM in PC cells via silencing expression of RRM2
(Bhutia et al., 2013; Maftouh et al., 2014; Lu et al., 2019). Tumor

suppressor miR-7 could reverse GEM resistance of PC cells via
modulating poly (ADP-ribose) polymerase 1 (PARP1)/NF-κB axis
and cellular senescence (Ye et al., 2021). miR-136-5p has been
shown to reduce GEM resistance through silencing expression of
ZNF32 (Xu Y et al., 2020). Tumor suppressor miR-3662 could also
reduce GEM resistance and aerobic glycolysis in PDAC cells via
suppressing levels of hypoxia-inducible factor 1ɑ (HIF-1ɑ) (Liu A
et al., 2021).

miRNAs and 5-FU resistance

As a thymidylate synthase inhibitor, 5-FU is commonly used for
PC treatments in clinic. 5-FU leads to apoptosis and cell cycle arrest
through interfering DNA replication, RNA function and protein
synthesis. It has been demonstrated that several oncogenic or tumor
suppressor miRNAs contribute to the resistance to 5-FU in PC
(Table 3).

Multiple oncogenic miRNAs, such as miR-21, miR-221, miR-
296-5p, miR-320a andmiR-499a-5p, have been found to be involved
in 5-FU resistance in PC. For example, miR-21 could confer 5-FU
resistance in human PATU8988 and PANC-1 PC cells via inhibiting
the expression of tumor suppressor genes PTEN and PDCD4 (Wei
et al., 2016). In tumor-initiating stem-like PC cells (L3.6 pL),
suppression of miR-21 and miR-221 have been shown to reduce
side population (SP) cell fraction and reverse 5-FU resistance (Zhao
et al., 2015). Moreover, low expression of miR-21 not only was
associated with good prognosis of PDAC cases treated with 5-FU-
based adjuvant regimens in two independent cohorts, but also could
potentiate the sensitivity to 5-FU in PL45 and HPAF-II PC cells
(Hwang et al., 2010). miR-221-3p could promote cell proliferation,
EMT and 5-FU resistance via targeting the RB1 3′-UTR region in PC
(Zhao et al., 2016). In addition, oncogenic miR-296-5p and miR-
320a contribute to 5-FU resistance of PC cells by modulating BOK,
vimentin, N-cadherin and PDCD4 expression levels, respectively
(Wang et al., 2016; Okazaki et al., 2020). miR-499a-5p could
promote cell proliferation, migration and 5-FU resistance in PC
cells through targeting PTEN and activating the PI3K/Akt pathway.
Moreover, miR-499a-5p has been shown to influence the expression
of MDR-related genes, including adenosine triphosphate (ATP)
binding cassette subfamily B member 1 (P-gp), ATP binding
cassette subfamily C member 1 (MRP1), and ATP binding cassette
subfamily G member 2 (BCRP) (Ouyang et al., 2021).

By contrast, several tumor suppressor miRNAs can reverse 5-FU
resistance of PC. MiR-137, for instance, has been found to be
markedly downregulated in PC cell lines and tissues. Over-
expression of miR-137 could sensitize cells to 5-FU through
inhibiting pleiotropic growth factor (PTN) expression (Xiao et al.,
2014). In addition, miR-138-5p and miR-494, which were both
downregulated in PC tissues and cell lines, have been shown to
increase 5-FU sensitivity through targeting vimentin, SIRT1 and
c-myc expression, respectively (Liu et al., 2015; Yu et al., 2015).

miRNAs and resistance to other drugs

ADM, DDP, oxaliplatin and FOLFIRINOX (a combination
regimen of folinicacid, 5-FU, irinotecan and oxaliplatin), targeted
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therapy drugs and immunotherapy agents are also used during PC
clinical treatments. It has been found that several tumor
suppressor miRNAs, including miR-137, miR-142 and miR-212,
could weaken ADM resistance of PC. For example, through
targeting ATG5 and improving autophagy, exogenous
expression of miR-137 could enhance ADM sensitivity and
promote apoptosis in PC cells (Wang Z C et al., 2019).
Interestingly, the plectin-1(PL-1)/miR-212 nanoparticles could
significantly promote ADM-induced apoptosis and autophagy
by silencing the expression of ubiquitin specific peptidase
9 X-linked (USP9X) in PC cells (Chen Y et al., 2019).
Oncogenic miR-223 has been shown to promote proliferation
and DDP resistance via targeting forkhead transcription factor
O subfamily 3a (FoxO3a) in PC cells (Huang et al., 2019). In
human MiaPaCa2 and BxPC3 PC cells harboring P53 mutations,
exogenous expression of tumor suppressor miR-34 could not only
result in cell cycle arrest, apoptosis, the reduced tumor-initiating
cell population and tumor sphere growth, but also sensitize the
cells to DDP through down-regulating Notch1/2 and Bcl-2
expression (Ji et al., 2009). miR-100, a downregulated miRNA
in PC tissues and cell lines, could increase DDP sensitivity and
suppress tumor growth in vivo via targeting fibroblast growth factor
receptor 3 (FGFR3) (Li et al., 2014). In addition, it has been found
that miR-374b, a downregulated miRNA in DDP-resistant PC cell
line BxPC3-R, contributed to the acquired DDP resistance, at least
partly by targeting ATP7A (ATPase, Cu2+ Transporting, Alpha
Polypeptide) and clusterin (CLU) (Schreiber et al., 2016). Tumor
suppressor miR-1291-5p could act as a metabolism regulator and
potentiate the sensitivity to DDP via diminishing glucose
transporter protein type 1 (GLUT1) expression and GLUT1-
mediated glycolysis in ASPC-1 and PANC-1 PC cells (Tu et al.,
2020). Laura and colleagues showed that inhibition of miR-181a-
5p could potentiate oxaliplatin sensitivity of PC cells via
suppressing expression of ATM. Moreover, PC patients with
better response to FOLFIRINOX displayed lower levels of miR-
181a-5p both in cancerous tissues and plasma specimens (Meijer

et al., 2020). Interestingly, through regulation of DNA damage,
miR-1307 has been shown to modulate FOLFIRINOX sensitivity
in PDAC cells (Carotenuto et al., 2021).

In addition to be involved in chemoresistance, a few miRNAs
have been shown to confer resistance to targeted therapy and
immunotherapy in PC. For instance, silencing oncogeneic miR-
21 could potentiate the sensitivity to sunitinib in PDAC
(Passadouro et al., 2014). Izumchenko and colleagues showed
that silencing of tumor suppressor miR-200 could upregulate the
expression of negative EGFR regulator ofmitogen-inducible gene
6 (MIG6) in the process of transforming growth factor β
(TGFβ)-mediated EMT. Moreover, the ratio of MIG6 mRNA
to miR-200 (MIG6 mRNA/miR-200) was negatively correlated
with erlotinib response not only in cancer cell lines with diverse
tissue origins in vitro, but also in xenografts derived from PC
patients carrying wild-type EGFR in vivo (Izumchenko et al.,
2014). Similarly, tumor suppressor miR-497 could impact
erlotinib resistance via modulating expression levels of
fibroblast growth factor 2 (FGF2) and fibroblast growth factor
receptor 1 (FGFR1) (Xu et al., 2014). Through inhibiting the
expression of erythropoietin-producing hepatocellular receptor 2
(EphA2), tumor suppressor miR-124 has also been found to
improve erlotinib sensitivity in Capan-1 PC cells with K-RAS
mutations (Du et al., 2019). Table 4.

lncRNAs and drug resistance

LncRNAs could be divided into four types according to their
location in the genome: intronic lncRNAs, intergenic lncRNAs,
divergent lncRNAs and antisense lncRNAs (Lee, 2012).
Accumulating evidences demonstrated that multiple lncRNAs,
functioning as oncogenes or tumor suppressors, contribute to
tumorigenesis, disease progression and therapy response by
regulating specific target genes or signaling pathways (Johnsson
et al., 1991; Feng et al., 2020; Gong et al., 2020; He et al., 2020; Zhu

TABLE 3 miRNAs modulating 5-FU resistance in pancreatic cancer.

miRNAs Expressiona Genes and pathways References

miR-21 upregulated PTEN/PDCD4 Wei et al. (2016)

- Zhao et al. (2015)

- Hwang et al. (2010)

miR-221 upregulated - Zhao et al. (2015)

miR-221-3p upregulated RB1 Zhao et al. (2016)

miR-296-5p upregulated BOK/vimentin/N-cadherin Okazaki et al. (2020)

miR-320a upregulated PDCD4 Wang et al. (2016)

miR-499a-5p upregulated PI3K/Akt, PTEN, P-gp,MRP1, BCRP Ouyang et al. (2021)

miR-137 downregulated PTN Xiao et al. (2014)

miR-138-5p downregulated vimentin Yu et al. (2015)

miR-494 downregulated SIRT1/c-myc Liu et al. (2015)

amiRNAs, either upregulated or downregulated in 5-FU, resistant pancreatic cancer cells. This table shows 9 miRNAs, whose expression levels and potential targets in 5-FU, resistance of

pancreatic cancer.

Frontiers in Cell and Developmental Biology frontiersin.org07

Wei et al. 10.3389/fcell.2023.1226639

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1226639


et al., 2020; Qu et al., 2021). In PC, lncRNAs have been found to be
involved in development of drug resistance (Table 5; Table 6).

lncRNAs and GEM resistance

Similar with miRNAs, several lncRNAs have been shown to
participate in GEM resistance in PC, including oncogenic lncRNAs
and tumor suppressive lncRNAs molecules (Table 5).

Oncogenic lncRNAs and GEM resistance

Multiple oncogenic lncRNAs have been shown to contribute to
GEM resistance in PC, such as HOXA transcript at the distal tip
(HOTTIP), glutathione S-transferase mu 3, transcript variant 2
(GSTM3TV2), metastasis-associated lung adenocarcinoma
transcript 1 (MALAT1), plasmacytoma variant translocation 1
(PVT1) and DiGeorge syndrome critical region gene 5 (DGCR5).

HOTTIP, an overexpressed lncRNA in PDAC tissues and cells,
has been found to promote GEM resistance by modulating levels of
HOXA13 in PDAC cells. In contrast, silencing HOTTIP could lead
to enhanced sensitivity of PC cells to GEM (Li et al., 2015). LncRNA
GSTM3TV2, which was significantly upregulated in GEM-resistant
PC cells, could confer GEM resistance by competitively sponging let-
7 and subsequently up-regulating expression of L-type amino acid
transporter 2 (LAT2) and oxidized low-density lipoprotein receptor 1
(OLR1). Moreover, the increased levels of GSTM3TV2 in PC tissues
have been significantly associated with worse prognosis, indicating
that GSTM3TV2 may be a novel prognostic marker and therapeutic
target in PC (Xiong et al., 2019). LncRNA MALAT-1, initially
identified as a prognostic marker for lung cancer patients, was
involved in PC chemoresistance. It has been demonstrated that

MALAT-1 could not only reduce GEM sensitivity, but also
potentiate the proportion and self-renewal ability of PCSCs, by
up-regulating expression of self-renewal related factor Sox2 (Jiao
et al., 2015). Interestingly, over-expression of lncRNA PVT1 could
promote GEM resistance in naïve ASPC-1 PC cells (You et al., 2011).
Moreover, PVT1 could confer the resistance to GEM in PC via
regulating the miR-619-5p/Pygo2 and miR-619-5p/ATG14 axes,
which lead to dysregulated autophagic activities and the Wnt/β-
catenin signaling (Zhou et al., 2020). Similarly, silencing of
PVT1 could suppress autophagy and promote GEM sensitivity
through modulating the miR-143/HIF-1α/VMP1 axis in PC (Liu
S L et al., 2021). In addition, oncogenic lncRNA TUG1 has also been
shown to contribute to GEM resistance of PDAC cells via inducing
expression of SCH772984 which is an ERK pathway suppressor
(Yang et al., 2018). LncRNA DiGeorge syndrome critical region gene
5 (DGCR5) could enhance GEM resistance via functioning as a
ceRNA through sponging miR-3163 to inhibit the Wnt/β-catenin
signaling and modulate expression of DNA topoisomerase 2-alpha
(TOP2A) (Liu Y F et al., 2021). LncRNA HIF1A-AS1 (antisense
RNA1 of HIF-1α) has been found to prevent GEM sensitivity of PC
cells through activating the AKT/YB1/HIF-1α signaling and
promoting glycolysis (Xu F et al., 2021a). Interestingly, lncRNA
urothelial carcinoma-associated 1 (UCA1), which was delivered by
hypoxic pancreatic stellate cells (PSCs)-derived exosomes (HPSC-
EXO), has also been shown to enhance GEM resistance in PC (Chi
et al., 2021). Through enhancer of zeste homolog 2 (EZH2)
-mediated epigenetic modification, lncRNA small nucleolar RNA
host gene 16 (SNHG16) has been found to confer GEM resistance via
diminishing SMAD family member (Smad4) expression in PC (Yu Y
et al., 2022). Via sponging miR-139-5p and activating Wnt pathway,
and subsequently increasing the expression of ezh2, lncRNA
SH3BP5-AS1 has been demonstrated to contribute to GEM
resistance of PC cells (Lin et al., 2022).

TABLE 4 miRNAs modulating resistance to other drugs in pancreatic cancer.

miRNAs Expressiona Genes and pathways Drugs References

miR-137 downregulated ATG5 ADM Wang Z C et al. (2019)

miR-212 downregulated USP9X ADM Chen Y et al. (2019)

miR-223 upregulated FoxO3a DDP Huang et al. (2019)

miR-34 downregulated Bcl-2/Notch1/Notch2 DDP Ji et al. (2009)

miR-100 downregulated FGFR3 DDP Li et al. (2014)

miR-374b downregulated ATP7A/CLU DDP Schreiber et al. (2016)

miR-1291-5p downregulated GLUT1 DDP Tu et al. (2020)

miR-181a-5p upregulated ATM Oxaliplatin, FOLFIRINOX Meijer et al. (2020)

miR-1307 upregulated CLIC5 FOLFIRINOX Carotenuto et al. (2021)

miR-21 upregulated - Sunitinib Passadouro et al. (2014)

miR-200 downregulated MIG6 Erlotinib Izumchenko et al. (2014)

miR-497 downregulated FGF2/FGFR1 Erlotinib Lin et al. (2020)

miR-124 downregulated EphA2 Erlotinib Du et al. (2019)

amiRNAs, either upregulated or downregulated in other drugs resistant pancreatic cancer cells. This table shows 12 miRNAs, whose expression levels and potential targets in other drugs

resistance of pancreatic cancer.
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Accumulating evidences demonstrated that CAFs are critically
involved in chemoresistance (Qin et al., 2019; Zhang H et al., 2020;
Yang et al., 2022). LINC00460, a lncRNAmolecule mainly located in the
cytoplasm, has been shown not only to correlate with GEM response in
PDAC patients, but also to regulate GEM resistance of CAFs through
mediating the cellular communication of PDAC cancer cells and CAFs
by platelet derived growth factor subunit A (PDGFA) associated protein
1 (PDAP1)/PDGFA/PDGFR signaling pathway (Zhu et al., 2022).

Additionally, EMT and CSCs have also been shown to promote
lncRNAs-mediated chemotherapy resistance. Linc-DYNC2H1-4, an
upregulated intergenic lncRNA in GEM-resistant BxPC-3-GEM PC
cells, could promote EMT and stemness of the parental sensitive
cells. In cells, Linc-DYNC2H1-4 could sponge miR-145 and elevate
levels of several EMT key players including ZEB1 and CSC markers
including Lin28, Nanog, Sox2 and Oct4 (Gao et al., 2017). LncRNA
SLC7A11-AS1, which was over-expressed in PDAC tissues and

TABLE 5 LncRNAs modulating gemcitabine resistance in pancreatic cancer.

LncRNAs Expressiona Genes and pathways References

HOTTIP upregulated HOXA13 Li et al. (2015)

GSTM3TV2 upregulated let-7/LAT2/OLR1 Xiong et al. (2019)

MALAT-1 upregulated Sox2 Jiao et al. (2015)

PVT1 upregulated - You et al. (2011)

miR-619-5p/Pygo2/ATG14 Zhou et al. (2020)

miR-143/HIF-1α/VMP1 Liu Y F et al. (2021)

TUG1 upregulated ERK Yang et al. (2018)

DGCR5 upregulated miR-3163/TOP2A,Wnt/β-catenin Liu S L et al. (2021)

HIF1A-AS1 upregulated AKT/YB1/HIF-1α Xu F et al. (2021a)

UCA1 upregulated SOCS3/EZH2 Chi et al. (2021)

SNHG16 upregulated Smad4 Yu Q et al. (2022)

SH3BP5-AS1 upregulated miR-139-5p/Wnt/CTBP1 Lin et al. (2022)

LINC00460 upregulated PDAP1/PDGFA/PDGFR Zhu et al. (2022)

linc-DYNC2H1-4 upregulated miR-145/ZEB1/Lin28/Nanog/Sox2/Oct4 Gao et al. (2017)

SLC7A11-AS1 upregulated NRF2, ROS Yang Q et al. (2020)

SBF2-AS1 upregulated miR-142-3p/TWF1 Hua et al. (2019)

HCP5 upregulated miR-214-3p/HDGF Liu et al. (2019)

SNHG14 upregulated miR-101/RAB5A/ATG4D Zhang et al. (2019)

LINC01559 upregulated P62, LC3, caspase3, PARP Deng et al. (2020)

LINC00346 upregulated miR-188-3p/BRD4 Shi et al. (2019)

SNHG8 upregulated caspase-3/PARP Song et al. (2018)

HOST2 upregulated apoptosis An and Cheng (2020)

ANRIL upregulated miR-181a, HMGB1 Wang et al. (2021)

NEAT1 upregulated miR-491-5p/Snail/SOCS3 Wu et al. (2023)

GAS5 downregulated miR-221/SOCS3 Liu B et al. (2018)

miR-181c-5p/Hippo Gao et al. (2018)

AB209630 downregulated PI3K/Akt Wang et al. (2018)

MEG3 downregulated snail Ma T et al. (2018)

DLEU2L downregulated miR-210-3p, BRCA2 Xu F et al. (2021b)

DBH-AS1 downregulated miR-3163/USP44 Ye et al. (2022)

DSCR9 downregulated miR-21-5p/BTG2 Huang et al. (2022)

alncRNAs, either upregulated or downregulated in gemcitabine resistant pancreatic cancer cells. This table shows 28 lncRNAs, whose expression levels and potential targets in gemcitabine

resistance of pancreatic cancer.

Frontiers in Cell and Developmental Biology frontiersin.org09

Wei et al. 10.3389/fcell.2023.1226639

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1226639


GEM-resistant cell lines, has also been found to potentiate PDAC
stemness and GEM resistance through stabilizing nuclear factor
erythroid-2-related factor 2 (NRF2) and stimulating intracellular
reactive oxygen species (ROS) (Yang Z et al., 2020). In addition,
oncogenic lncRNA SBF2-AS1 could promote EMT and GEM
resistance in PC via sponging miR-142-3p and up-regulating
expression of twinfilin 1 (TWF1) (Hua et al., 2019).

Autophagy also contributes to drug resistance and cancer
progression (Kim and Lee, 2014; Levy et al., 2017; Wu and
Zhang, 2020). It has been found that lncRNAs HLA complex P5
(HCP5) and SNHG14 could confer GEM resistance of PC through
sponging miR-214-3p and miR-101 and activating autophagy (Liu
et al., 2019; Zhang et al., 2019). LncRNA LINC01559 has also been
found to confer GEM resistance by promoting autophagy and
inhibiting apoptosis (Deng et al., 2020). In addition, oncogenic
lncRNAs LINC00346, small nucleolar RNA host gene 8 (SNHG8)
and HOST2, have also been shown to confer GEM resistance of PC
via regulating the miR-188-3p/BRD4 axis, the caspase-3/PARP axis
and apoptosis (Song et al., 2018; Shi et al., 2019; An and Cheng,
2020). Additionally, lncRNA ANRIL could enhance GEM resistance
of PC cells through inhibiting miR-181a expression and modulating
autophagy induced by HMGB1 (Wang et al., 2021).

Mesenchymal stem cells (MSCs), a crucial cell type in tumor
micro-environment, may contribute to drug resistance in multiple
neoplasms via producing protective cytokines or influencing gene
expression (Houthuijzen et al., 2012; Liu C et al., 2021). It has been
found that extracellular vesicle -loaded oncogenic lncRNA nuclear
paraspeckle assembly transcript 1 (NEAT1) from adipose-derived
MSCs could promote GEM resistance in PC by regulating the miR-
491-5p/snail/suppressor of cytokine signaling 3 (SOCS3) signaling
pathway (Wu et al., 2023).

Tumor suppressor lncRNAs and GEM
resistance

Several tumor suppressor lncRNAs have also been found to be
associated with the resistance to therapeutic agents in PC. For
instance, lncRNA growth arrest-specific 5 (GAS5) has been
demonstrated to suppress GEM resistance of PC cells through
inhibiting miR-221 expression and increasing SOCS3 expression
(Liu G et al., 2018). Interestingly, GAS5 has also been found to

antagonize GEM resistance in PC cells via negatively regulating
miR-181c-5p expression and subsequently activating the Hippo
signaling (Gao et al., 2018). AB209630, an evidently
downregulated lncRNA in PDAC tissues, could improve GEM
sensitivity of PDAC cells by modulating the PI3K/Akt pathway.
Moreover, high levels of lncRNA AB209630 were associated with
good prognosis of PDAC patients (Wang et al., 2018). MEG3, which
is a downregulated lncRNA in PC tissues and cells, has been found to
sensitize GEM in PC cells. On the contrary, silencing MEG3 led to
inhibited GEM sensitivities. Moreover, low expression of MEG3 in
PC patients were associated with GEM resistance and poor
outcomes (Ma L et al., 2018). LncRNA DLEU2L (deleted in
lymphocytic leukemia 2-like), which was downregulated in PC
tissues, has been shown to lessen GEM resistance of PC cells via
modulating expression of BRCA2 (Xu F et al., 2021b). Through
modulating themiR-3163/USP44 axis in PC cells, tumor suppressive
lncRNA DBH-AS1 has been found to reverse GEM resistance and
inhibit cell growth (Ye et al., 2022). Most recently, down syndrome
critical region 9 (DSCR9), a downregulated lncRNA in PC cells and
tissues, has also been shown to suppress the proliferation, invasion
and GEM resistance by miR-21-5p/BTG anti-proliferation factor 2
(BTG2) axis (Huang et al., 2022).

lncRNAs and resistance to other drugs

In addition to participate in GEM resistance, lncRNAs have also
been shown to promote other drugs resistance, such as 5-FU, DDP,
oxaliplatin, FOLFIRINOX and targeted therapy agents (Table 6).

Oncogenic lncRNAs and resistance to other
drugs

LncRNA TUG1 could promote 5-FU resistance in PC cells via
inhibiting expression of miR-376b-3p and elevating
dihydropyrimidine dehydrogenase (DPD) expression (Tasaki et al.,
2021). HOTTIP has been found to promote DDP resistance of PC
cells through silencing miR-137 (Yin et al., 2020). Similarly,
oncogenic lncRNA UPK1A-AS1 could confer oxaliplatin
resistance induced by paracrine IL8 derived from CAFs via
activating Ku70 and Ku80 interaction and, thus, promoting

TABLE 6 LncRNAs modulating resistance to other drugs in pancreatic cancer.

LncRNAs Expressiona Genes and pathways Drugs References

TUG1 upregulated miR-376b-3p/DPD 5-FU Tasaki et al. (2021)

HOTTIP upregulated miR-137 DDP Yin et al. (2020)

UPK1A-AS1 upregulated IL8, Ku70, Ku80 Oxaliplatin Zhang et al. (2022)

HOTAIR upregulated EZH2/DR5 TRAIL Yang R M et al. (2017)

SNHG7 upregulated Notch1/Jagged1/Hes-1, MSCs FOLFIRINOX Cheng et al. (2021)

LINC02432 upregulated miR-98-5p/HK2 EGFR, MEK and ERK inhibitors Tan et al. (2022)

GAS5 downregulated miR-181c-5p/Hippo 5-FU Gao et al. (2018)

alncRNAs, either upregulated or downregulated in other drugs resistant pancreatic cancer cells. This table shows 7 lncRNAs, whose expression levels and potential targets in other drugs

resistance of pancreatic cancer.
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nonhomologous end joining (NHEJ) and DNA double-strand break
(DSB) repair. On the contrary, silencing UPK1A-AS1 could reverse
oxaliplatin resistance of PC cells (Zhang et al., 2022). Interestingly,
oncogenic lncRNA HOX transcript antisense gene RNA (HOTAIR)
has been demonstrated to confer resistance to TNF-related
apoptosis-inducing ligand (TRAIL) via interacting with the
epigenetic regulator EZH2 and inhibiting TRAIL receptor death
receptor 5 (DR5) expression. Silencing HOTAIR could enhance
TRAIL-induced apoptosis in TRAIL-resistant PC cells. On the
contrary, HOTAIR over-expression could inhibit apoptosis
induced by TRAIL in TRAIL-sensitive cells, indicating that
HOTAIR may act as a potential therapeutic target to conquer
TRAIL-resistance in PC (Yang R M et al., 2017). In addition, it
has been shown that lncRNA small nucleolar RNA host gene 7
(SNHG7) could modulate activities of MSCs and confer
FOLFIRINOX resistance in PC through the Notch1/Jagged1/Hes-
1 signaling pathway (Cheng et al., 2021). Aerobic glycolysis, a
hallmark of PC, has been shown to promote tumorigenesis and
progression via multiple mechanisms. Glycolysis-related lncRNA
LINC02432 could inhibit ferroptosis and predict drug sensitivity to
EGFR inhibitors (afatinib and sapitinib), MEK inhibitors
(trametinib, PD0325901 and selumetinib) and ERK inhibitors
(VX-11e, Ulicocitinib, SCH772984, and ERK_6604) in PC by
regulating miR-98-5p/hexokinase 2 (HK2) axis (Tan et al., 2022).

Tumor suppressive lncRNAs and resistance
to other drugs

Unlike tumor suppressivemiRNA, few tumor suppressor lncRNA
has been found to be associated with other drugs resistance. Until
now, only tumor suppressive lncRNA GAS5 could prevent 5-FU
resistance in PC cells by sponging miR-181c-5p and subsequently
activating the Hippo signaling (Gao et al., 2018).

circRNAs and drug resistance

CircRNAs, a special class of ncRNAs with covalently closed-loop
structure, have been shown to function as important regulator in

various tumors, including PC (Kristensen et al., 2019; Wong et al.,
2020). Amounting data indicated that circRNAs function in
carcinogenesis and progression of PC (Shao et al., 2018; Chen W
et al., 2019). Importantly, several circRNAs have been associated
with development of drug resistance in PC (Table 7).

circRNAs and GEM resistance

Through circRNA-sequencing analyses of GEM-resistant PANC-
1-GR PC cells and wide-type PANC-1 cells, it has been found that
68 upregulated circRNAs and 58 downregulated ones in PANC-1-GR
cells. Seven upregulated circRNAs (hsa_circ_0000522, hsa_circ_
0000943, chr4:174305802-174325101+, chr1:169947226-170001116-
, chr14:101402109-101464448+, chr4:52729603-52780244+, chr6:
29901995-29911250+) and three downregulated circRNAs (hsa_
circ_0070033, hsa_circ_0008161, hsa_circ_0006355) were
successfully verified by the qRT-PCR assay. Among which, chr14:
101402109-101464448 + and chr4:52729603-52780244+ have been
found to be highly expressed in plasma of PC patients, who showed no
response to GEM treatment. Silencing these two circRNAs could
restore GEM sensitivity of PANC-1-GR cells (Shao et al., 2018).
Similarly, Xu et al. found that the top 10 upregulated circRNAs in
SW1990/GZ PC cells were circ_101672, circ_004077, circ_003251,
circ_102,402, circ_074298, circ_089762, circ_003596, circ_089761,
circ_002178 and circ_102,403. In contrast, the top
10 downregulated circRNAs were circRNA_101,543, circRNA_
102,747, circRNA_000926, circRNA_059665, circRNA_103827,
circRNA_406521, circRNA_103128, circRNA_104490, circRNA_
103829 and circRNA_070037 (Xu et al., 2018).

CircHIPK3, an upregulated circRNA in PC tissues and GEM-
resistant PC cells, has also been found to confer GEM resistance
through regulating RASSF1 expression (Liu et al., 2020). Through
depriving the suppression of miR-23b-3p on expression level of
deacetylase SIRT1 and leading to increased glycolysis, circZNF91 has
been shown to confer GEM resistance in PC cells (Zeng et al., 2021).
Oncogenic circ-MTHFD1L could induce DNA damage repair and
confer GEM resistance in PDAC through the miR-615-3p/RPN6 axis.
On the contrary, inhibition of circ-MTHFD1L combined with olaparib
could reverse GEM resistance (Chen et al., 2022). Similarly, circ_

TABLE 7 CircRNAs modulating drug resistance in pancreatic cancer.

CircRNAs Expressiona Genes and pathways Drugs References

circHIPK3 upregulated miR-330-5p, RASSF1 GEM Liu et al. (2020)

circZNF91 upregulated miR-23b-3p GEM Zeng et al. (2021)

circ-MTHFD1L upregulated miR-615-3p/RPN6 GEM Chen et al. (2022)

circ_0074298 upregulated miR-519, SMOC GEM Hong et al. (2022)

circFARP1 upregulated LIF/STAT3 GEM Hu et al. (2022)

circLMTK2 upregulated miR-485-5p/PAK1 GEM Lu et al. (2022)

circ_0092367 downregulated miR-1206/ESRP1 GEM Yu et al. (2021)

circ_0013587 downregulated miR-1227/E-cadherin Erlotinib Xu H et al. (2021)

acircRNAs, either upregulated or downregulated in resistant pancreatic cancer cells. This table shows 8 circRNAs, whose expression levels and potential targets in drugs resistance of pancreatic

cancer.
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0074298 has also been found to promote GEM resistance and PC
progression through sponging miR-519 and regulating SMOC
expression (Hong et al., 2022). Interestingly, circFARP1 could enable
CAFs to promote GEM resistance in PC via the leukemia inhibitory
factor (LIF)/STAT3 axis (Hu et al., 2022). CircLMTK2, an over-
expressed circRNA in GEM-resistant PC cells and PC tissues, could
contribute to GEM resistance via modulating p21 (RAC1) activated
kinase 1 (PAK1) by sponging miR-485-5p (Lu et al., 2022).

Similarly, tumor suppressive circRNAhas also been demonstrated
to participate in the resistance to GEM. For example, tumor
suppressor circ_0092367 could inhibit EMT and enhance GEM
sensitivity in PC cells through regulating the miR-1206/epithelial
splicing regulatory protein 1 (ESRP1) axis (Yu et al., 2021).

circRNAs and resistance to other drugs

To date, no report has shown that oncogenic circRNAs could
involve in the resistance to other drugs. In the aspect of tumor

suppressor circRNAs, only circ_0013587 has been found to reverse
erlotinib resistance through modulating the miR-1227/E-cadherin
signaling in PC cells (Xu H et al., 2021).

Conclusion

Many ncRNAs have been shown to be involved in the
pathogenesis and progression of PC, indicating the potential roles
of ncRNAs as biomarkers for early diagnosis, as promising prognostic
and predictive markers for the identification of candidates amenable to
adjuvant treatment, enabling a personalized clinical approach.
Interestingly, a number of studies attempted to investigate the
diagnostic value of circulating miRNAs in PC (Previdi et al., 2017).
Recently, a pilot study has proposed that an exosomal four miRNA
biomarker panel, consisting of miR-93-5p, miR-339-3p, miR-425-5p,
and miR-425-3p, may provide a promising avenue for PC screening
(Makler and Asghar, 2023). Although the diagnostic and prognostic
potential of ncRNAs have shown the promising results, large and

FIGURE 1
An outlined diagram of miRNAs, lncRNAs and circRNAs participated in the resistance to therapeutic agents in pancreatic cancer. Several miRNAs,
lncRNAs, and circRNAs have been shown to be associated with pancreatic cancer drug resistance via regulating apoptosis, cell cycle arrest, DNA damage
repair, cell proliferation, autophagy, epithelial-mesenchymal transition (EMT), drug efflux transporter, reactive oxygen species, glycolysis and cancer stem
cells (CSC) through regulating specific signaling pathways and target genes.

Frontiers in Cell and Developmental Biology frontiersin.org12

Wei et al. 10.3389/fcell.2023.1226639

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1226639


prospective validation studies should be implemented before they can
enter clinical practice. Also, ncRNAs can be used as targets for novel
therapeutics of PC patients. Accumulating evidences indicated that
different kinds of ncRNAs have been reported to be involved in drug
resistance of PC. As shown in Figure 1, we summarized howmiRNAs,
lncRNAs and circRNAs contribute to resistance development to
therapeutic agents and the underlying molecular mechanisms in
PC. Interestingly, drug resistance may be reversed through targeting
specific endogenous miRNAs, lncRNAs and/or circRNAs. Several
approaches could be employed to inhibit expression of dysregulated
ncRNAs, such as small interfering RNAs (siRNAs), short hairpin
RNAs (shRNAs), antagomirs, anti-oligonucleotides (ASOs),
clustered regulatory interspaced short palindromic repeats-
associated endonuclease 9 (CRISPR/Cas9)-based genome editing,
small molecule inhibitors of ncRNAs, and artificial miRNA sponges
(Lin et al., 2020; Pandya et al., 2020). The strategies which could restore
the normal levels of tumor suppressor ncRNAs involved in drug
resistance of PC include to replace or substitute these ncRNAs
through synthetic ncRNA-like molecules, for example, miRNA
mimics. However, multiple challenges for therapeutic targeting
ncRNAs remain to be faced, such as off-target effects, lack of
efficient carrier systems, immune related toxicities, tolerability and
other side effects. Progresses in ncRNAs delivery vector systems help to
increase the potential for ncRNA-based treatment. Due to the
improved circulation time and diminished recognition by the
immune system of host, nanoparticles have been shown to function
as efficient vectors for various gene therapies in PC patients, including
siRNAs and miRNAs (Kurtanich et al., 2019). Through searching the
database of http://clinicaltrials.gov, no clinical trials based on ncRNAs
therapeutics in PC were found currently. The combined therapeutic
modalities based on the manipulation of ncRNAs’ levels and
traditional treatments, i.e. chemotherapy, molecular targeted
therapy or immunotherapy, may be a promising approach to
overcome drug resistance and help to improve prognosis of
advanced PC patients. Nevertheless, a serious issue is how to select
the appropriate target molecules from a huge number of ncRNA
candidates. More importantly, clinical studies and translational studies
are also needed for conquering drug resistance in PC.
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Glossary

PC Pancreatic cancer

PDAC Pancreatic ductal adenocarcinoma

GEM Gemcitabine

ADM Adriamycin

DDP Cisplatin

5-FU 5-fluorouracil

TKI Tyrosine kinase inhibitor

EGFR Epidermal growth factor receptor

mTOR Mammalian target of rapamycin

CTLA-4 Cytotoxic T lymphocyte antigen-4

PD-1 Programmed cell death protein 1

EMT Epithelial-mesenchymal transition

CSCs Cancer stem cells

ncRNAs Noncoding RNA

lncRNA Long noncoding RNA

Nt Nucleotide

sncRNA Short ncRNAs

miRNA/miR MicroRNA

circRNA Circular RNA

snoRNA Small nucleolar RNA

piRNA PIWI interacting RNA

MIG6 Mitogen-inducible gene 6

TGF Transforming growth factor

FGF2 Fibroblast growth factor 2

FGFR1 Fibroblast growth factor receptor 1

EphA2 Erythropoietin-producing hepatocellular receptor 2

39-UTR 3′-Untranslated region

Dkk1 Dikkopf-1

sFRP2 Secreted frizzled related protein 2

PTEN Phosphatase and tensin homologue

PDCD4 Programmed cell death 4

CAFs Cancer-associated fibroblasts

PDGF Platelet-derived growth factor

MMP-3 Matrix metalloproteinase-3

CCL7 Chemokine (C-C motif) ligand 7

SHC1 Src Homology 2 Domain Containing 1

MDE Macrophage-derived exosomes

CYLD Cylindromatosis

DCK Deoxycytidine kinase

CDH1 Cadherin 1
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BOK Bcl2-related ovarian killer

TFAP2C Transcription factor activating protein 2 gamma

KLF6 Krüppel-like factor 6

SNF Sucrose nonfermentable

MDR-1 Multi-drug resistance 1

RRM1 Ribonucleotide reductase M1

SPHK1 Sphingosine kinase 1

TRAF6 Tumor necrosis factor receptor-associated factor 6

PUMA P53 upregulated modulator of apoptosis

HMGB1 High mobility group box 1

USP Ubiquitin specific peptidase

CCND1 Cyclin D1

ZEB1 Zinc finger E-box binding homeobox transcription factor 1

PCSCs CSCs of PC

TUBB3 Tubulin beta 3 class III

MOV10 Moloney leukemia virus 10

ITGB1 Integrin β1

PARP1 Poly (ADP-ribose) polymerase 1

HIF-1ɑ Hypoxia-inducible factor 1ɑ

DNA-PKcs DNA-dependent protein kinase catalytic subunit

SP Side population

PL-1 Plectin-1

USP9X Ubiquitin specific peptidase 9, X-linked

FoxO3a Forkhead transcription factor O subfamily 3a

FGFR3 Fibroblast growth factor receptor 3

ATP7A ATPase, Cu++ Transporting, Alpha Polypeptide

CLU Clusterin

GLUT1 Glucose transporter protein type 1

HOTTIP HOXA transcript at the distal tip

GSTM3TV2 Glutathione S-transferase mu 3, transcript variant 2

MALAT1 Metastasis-associated lung adenocarcinoma transcript 1

PVT1 Plasmacytoma variant translocation 1

HOTAIR HOX transcript antisense gene RNA

LAT2 L-type amino acid transporter 2

OLR1 Oxidized low-density lipoprotein receptor 1

TOP2A Topoisomerase 2-alpha

DGCR5 DiGeorge syndrome critical region gene 5

UCA1 Urothelial carcinoma-associated 1

PSC Pancreatic stellate cell

HPSC-EXO Hypoxic pancreatic stellate cells derived exosome

NHEJ Nonhomologous end joining

DSB DNA double-strand break
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ROS Reactive oxygen species

NRF2 Nuclear factor erythroid-2-related factor 2

TWF1 Twinfilin 1

HCP5 HLA complex P5

SNHG8 Small nucleolar RNA host gene 8

TRAIL Tumor necrosis factor-related apoptosis inducing ligand

DR5 Death receptor 5

EZH2 Epigenetic regulator enhancer of zeste homolog 2

CTBP1 C-terminal binding protein 1

NEAT1 Nuclear paraspeckle assembly transcript 1

PAK1 P21 activated kinase 1

MSC Mesenchymal stem cell

SNHG7 Small nucleolar RNA host gene 7

SOCS3 Suppressor of cytokine signaling 3

GAS5 Growth arrest-specific 5

DLEU2L Deleted in lymphocytic leukemia 2-like

SIRT1 Sirtuin1

LIF Leukemia inhibitory factor

ESRP1 Epithelial splicing regulatory protein 1

siRNA Small interfering RNA

shRNA Short hairpin RNA

ASOs Anti-oligonucleotides

CRISPR/Cas9 Clustered regulatory interspaced short palindromic repeats-associated endonuclease 9
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