
Interaction of calcium responsive
proteins and transcriptional
factors with the PHO regulon in
yeasts and fungi

Juan F. Martín*

Departamento de Biología Molecular, Área de Microbiología, Universidad de León, León, Spain

Phosphate and calcium ions are nutrients that play key roles in growth,
differentiation and the production of bioactive secondary metabolites in
filamentous fungi. Phosphate concentration regulates the biosynthesis of
hundreds of fungal metabolites. The central mechanisms of phosphate
transport and regulation, mediated by the master Pho4 transcriptional factor
are known, but many aspects of the control of gene expression need further
research. High ATP concentration in the cells leads to inositol pyrophosphate
molecules formation, such as IP3 and IP7, that act as phosphorylation status
reporters. Calcium ions are intracellular messengers in eukaryotic organisms and
calcium homeostasis follows elaborated patterns in response to different
nutritional and environmental factors, including cross-talking with phosphate
concentrations. A large part of the intracellular calcium is stored in vacuoles
and other organelles forming complexes with polyphosphate. The free cytosolic
calcium concentration is maintained by transport from the external medium or by
release from the store organelles through calcium permeable transient receptor
potential (TRP) ion channels. Calcium ions, particularly the free cytosolic calcium
levels, control the biosynthesis of fungal metabolites by twomechanisms, 1) direct
interaction of calcium-bound calmodulin with antibiotic synthesizing enzymes,
and 2) by the calmodulin-calcineurin signaling cascade. Control of very different
secondary metabolites, including pathogenicity determinants, are mediated by
calcium through the Crz1 factor. Several interactions between calcium
homeostasis and phosphate have been demonstrated in the last decade: 1)
The inositol pyrophosphate IP3 triggers the release of calcium ions from
internal stores into the cytosol, 2) Expression of the high affinity phosphate
transporter Pho89, a Na+/phosphate symporter, is controlled by Crz1. Also,
mutants defective in the calcium permeable TRPCa7-like of Saccharomyces
cerevisiae shown impaired expression of Pho89. This information suggests that
CrzA and Pho89 play key roles in the interaction of phosphate and calcium
regulatory pathways, 3) Finally, acidocalcisomes organelles have been found in
mycorrhiza and in somemelanin producing fungi that show similar characteristics
as protozoa calcisomes. In these organelles there is a close interaction between
orthophosphate, pyrophosphate and polyphosphate and calcium ions that are
absorbed in the polyanionic polyphosphate matrix. These advances open new
perspectives for the control of fungal metabolism.
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1 Introduction

The ability to respond to multiple environmental conditions and
different nutritional factors is critically important for the growth and
differentiation of bacteria and fungi. This requires the integration of
numerous sensing mechanisms and signaling cascades that respond to
different inputs signals. Calcium is a well-known signalingmolecule in the
metabolism of filamentous fungi and many other eukaryotic cells. The
calcium ions signaling process and its regulation has been studied in the
yeast Saccharomyces cerevisiae but there is less information in filamentous
fungi of the signaling mechanisms and their interaction with biotic and
abiotic stress conditions (Martín and Liras, 2021a). Transient receptor
potential (TRP) ion channels are non-selective calcium permeable cation
transporters that have been very well studied in animal cells but the
information in filamentous fungi is scarce (Venkatachalam and Montell,
2007; Martín and Liras, 2022b). The TRPs are related to members of the
multiple facilitator superfamily (MFS) proteins which have
12 transmembrane domains, inserted in either plasma or organelle
membranes, e.g. the Pho84 and Pho89 inorganic phosphate
transporters of the multiple facilitator superfamily. In addition to their
role in cation transport, TRP serve as cell sensors for physical and chemical
signals such as osmolarity, high temperature and a variety of chemical
substances (Clapham, 2003). Many canonical TRPs contain calmodulin
binding domains (Zhu, 2005), EF-hand motives for calcium binding
(Zurborg et al., 2007) and ankyrin repeats that appear to serve as a
bite for interaction with a variety of stimuli. The presence of calmodulin-
binding domains indicates that TRPs play an important role in the overall
regulation of calcium homeostasis (see below). Several TRP channels have
been identified in S. cerevisiae,Candida albicans and in some fungi, e.g. the
TRP1 channel in Giberella zeae (Ihara et al., 2013) or those related to
transport of intermediates or external stimuli in β-lactam antibiotic
producing fungi such as Pen V in Penicillium chrysogenum and CefP
in Acremonium chrysogenum (Martín and Liras, 2021b). The CaPhm7
gene, encoding a TRP in C. albicans, is a member of the calcium-
permeable stress-gated cation transporters (CSC) and is involved in
filamentation of this yeast, ion homeostasis, drug resistance and
pathogenicity (Jiang and Pan, 2018). The homologous gene in S.
cerevisiae, ScPhm7, has been found to be closely related with the PHO
regulonmembers (Ogawa et al., 2000). Based on the available information
it has been proposed that the phm7 genes, both in S. cerevisiae and
C. albicans, and the penV and cefP of P. chrysogenum andA. chrysogenum,
respectively, play a role in calcium ion transport, connecting the effect of
phosphate concentration with calcium homeostasis (see Section 3.3). This
suggests that in yeasts there is an important connection betweenphosphate
and calcium transport and signaling (Box 1). This hypothesis is supported
by the finding that several genes of the PHO regulon are controlled by
calcium through the calmodulin-calcineurin signaling cascade. Taking into
account the previous knowledge this article is focused on the
characterization of the interactions between calcium transport and
signaling and phosphate regulation of fungal metabolism with special
attention to the biosynthesis of bioactive secondary metabolites and the
virulence of pathogenic fungi. First, the molecular mechanisms of
phosphate control in filamentous fungi and their regulation by external
stressing factors are discussed (Section 2), the second part of the article
(Section 3) covers the molecular mechanism of calcium uptake and
signaling, and finally Section 4 revises the interaction between
phosphate and calcium regulation at the cell biology level, including a
comparison of the roles of vacuoles and acidocalcisomes in these processes.

BOX 1 Examples of cross talking between phosphate concentration
and calcium homeostasis in filamentous fungi.

1- A significant part of calcium in vacuoles, endoplasmic reticulum,
and other organelles is stored forming complex with
polyphosphate (Bootman et al., 2001; Martín and Liras, 2021a).

2- Inhibition of the Aspergillus fumigatus calcineurin activity increases
expression of six putative phosphate transport genes (Silva-Ferrieiro
et al., 2007).

3- Mutants of Aspergillus fumigatus defective in the calcineurin
catalytic subunit A are impaired in phosphate transport. This
effect is reversed by addition of high phosphate concentration
(Silva-Ferreira et al., 2007).

4- The phosphate/sodium symporter Pho89 is controlled by the CrzA
transcriptional regulator that governs calciummetabolism (Serrano
et al., 2002; Serra-Cardona et al., 2014).

5- The transient receptor potential calciumchannel CaPhm7ofCandida
albicans, homologous of the ScPhm7 in Saccharomyces cerevisiae,
controls expression of the Pho89 symporter (Jiang and Pan, 2018).

6- High intracelullar ATP concentration iresults in the formation of
inositol polyphosphate derivatives IP3, IP7 and higher members of
this family. IP3 determines the release of calcium from internal
stores to the cytosol.

7- Some fungi contain acidocalcisomes organelles that accumulate
large amounts of orthophosphate, pyrophosphate and
polyphosphate combined with calcium and monovalent cations.
Acidocalcisome-like vacuoles are present also in Saccharomyces
cerevisiae (Seufferheld et al., 2011; Kikuchi et al., 2014; Vila et al.,
2022).

8- Phosphorylation of the IP3R enhances calcium releasemediated by
IP3 (Betzenhauser, and Yule, 2010).

9-The activity of calcium/calmodulin-dependent protein kinases is
modulated by protein phosphorylation in response to the intracellular
calcium concentration (Tamuli et al., 2011; Jiang et al., 2023).

2 Phosphate control of fungal
metabolite biosynthesis

Phosphorous in the form of inorganic (Pi) and organic
phosphate is an essential nutrient for all living being.
Phosphate is a cellular component of nucleic acids, ATP,
cyclic AMP (cAMP), and other nucleotides, highly
phosphorylated inositol-derivatives and phospholipids. It plays
an important role in the oxidative phosphorylation and
respiratory chains. Polyphosphate is a phosphate and energy
nutrient reserve and polyphosphate synthesizing and
solubilizing enzyme systems exerted a relevant function in the
growth of mycorrhiza and mycorrhiza-associated plants (Das
et al., 2022). Penicillium oxalicum has been reported to be very
efficient in the release of inorganic phosphate from complex
phosphate salts in soil, so called rock phosphate, and this fungus
may be used as biofertilizer (Wang et al., 2021). In addition,
phosphate participates in numerous regulatory and signaling
mechanisms mediated by phosphorylation/dephosphorylation
of proteins.

Phosphate regulates the biosynthesis of hundreds of antibiotics
in bacteria and filamentous fungi. Early studies in filamentous
fungi (Martín, 1977; Martín and Demain, 1980) showed that
phosphate inhibits the biosynthesis of important bioactive
metabolites. One example is the phosphate inhibition of ergot
alkaloids in Claviceps purpurea that is exerted at the dimethyl-
allyltryptophan synthesis level. The first step of the alkaloid
pathway (Rao and Gupta, 1975). Later, it was established that
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the penicillin biosynthesis in P. chrysogenum is also regulated by the
phosphate concentration in the culture medium in concert with
carbon catabolite regulation (Martín et al., 1999). The concerted
action of glucose on phosphate regulation of fungal metabolism is
supported by the finding that the phosphate sensing and uptake in S.
cerevisiae requires the presence of glucose in the culture medium
even though this sugar is sensed and transported by systems
different from the phosphate transporters (Giots et al., 2003); the
interaction of glucose sensing and transport with phosphate uptake
is an interesting example of coordination between nutrients
assimilation in benefit of fungal metabolism, although the precise
mechanism of this interaction needs to be further studied. However,
in spite of the relevance of phosphate in bioactive secondary
metabolites production there was very little progress until the
end of the 20th century. Many of these metabolites are secreted
and are known to be associated with the formation of sclerotia and
sexual and asexual spores (Lim and Keller, 2014; Mulinti et al., 2014;
Calvo and Cary, 2015) but there is little information about whether
the biosynthesis of most of these metabolites is regulated by
phosphate at the transcriptional, translational or posttranslational
level. Parallel studies in bacteria achieved significant progress on the
characterization of mechanisms of control of secondary metabolites
biosynthesis by phosphate in Streptomyces and related
actinobacteria (Sola-Landa et al., 2003; Martín, 2004).

2.1 The PHO regulon in fungi

In fungi the PHO regulon includes genes that respond to
phosphate starvation or sufficiency; initially it was reported that
the PHO regulon in S. cerevisiae is formed by 22 genes, nine of which
are regulatory genes (Ogawa et al., 2000). Similarly, nine genes
homologous to those of the yeasts PHO regulon were identified later
in the genome of Aspergillus fumigatus (Serra-Cardona et al., 2014),
however, recent studies have reported a larger number of genes
controlled by phosphate in the genome of some fungi (Tomar and
Sinha, 2014). A study of Fusarium graminearum phosphatome
identified up to 82 phosphatase genes (Yun et al., 2015). Eleven
of these genes were found to be essential but the remaining
71 phosphatase genes have also impact in fungal development.
These phosphatases were shown to be involved in fungal growth
and differentiation, in the biosynthesis of secondary metabolites,
pathogenesis and virulence.

The proteins encoded by the PHO regulon genes are located in
the plasma membrane, the periplasmic space, vacuoles,
mitochondria or the cytosol. Several genes were found to encode
proteins for scavenging phosphate from the extracellular medium,
for polyphosphate hydrolysis and transport across vacuole or
mitochondria membrane systems (Persson et al., 2003).
Phosphate transport and metabolism are important factors in
fungal virulence and pathogenesis. Mutants of Cryptococcus
neoformans defective in phosphate acquisition and storage
showed altered virulence and pathogenicity associated with the
production of bioactive metabolites (Kretschmer et al., 2014).

Particularly relevant was the finding in fungi of genes encoding
proteins for the transport of inorganic phosphate and regulatory
genes that control inorganic phosphate homeostasis. Two of the
PHO regulon proteins, encoded by pho4 and pho2, are master

regulators that control expression of many pho genes. The S.
cerevisiae Pho4 is a 312 amino acids transcriptional regulator
that belongs to the basic helix-loop-helix (bHlH) family (Persson
et al., 2003). Pho4 is a dimer that works in collaboration with
Pho2 controlling the transcription of the PHO regulon genes and its
action is modulated by phosphorylation at serine-threonine
residues, that is catalysed by Pho85/Pho80 cyclin-kinase complex
(see below) (Komeili, 1999; Secco et al., 2012a; Tomar and Sinha,
2014). Initial studies on the control of gene expression by this
transcriptional regulator was made by studying the expression of
pho5, a gene that encodes the yeast secreted acid phosphatase, an
easy to measure reporter of the Pho4-mediated regulon genes. Two
activating sequences Uasp1 and Uasp2 that bind Pho4 were found in
the region upstream of the pho5 promoter (Rudolph and Hinnen,
1987; Ogawa et al., 2000). The binding sequences of the Pho4 protein
are CACGTG or CACGTT, the Uasp2 sequence is protected by the
nucleosome structure and therefore only the Uasp1 sequence is
accessible unless the chromatin is remodelled by different protein
modifications including acetylation/deacetylation or
phosphorylation (Steger et al., 2003). Pho4 binding sequences
have been found in almost all the promoters of the PHO regulon
genes (Ogawa et al., 2000). Pho4 plays also an important role in the
control of pathogenicity and virulence of pathogenic fungi. Studies
using a C. neoformans mutant defective in Pho4 showed that this
regulatory protein is required for phosphate uptake, growth and C.
neoformans dissemination into the brain (Lev et al., 2017; Bhallan
et al., 2022).

2.2 Inositol pyrophosphates signaling
molecules as reporters in phosphate
homeostasis

The mechanism by which fungal cells sense inorganic phosphate
is poorly characterized. Inositol pyrophosphates are a family of
metabolic messengers characterized by the presence of one or more
pyrophosphate (PPi) groups attached to a mio-inositol ring (Wera
et al., 2001). The presence of energy rich phosphoanhydre bonds in
these molecules is one of the characteristic features that explain their
important role in regulation of phosphate metabolism. The
intracellular messenger IP3 (1,4,5 inositol-triphosphate) is formed
by phospholipase C that cleaves phosphatidyl-inositol-
4,5 diphosphate yielding IP3 and diacylglycerol. In yeasts, higher
members of this family e.g.mio-inositolheptakisphosphate (IP7) are
formed by sequential phosphorylation of IP3 by pyrophosphate
kinases and higher members that contain more phosphate groups
than carbon atoms reflects the energetic and phosphorylation status
of the cell. Particularly, the ATP concentration required for the
conversion of mio-inositol hexakisphosphate (IP6) to IP7 since the
IP6 kinase has a Km for ATP in the millimolar range (Azevedo and
Saiardi, 2017).

In this respect an important finding was the observation that the
intracellular concentration of inositol pyrophosphate changes in
response to the phosphate concentration in the medium. Proteins
involved in cellular reactions of phosphate metabolism, e.g.
phosphate transporters, phosphate signaling proteins or
polyphosphate polymerases contain a so called SPX domain that
interact with inositol pyrophosphates signaling molecules (Secco
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et al., 2012b). These domains consist of 135–380 amino acid residues
and are located in the amino terminal region of the corresponding
protein. Initial studies showed that the SPX domain serves as substrate
for the interaction of inositol pyrophosphate signaling molecules in
plants and animals. In S. cerevisiae the pho90 and pho87 phosphate
transporters interact with the SPL2 protein at its SPX domain and this
decreases the phosphate uptake (Wykoff et al., 2007; Hürliman et al.,
2009). Three SPX domains of different organisms, including S.
cerevisiae (Hothorn et al., 2009) were crystalized, providing evidence
of the SPX surface that interacts with inositol pyrophosphate (Samyn
et al., 2012; Wild et al., 2016). Furthermore, IP7 and higher inositol
pyrophosphates act as donors of orthophosphate in protein
modifications catalysed by pyrophosphorylases that result in the
introduction of an additional phosphate group in the serine
phosphate residues in proteins to form serine pyrophosphate units.
Therefore, increments in the ATP levels of the cell raises the
intracellular level of IP7. In summary, inositol pyrophosphate
molecules communicate the inorganic phosphate extracellular level
to the SPX domain of the phosphate transporters and other proteins
involved in phosphate metabolism, regulating their activity.

2.3 Mechanisms of phosphate sensing and
transport in fungi

Phosphate availability is extremely important to fungi for growth.
Inorganic phosphate is taken up in yeasts and filamentous fungi by the
high affinity transporters systems encoded by pho84 and pho89 (Bun-
ya et al., 1991; Martínez and Persson, 1998; Persson et al., 1999) and
low affinity transporters encoded by pho87 and pho90 (Bun-ya et al.,
1996; Ghillebert et al., 2011; Wykoff and O´Shea, 2001). When the
phosphate concentration in the medium approaches the Km of the
low affinity system then the cells trigger the formation of high affinity
transporters. This provides a time lapse for the cell to survive using the
phosphate low affinity transport system until the high affinity
transport is fully induced. The importance of phosphate
availability in fungal nutrition is highlighted by the presence of
five phosphate transport genes pho84, pho87, pho89, pho90 and
pho91 in S. cerevisiae; only quintuple mutants defective in the five
transporters are unable to grow, indicating that all of them are active
phosphate transporters (Wykoff and O’Shea, 2001).

Analysis of the hydrophobicity of the encoded proteins in yeast
showed that both Pho84 and Pho89, belong to the multiple facilitator
superfamily (MFS transporters) and have 587 and 574 amino acids
respectively, have 12 transmembrane spanning domains with an
intervening hydrophilic loop of 74 amino acids between the
transmembrane domains TMS6 and TMS7 in Pho84, and a loop of
110 amino acids located between TMS7 and TMS8 in Pho89 (Bottger
and Petterson, 2002; Persson et al., 2003). The MFS proteins include
many transporters for several primary or secondary metabolites that are
involved in communication between cells in pure cultures and/or
between different species (Martín et al., 2005). Pho84 and Pho89 are
symporters that introduce inorganic phosphate and either protons or
Na+, respectively. The S. cerevisiae Pho89 high affinity symporter is
functionally similar to other sodium transporters in mammals and
Neurospora crassa (Bottger and Petersson, 2002). The similarity between
Pho84 and Pho89 sequences is low (15% amino acids identity) and there
are important differences between them. Pho84 has an optimal pH of

4.5 while the optimal pH for Pho89 is 9.5 (Persson et al., 2003). These
transporters are under strict phosphate control and are only derepressed
at low phosphate concentration. In addition to its control by phosphate
starvation, expression of pho84 and pho89 increases at alkaline pH,
particularly the expression of pho89 is enhanced by alkaline pH even in
mutants defective in the transcriptional activator Pho4 (Lamb et al.,
2001; Serrano et al., 2002). The evolutive acquisition of high affinity and
low affinity transport systems appears to confer metabolic advantage to
yeasts and filamentous fungi (Levy et al., 2011) as it is also well
documented in bacteria (Martín and Liras, 2021a).

2.4 Transport related nutrient effectors:
Pho84

Transport related nutrient effectors (named transfectors) have
been discovered in S. cerevisiae and in several other eukaryotic cells.
These proteins serve as nutrient sensors and are also involved in the
nutrient transport mechanisms. In S. cerevisiae Pho84 is a
transfector that is involved in phosphate sensing and transport,
and as effector rapidly activates the protein kinase A pathway in
concert with glucose (Giots et al., 2003). Arsenate, is a non-
metabolizable structural analogue of phosphate that inhibits
growth of fungi suggesting that arsenate binds to phosphate
receptors. Mutants defective in the high affinity Pho84 transporter
are unsensitive to arsenate suggesting that Pho4 is involved in both
phosphate sensing and transport into the fungal cells (Giots et al.,
2003; Wykoff et al., 2007; Popova et al., 2010). Phosphate containing
molecules that interact with the Pho84 transporter can trigger the
phosphate signaling without been transported, as is the case with
glycerol-3-phosphate (Popova et al., 2010). These compounds behave
as phosphate agonists of Pho84 and, therefore, affect the signaling
activity of phosphate. In summary, this information indicates that
agonists exert their function by interacting with the Pho84 phosphate
binding site but do not require a complete transport into the cell.

2.5 Characteristics of the Pho89 phosphate
transporter: evidence for interaction of
phosphate and calcium metabolism

Remarkably, the Pho89 symporter is under the control of a
calcium TRP (Jiang and Pan, 2018) providing evidence of a close
interaction between calcium transport and phosphate regulation. The
Pho89 phosphate transporter in yeasts is a high affinity transporter
functionally similar to the Pit transporter in bacteria (Martín and
Liras, 2021) and to the mammalian Na+ P3, and is conserved from
bacteria to vertebrates (Werner and Kinne, 2001). This protein has
10–12 transmembrane domains, depending on the species, and a large
hydrophilic loop between regions TMS7 and TMS8 that has been
shown to be located in the cytosolic side of the cell membrane (Chien
et al., 1997; Persson et al., 1999). The Pho89 protein of S. cerevisiae has
a Km for Pi of between 0.4 and 0.6 μM. This transporter is active at
alkaline pH but lacks affinity for the substrate at pH below 4.5 in
contrast to the proton dependent Pho84 that is very active at a wide
pH range (Martínez and Persson, 1998).

In S. cerevisiae the Pho89 encoding gene is governed by a Crz
zinc finger type transcriptional factor that is activated by the
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calcium-calcineurin system; accordingly, the pho89 gene is no
expressed in crz1 mutants (Serrano et al., 2002). Notably, in S.
cerevisiae expression of pho89 transporter gene is controlled by
Crz1 transcriptional activator of calcium metabolism genes under
conditions of alkaline pH providing evidence for another interaction
between phosphate metabolism and calcium homeostasis (Serra-
Cardona et al., 2014, Box 1). These findings agree with recent
observations in C. albicans, in which the calcium permeable
stress gated CaPhm7 affects the expression of pho89 (Jiang and
Pan, 2018). These results suggests that Pho89 has a clearly distinct
role than Pho84 and connects phosphate transport with calcium
metabolism (Secco et al., 2012a).

2.6 Signaling molecular mechanism and
circuits of control regulated by the
Pho4 transcriptional factor

The mechanisms of regulation of phosphate transport and
metabolism by the master transcriptional regulator Pho4 are well
documented. As indicated above the activation or inactivation of the
pho genes takes place by phosphorylation or dephosphorylation of the
Pho4 regulator. In phosphate sufficient conditions Pho4 is
phosphorylated by protein kinases and then excluded from the
nucleus to the cytosol, therefore, the PHO regulon genes remain

unexpressed (Secco et al., 2012a). In phosphate depleted conditions
Pho4 is unphosphorylated, binds to a nuclear import receptor and is
introduced in the nucleus where attach to response elements (PRE) and
activates different genes of the PHO regulon, including pho84 and pho89
(Mouillon and Persson, 2006; Tomar and Sinha, 2014). The
phosphorylation of Pho4 is exerted by the cyclin-dependent kinase
(CDK) complex Pho80-Pho85. This CDK complex phosphorylates
serine/threonine residues in different sites of the Pho4 transcriptional
factor and this causes distinct cellular localization (Komeili, 1999; Secco
et al., 2012a; Secco et al., 2012b). The activity of the cyclin-dependent
kinase complex CDK is controlled by Pho81, which is a CDK inhibitor.
Under phosphate limiting condition the cyclin-dependent protein kinase
complex is inhibited, resulting in a unphosphorylated active Pho4 and
thus the genes of the PHO regulon are activated; vice versa, under
phosphate sufficiency conditions the Pho81 activity is null and the
cyclin-dependent protein kinase is active, resulting in a phosphorylated
Pho4 that remains in the cytosol, and therefore the PHO regulon genes
are not expressed (Schneider et al., 1994; O´Neill et al., 1996) (Figure 1).

In addition to phosphorylation by the CDK complex the action of
Pho4 is affected by trans-acting factor; they include the cooperation
with the Pho2 homeodomain (Ogawa et al., 2000; Zhou and O´Shea,
2011). According to these authors Pho2 bind to a sequence distant
15 bp from the Pho4 binding site. When attached to this position
Pho2 exert an activation of Pho4 binding to its target DNA.
Furthermore, the interaction of Pho4 with its target sequence is

FIGURE 1
Skeme of the molecular mechanism of regulation of fungal metabolism by the calcium-calmodulin-calcineurin pathway. Numerous stressing
signals interact with GPCRs receptors in the cell membrane (circles red, green, purple, orange). TheGPCR bind to the phospholypase C (small blue circles)
and this protein forms IP3. The binding of IP3 to its receptor in the vacuole (blue clear circle) membrane triggers the release of calcium to the cytosol. Free
cytosolic calcium binds to calmodulin and the calcium-calmodulin complex activates the calcineurin phosphatase activity. The phosphatase activity
removes phosphate from the phosphorylated Crz1 transcriptional factor and the unphosphorylated Crz1 protein enters into the nucleus (pink circle) and
activates expression of the high affinity phosphate pho89 transport gene and of numerous genes regulated by calcium.
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controlled by the nucleosome in that DNA region. In S. cerevisiae
nucleosome depleted regions there is a competition with the
Cbf1 factor that recognize the same DNA sequence as Pho4, the
relative abundance in the nucleus of these two proteins, Pho4 and
ScBf1, determines the occupancy of the Pho4 binding site in the DNA
and therefore the expression of the PHO regulon genes (Zhou and O´
Shea, 2011). Detailed studies of the genes encoding enzymes of the
PHO regulon have been performed only in a few model filamentous
fungi, for example N. crassa (Tomar and Sinha, 2014). The core of the
PHO regulon enzymes is conserved in the studied yeasts and most
filamentous fungi but there are significant differences among them. The
designation of functionally similar genes is sometimes different, e.g. the
core PHO regulon genes in N. crassa are named nuc-1, preg, pgov and
nuc-2 that correspond to the equivalent pho4, pho80, pho85 and pho81
genes of S. cerevisiae, respectively (Peleg et al., 1996; Gras et al., 2007;
Tomar and Sinha, 2014). Although the core components of the S.
cerevisiae PHO regulon are conserved inN. crassa it is unclear whether
additional components occur in other filamentous fungi.

3 Calcium in fungi metabolism, an
overview

Calcium is an essential nutrient that plays very important roles in
fungal metabolism, affecting growth and differentiation (Tisi et al.,
2016). Calcium ions serve as intracellular messengers common to all
eukaryotic cells. Several extracellular signals, including divalent cations,
lithium, ethanol, caffeine, some nitrogen sources, stressing pH and
temperatures and antifungal drugs increase the intracellular calcium
concentration (Thewes, 2014).

Initial studies on the regulation of calcium metabolism were
performed in S. cerevisiae and N. crassa. At the end of the last
century research work on the model filamentous fungi N. crassa,
showed that fungi establish a calcium gradient in the hyphae that is
important for apical fungal growth and development (Jackson and
Heath, 1993; Kothe and Free, 1998), and for the secretion of secondary
metabolites (Prokisch et al., 1997). In addition, calcium affects the
production of bioactive secondary metabolites in many filamentous
fungi. One example is the control by calcium of the production of
penicillin and the expression of the penicillin biosynthetic genes
(Domínguez-Santos et al., 2017). Vacuoles, peroxisomes and
related microbodies involved in penicillin biosynthesis and
secretion are concentrated in a hyphal region determined by the
calcium gradient (reviewed by Martín and Liras, 2022b).

3.1 Tolerance to calcium stress: the neuronal
calcium sensor

Calcium is taken up by the cells using different P-type membrane
calcium translocases and calcium ATPase pumps (reviewed by Espeso,
2016). Excessive accumulation of calcium in the cells creates a calcium
stress problem since high intracellular concentration of calcium
interfers with nucleotide, polyphosphate and other macromolecules
function. To avoid the calcium toxicity fungi and other eukaryotic cells
have a system for calcium tolerance/sensitivity, the neuronal-calcium
sensor (NCS). Transient increase in calcium causes activation of various
Ca2+ binding proteins, including the neuronal calcium sensor-1 (NCS-

1). Members of the NCS family contain an N-terminal myristoylation
domain and four Ca2+ binding EF-hand domains (Burgoyne et al., 2004;
Burgoyne, 2007). The NCSs are small proteins evolutively conserved
across the species, and homologue proteins have been identified in
yeast, filamentous fungi and mammals among other living beings
(Sánchez-Gracia et al., 2010; Tamuli et al., 2011) In S. cerevisiae the
NCS-1 protein is essential for growth and it is involved in the regulation
of the activity and cellular location of the phosphatidyl-inositol-4-
kinase (Huttner et al., 2003; Strahl et al., 2007). A knock-out mutant of
N. crassa NCS-1 shows increased sensitivity to high calcium
concentration and UV light (Tamuli et al., 2011) suggesting that
NCS-1 is involved in calcium tolerance in this fungus. Similar
increase sensitivity to calcium concentration has been observed in a
NCS mutant of Magnaporthe grisea (Saitoh et al., 2003); however, the
NCS null mutant ofA. fumigatus does not show increased sensitivity to
calcium concentration, indicating that the behaviour of NCS in A.
fumigatus is different from that of other fungi (Mota et al., 2008). The
NCS-1 homologous ofA. fumigatus (NCS-A) is not essential for growth
but plays an important role in sterols distribution in membrane
domains and polar growth (Mota et al., 2008). The mechanism of
NCS-mediated stress tolerance has been studied in N. crassa (Gohain
and Tamuli, 2019). Increasing calcium levels enhances expression of the
NCS-1 encoding gene. Importantly, these authors observed that the
expression of the NCS-1 encoding gene is controlled by the calcineurin
responsive zinc finger Crz1 transcriptional regulator (see below)
indicating that there is a clear regulation of the NCS-1 protein by
the calmodulin-calcineurin signaling pathway.

3.2 The calcium sensor calmodulin and its
interaction with proteins

Intracellular calcium binds to calmodulin, a protein encoded by
the cmd1 gene (Cyert, 2001). Calmodulin is a small protein, 17 kDa,
that is highly conserved in all eukaryotic organisms, and binds Ca2+

ions with high affinity (Kd 10−6 to 10−5 M). In S. cerevisiae it contains
four amino acid motives, named EF-hands for calcium binding,
although only three of the EF-hands in the calmodulin molecule
are functional, the fourth lacks the Ca2+ binding loop (Kraus and
Heitman, 2003). These motives consist in 12 amino acid loops that
connect alpha helices and contain glutamic acid and aspartic acid
residues that chelate the Ca2+ ion (Davis et al., 1986; Cyert, 2001).

Calmodulin, usually activated by Ca2+ acts by at least three
different mechanisms: 1) interacting directly with proteins involved
in the biosynthesis of bioactive metabolites, differentiation and
pathogenicity, 2) Activating the calcium-calmodulin complex a
class of protein kinases named calcium/calmodulin-dependent
protein kinases, and 3) binding to the protein calcineurin what
triggers the calmodulin-calcineurin cascade that regulates numerous
genes in the cell (Figure 1).

3.3 Direct interaction of calmodulin with
secondary metabolites biosynthetic
enzymes

Calmodulin interacts directly with many proteins in fungal cells.
In the calcium-dependent processes calmodulin binds calcium
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through the EF hands what results in a change of calmodulin
configuration that modulates its interaction with other proteins.

The direct interaction of calmodulin with secondary metabolites
synthesizing enzymes has been studied in the insect pathogen
Beauveria bassiana; this fungus produces several secondary
metabolites, including compounds derived from the
phenylpropanoid pathway and non-ribosomal peptides among
others. The phenylpropanoid pathway starts from phenylalanine
that is converted to cinnamic acid by the phenylalanine ammonia
lyase (PAL) or a related tyrosine ammonia lyase (TAL) that forms
coumaric acid (Figure 2A) (Martín and Liras, 2022a). Calmodulin
interacts directly with the PAL enzyme of B. bassiana and inhibits its
activity (Kim et al., 2015). Other interesting example is the
formation of beauvericin, a product of B. bassiana with
antimicrobial, antiviral and insecticidal activities. One structural
component of beauvericin is 2-hydroxyisovaleric acid that is formed
from 2-ketoisovaleric acid by the 2-ketoisovaleric acid reductase.
Then a 325 kDa non-ribosomal peptide synthetase (NRPS) forms
beauvericin (Figure 2B). Calmodulin binds the 2-ketoisovalerate
reductase in vivo and in vitro and inhibits the biosynthesis of this
precursor and of the final product, beauvericin (Kim et al., 2016).
Salt stress and light inhibit the biosynthesis of 2-ketoisovalerate and
beauvericin and this inhibition is reversed by calmodulin inhibitors
indicating that the effect of these stressing factors is mediated by the
interaction of calmodulin with the 2-ketoisovalerate reductase. In
addition, calmodulin interact directly with the beauvericin
synthetase. Calmodulin binding sequences have been found in
the PAL, the 2-ketoisovalerate reductase and the beauvericin
synthetase of B. bassiana (Figure 2) and similar sequences occur
in many calmodulin binding proteins (Kim and Sung, 2018). The

calmodulin binding domain consist in stretches of 16–35 amino
acids that form a basic amphipathic α-helix (O´Day, 2003). The
beauvericin synthetase contains a calmodulin-binding domain in
the C-terminal region; binding of calmodulin to this region was
confirmed by experiments using a synthetic binding domain and the
formation of a complex was demonstrated by non-denaturing
polyacrylamide gel electrophoresis (Kim and Sung, 2018).
Formation of this complex takes place in presence of calcium
ions but not in their absence. The direct interaction of
calmodulin with enzymes involved in the biosynthesis of
bioactive metabolites is of great interest although much more
research needs to be done to advance in this field.

3.4 Calcium and calmodulin-dependent
protein kinases

Very small increases in cytosolic calcium content triggers the
rapid formation of several protein kinases, including the calcium/
calmodulin-dependent protein kinases (named CamKs). These
enzymes are serine/threonine protein kinases that are involved in
distinct mechanisms of control of calcium homeostasis in eukaryotic
cells. Most of these calcium/calmodulin dependent protein kinases
have been characterized in mammals but there is little information
of this group of proteins in filamentous fungi (Tamuli et al., 2011).
Studies on the structure of these proteins indicate that they contain
an amino terminal protein kinase domain linked to an
autoinhibitory domain that overlaps with the calmodulin-binding
domain (Hook and Means, 2001). These enzymes show an
elaborated mode of action: the autoinhibitory domain binds to

FIGURE 2
Calcium control of secondary metabolites by direct interaction of calmodulin with secondary metabolites synthesizing enzymes. (A) Regulation by
calcium of the phenylpropanoid pathway. The calcium-calmodulin complex (red circles) binds and inactivate the phenylalanine ammonia lyase (PAL), first
enzyme of the phenylpropanoid pathway. This inactivation blocks the pathway and the formation of secondary metabolites derived from it, as flavonoids
andmelanins. (B) Skeme of biosynthesis of beauvericin in Beauveria bassiana. The calcium-calmodulin complex (red circles) binds and inactivate: 1)
the 2-ketoisovalerate reductase converting 2-ketoisovaleric acid in D-hydroxyisovalerate and 2) the non-ribosomal peptide synthetase of Beauveria
bassiana that condenses three units of L-methyl-phenylalanine-D-hydroxyisovalerate depsipeptide to form beauvericin.
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the catalytic centre and maintains the protein kinase in an inactive
state until calcium and calmodulin bind to the calmodulin binding
site and, therefore, activate the protein kinase activity. These
calcium/calmodulin protein kinases differ in their range of
substrate specificity (Tamuli et al., 2011). Protein kinases of this
class were found in S. cerevisiae, Schizosaccharomyces pombe
(Melcher and Thorner, 1996; Rasmussen, 2000) and also in
several filamentous fungi (Table 1). In N. crassa two different
CamKs protein kinases have been identified that regulate the
circadian clock (Yang et al., 2001) and sexual development of
ascospores (Tamuli et al., 2011). Recently, three calmodulin-
dependent protein kinases have been studied in Alternaria
alternata, a fungus that causes pears infection. Gene disruption
studies indicated that mutation of one of the kinases gene does not
affect the overall growth but reduces hyphal differentiation,
sporulation and melanin formation (Jiang et al., 2023).
Expression of the three kinases is intense during the infection
process; in addition inhibition of CamKs activity supress the
infection process indicating that these kinases play key roles in
pathogenicity. Some of these enzymes are also important in the
development of invasion structures in pathogenic fungi. In C.
gloeosporioides an inhibition of the CamKs delays spore
germination and formation of the appressorium. Treatment of C.
gloeosporioides with inhibitors of these protein kinases reduces also
the formation of melanin associated with the penetration of the
appressorium during infection of the hosts (Kim et al., 1998). The
available information suggests that there are different roles played by
these calcium/calmodulin protein kinases in fungi. In summary,
phosphorylation of proteins by these calcium calmodulin-

dependent protein kinases provides a novel example of
interaction between calcium homeostasis and phosphate
regulation (Box 1).

3.5 The calmodulin-calcineurin signaling
cascade

Fungi sense different nutrients in the medium and transduce
the signal by cascades that produce adequate responses in the cell,
some of them mediated by the calmodulin-calcineurin pathway
(Martín et al., 2019). In contrast with the little information
available on regulation of fungal metabolites by direct
interaction of calmodulin with the antibiotic synthetases, the
molecular mechanism of calcineurin-mediated regulation has
received much attention in several fungi. Calcineurin is a
heterodimeric protein phosphatase that consist in a catalytic
subunit CnA and a regulatory subunit CnB. The catalytic
subunit CnA contains the phosphatase active center and an
associate regulatory region which are separated by a small
amino acid stretch. This regulatory region serves to link
together the CnA and CnB subunits and, in addition, contains
domains for interaction with calmodulin and for self-inhibition
(Klee et al., 1998). Calcineurin is the target of the
immunosuppressants cyclosporin and FK506 (tachrolimus) and
these compounds have been extensively used in research to block
the activity of calcineurin in vivo. The calcineurin in S. cerevisiae
regulates expression of numerous genes through the
transcriptional factor Crz1 (calcineurin responsive zinc finger).

TABLE 1 Documented examples of calcium/calmodulin-dependent protein kinases in fungi.

Fungi/yeast Strain relevance in infection/Pathogenicity and biosynthesis of bioactive
metabolites

References

Saccharomyces cerevisiae Model budding yeast Melcher and Thorner (1996)

Colletotrichum
gloeosporioides

Plant infection, appressorium development, spore germination Kim et al. (1998)

Magnaporthe grisea Rice blast fungus. Appressorium development, spore germination Lee and Lee (1999)

Schizosaccharomyces pombe Model of fision yeast Rasmussen (2000)

Aspergillus nidulans Model filamentous fungus. Production of mycotoxins (sterigmatocystin) and penicillin G Joseph and Means (2000)

Neurospora crassa Model filamentous fungus. Ascospores formation Zelter et al. (2004); Kumar and Tamuli
(2014)

Sporothrix schenckii Producer of sporotrichosis in humans. Melanin production Valle-Aviles et al. (2007)

Colletotrichum falcatum Plant infection, appressorium development, spore germination Karunakaran et al. (2006)

Phyllosticta musarum Freckle disease of banana Wang et al. (2008)

Magnaporthe oryzae Rice plant infection, appressorium development, spore germination Liu et al. (2009)

Setosphaeria turcica Causal agent of northern corn leaf blight in maize Wu et al. (2015)

Arthrobotrys oligosporus Nematode-trapping fungus Zhen et al. (2019)

Pseudopeziza medicaginis Fungal pathogen of alfalfa lives Ma et al. (2020)

Alternaria alternata Plant pears infection. Melanine production Jiang et al. (2023)

Puccinia striiformis It causes stripe rust on wheat Jiao et al. (2017)

Calcium/calmodulin dependent protein kinases occurs in sequenced genomes of many other fungi.
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For example, it regulates cell wall biosynthesis, ion homeostasis,
vesicles traffic and protein degradation (Yoshimoto et al., 2002).

The calmodulin-calcineurin signaling pathway in filamentous
fungi and yeasts is triggered by external stressing factors that are
recognized at the membrane level by G protein couple receptors
(GPCR) (Krishnan et al., 2012; Martín et al., 2019). Some
phospholipases, particularly phospholipase C and the secretory
phospholipase La2 (SPLa2) exert important roles in calcium
homeostasis (Barman and Tamuli, 2015). In mammals, the GPCRs
activate the membrane phospholipase C that forms inositol-
1,4,5 triphosphate (IP3, so-called calcium releasing factor); this
factor interacts with specific receptors resulting in cytosolic
accumulation of Ca2+. Interaction of IP3 with the IP3 receptor
(IP3R) changes the configuration of this receptor opening calcium
channels (Prole and Taylor, 2011, 2019; Taylor and Machaca, 2019);
as a result, calcium is released from the endoplasmic reticulum and is
redistributed to the cytosol and different organelles. The IP3 receptors
of mammals are phosphorylated by the cAMP-dependent protein
kinase A (Taylor, 2017). This phosphorylation of IP3R is another
example of the interaction of phosphate modification of proteins in
calcium homeostasis. Phosphorylation of the IP3 receptors in humans
enhance the IP3-mediated calcium release (Betzenhauser et al., 2010;
Taylor, 2017) (Box 1). The IP3 receptor contain an ATP-binding site
and it has been shown that ATP regulates IP3-mediated calcium
release. In addition to ATP other adenine nucleotides and also GTP
appears to exert a regulatory function on IP3R affinity, although the
selectivity of the nucleotide binding is still unclear.

3.5.1 IP3 receptors in eukaryotes: do IP3 receptors
exist in fungi?

IP3 receptors are expressed in most animal cells and protozoa
(Prole and Taylor, 2011). This type of receptors has been described
in several insects following the initial identification in Drosophila
melanogaster (Yoshikawa et al., 1992). The IP3R of insects has
about 60% identity to those of mammals suggesting that they are
relatively well conserved (Toprak et al., 2021). Enzymes involved in
the biosynthesis and turnover of IP3 have been found in
endoparasites of the Apicomplexa group; however, there is no
clear evidence of the presence of canonical IP3R in these parasites
and has been suggested that they may harbour a primitive non-
canonical type of IP3 receptor (Garcia et al., 2017). A similar non-
canonical IP3R may occur in filamentous fungi, since the
biosynthesis of IP3 and other enzymes related to
IP3 metabolism occurs in fungi (see Section 2.2); however,
additional research is needed to clarify this hypothesis.

The increase of intracellular calcium is sensed by calmodulin
which upon calcium binding interacts with the calcineurin
activating its phosphatase activity, this start the calmodulin-
calcineurin cascade and results in the dephosphorylation of CrzA
(Crz1) that is then transported to the nucleus by a nuclear
membrane import receptor (Figure 1).

The fungal calcineurin is highly similar to the homologous
phosphatase in animal cells, which plays a very important role in
their metabolism. Pioneer studies in human cells indicated that
calcineurin exert its function by dephosphorylating the nuclear
factor of activating T cells (NFAT) what results in introduction
of the dephosphorylated NFAT to the nucleus and subsequent
activation of the calcineurin-dependent genes (Crabtree, 2001). A

similar mechanism was found in filamentous fungi involving the
CrzA transcriptional factor.

3.6 The calcineurin role in the calcium
signaling pathway

In fungi calcineurin works through regulation of different
transcriptional factors, of which the best known is Crz1 in S.
cerevisiae, named CrzA in some filamentous fungi (Stathopoulos
and Cyert, 1997). Crz1 contains a C2H2 zinc finger motif that binds
to calcineurin-dependent regulatory elements (CDRE) (Fedotova
et al., 2017; Gohain and Tamuli, 2019). The nuclear concentration of
CrzA changes in a pulsatile mode rather thanmaintaining a constant
level. This means that the CrzA-mediated calcineurin signaling is
modulated by the frequency, duration and amplitude of the pulses
(Dalal et al., 2014).

Following the identification of Crz1 in S. cerevisiae, the crzA gene
was cloned from A. fumigatus and several other filamentous fungi
(Soriani et al., 2008). Disruption and complementation of crzA in A.
fumigatus proved that this gene is involved in cell tolerance to high
calcium and manganese concentrations. In addition, the crzAmutant
showed an altered expression of several genes encoding calcium
transport at high calcium concentration, and decreased virulence.
A detailed characterization of the role of CrzA has been made in A.
nidulans using crzA defective mutants (Hagiwara et al., 2008;
Spielvogel et al., 2008) demonstrating that CrzA was the regulator
of calcium homeostasis. The crzA-defective mutant was highly
sensitive to external calcium or manganese concentrations and to
alkaline pH. This mutant was also altered in a vacuole calcium
exchanger (Hagiwara et al., 2008). Spielvogel et al. (2008) observed
that the crzAmutant had an aberrantmorphology related to decreased
expression of the chitin synthetase gene. Interestingly, GFP
fluorescent protein labelled CrzA was located in the cytosol when
the cells were cultured in low calcium concentration but upon calcium
addition was rapidly internalized into the nucleus and therefore exerts
its regulation by binding to CDRE sequences (Figure 1). The CrzA
gene of Aspergillus parasiticus is required for the production of
aflatoxin under calcium-stress conditions (Chang, 2008) and in
Fusarium oxysporum CrzA is needed for the production of
deoxynivalenol (DON) and for virulence (Chen L. et al., 2019) (see
Section 3.7).

3.7 Ambient pH, osmolarity and heat shock
stresses effect on the calcineurin mediated
regulatory cascade

Several authors have studied the effect of alkaline pH or high
calcium concentration on the control of the calmodulin-calcineurin
cascade. It is well known that in S. cerevisiae alkaline pH triggers a
rapid uptake of calcium and the calcium increment in the cytosol
triggers the calcineurin mediated cascade (Serrano et al., 2002;
Yoshimoto et al., 2002; Viladevall et al., 2004).

The role of Aspergillus oryzae calcineurin in response to stress has
been studied in detail by Juvvadi et al. (2003). InA. oryzae sequences for
binding stress response regulatory elements (STRE) and for heat stress
factor binding have been found in the upstream region of the cnA gene
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of A. oryzae, encoding the calcineurin catalytic subunit CnA. The
calcineurin activity in the wild type A. oryzae increased in response to
alkaline pH, salt concentration, and high temperatures. Blocking the
cnAmRNAby expression of the antisense RNA decreases the activity of
the calcineurin under stressing conditions and caused reduced growth.
In contrast overexpression of cnA resulted in an increased calcineurin
activity under stressing conditions and produces tolerance to the
calcineurin inhibitor FK506. These results support the conclusion
that adaptation to different stressing factors in this fungus is
mediated by the calcineurin signaling pathway.

3.8 Impact of the calmodulin-calcineurin
pathway in expression of genes related to
antifungal activity

There are many examples of the effect of stressing factors and
alkaline pH on the production of antimicrobial fungal products. One
of them is the formation of the cysteine rich antifungal protein AFP
that is produced by several species of Aspergillus and Penicillium.
The AFP protein is of interest because it shows antifungal activity
against pathogenic yeasts and filamentous fungi (Huber et al., 2018).

The AFP protein is a small protein (6.2 kDa in P. chrysogenum) with
potent antifungal activity toward Fusarium andAspergillus species (Theis
et al., 2005), some of which are plant pathogens. Therefore, it has been
suggested to useAFP in the protection of vegetables such as tomato, grape
and rice plant infections by Fusarium oxysporum and Botrytis cinerea.
Expression of the AFP encoding gene is upregulated at alkaline
pH (Meyer and Stahl, 2002a; Mayre et al., 2002b) and is abolished by
the calcineurin inhibitor FK506 suggesting that transcription of the
encoding gene is regulated by the calmodulin/calcineurin cascade
(Meyer et al., 2005). This hypothesis is supported by the finding in
the upstream region of the AFP encoding gene of a CDRE sequence that
is the binding site for the CrzA transcriptional regulator. The mode of
action of the AFP protein in relation to calcium metabolism has been
elucidated in N. crassa. The AFP protein was shown to increase
significantly the intracellular calcium concentration of N. crassa
resting cells. The response of calcium metabolism to the addition of
AFP change by chelating the extracellular calcium with EDTA, or other
calcium specific chelators; calcium chelation counteract the AFP
perturbation of calcium homeostasis indicating that calcium ions are
involved and required for the AFP toxicity effect. The calcium transport
blocker diltiazem exerts the same effect on calcium homeostasis as the
addition of AFP (Binder et al., 2010). The addition of both AFP and
diltiazen exert an cumulative effect on calcium homeostasis. In summary,
in N. crassa the effect of AFP is due to the transport of calcium into the
cells or its release from internal stores into the cytosol, where it triggers the
regulation of calciumhomeostasis, although themolecularmechanismby
which AFP affects the calcium sensing and/or transport is not yet clear.

3.9 Calcineurin in fungal pathogenesis
related to production of bioactive secondary
metabolites

The infection and virulence of several animal and plant
pathogenic fungi is regulated by calcium. Early studies on
calcineurin mediated regulation in the pathogenic filamentous

fungi M. grisea and B. cinerea indicated that calcineurin controls
the formation of invasion structures. The development of these
structures and the infection in plants is inhibited by cyclosporin
(Viaud et al., 2002, 2003; Schumacher et al., 2008). In these
infections, calcium regulates growth rate, morphology,
differentiation of the filamentous fungus and attachment and
penetration in the plant (Gupta et al., 2022). This is a very
complex phenomenon that requires many enzymes, and bioactive
metabolites that play important roles in intercellular
communications (Table 2), however, in only a few fungal
infections there is clear evidence of the involvement of
calcineurin regulation in secondary metabolites production. Here
we describe a few of the more representative examples. A. parasiticus
produces several toxins, including aflatoxin. Mutants of two strains
deficient in crzA, grown in media supplemented with calcium
produce very low amounts of aflatoxin and
O-methylsterigmatocystin. Transcriptional studies of the aflatoxin
biosynthetic genes revealed that three of them, nor1, ver1 and omtA
were very poorly transcribed in a crzA defective mutant indicating
that expression of the aflatoxin genes was under the control of the
calcium/calcineurin signaling pathway in calcium stressing
conditions (Chang, 2008).

An important plant pathogen is Fusarium graminearum that
produces the Fusarium head blight disease in wheat and other
cereals (Chen et al., 2019). This fungus synthesizes several
trichothecenes which are highly toxic and carcinogenic to
humans and other mammals. The trichothecenes include the
toxins deoxynivalenol (DON), nivalenol, and zearalenone
(Goswami and Kistler, 2004; Pestka and Smolinski, 2005).
DON and its acetylated derivatives three acetyl
deoxynivalenol and 15 acetyl deoxynivalenol are highly toxic
compounds.

Recently, Chen et al. (2019a, b) studied the role of Crz1 of F.
graminearum and observed that in addition to the effect on growth
and differentiation, the Crz1 mediated regulation reduces drastically
the trichothecenes formation. Importantly, expression studies of the
F. graminearum crz1 mutant compared to the parental strain
revealed that twelve trichothecene try genes involved in the
biosynthesis of DON have significant reduced expression (Chen
et al., 2019). These results connect previous studies on regulation of
DON biosynthesis (Hu et al., 2014; Yu et al., 2014; Zheng et al., 2016)
with the calcium-calcineurin mediated control of this toxin (Imazaki
et al., 2010).

Melanin is a dark pigment that has important roles in protecting
the fungal cells against UV irradiation and in the resistance of
different microorganisms to antimicrobial agents (Nosanchuk and
Casadevall., 2006). In Verticillium dahliae, that causes the
Verticillium wilt in trees, the crzA gene is involved in the
biosynthesis of microconidia melanin which is important for the
pathogenesis of this fungus (Xiong et al., 2015). Similar observations
were also made in the mutants defective in crzA of Penicillium
digitatum that also forms melanized microconidia (Zhang et al.,
2009). Another important fungal pathogen is the citrus pathogen
Alternaria alternata that synthesizes the polyketide AK toxin. This
fungus contains a PLC-phospholipase similar to the well
characterized enzyme of N. crassa that forms IP3. IP3 diffuses
and binds to IP3 receptors and induces release of calcium ions
from the vacuoles. The phospholipase of A. alternata is involved in
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calcium homeostasis, pathogenicity and virulence (Tsai and Chung,
2014).

Another example of calcium-calcineurin Crz-mediated
regulation of pathogenicity is the production of virulence factors
by C. neoformans. This fungus is a basidiomycete that causes
meningoencefalitis in humans, a severe disease with high
mortality (Fu et al., 2018). During the infection C. neoformans
release pigments, enzymes and several virulence factors that are
secreted in vesicles, one of the major virulence factors is
glucuronosyl-manan that is released forming the extracellular
capsule, a pathogenicity determinant that has potent
immunosuppressive activity (Rodrígues et al., 2008).

In N. crassa there are detailed studies on the effect of calcineurin
on the sexual and asexual spore development (Tamuli et al., 2016)
and on the formation of some secondary metabolites, e.g.
carotenoids (Barman and Tamuli, 2015). The N. crassa
carotenoids include the neurosporene astaxanthin and some
carotenoid precursors (Avalos et al., 2013) that are responsible of
the orange colour of N crassa. These carotenoids prevent damage
produced by UV light irradiation (Barman and Tamuli, 2015).

3.10 Regulators of calcineurin biosynthesis:
effect of Rcn regulators on the biosynthesis
of secondary metabolites

Calcineurin affects many reactions in the cell and therefore its
activity is likely to be regulated by different cell factors. A family of
these factors, named calcipressins, bind the calcineurin CnA subunit
inhibiting its phosphatase activity (Juvvadi et al., 2014, 2015). In yeasts
one of the Crz regulated genes encodes a calcineurin modulator, Rcn1
(RcnA in some fungi), named for regulator of calcineurin, that belongs to
the calcipressins family. These are cytosolic proteins that do not enter in
the nucleus and, therefore, appear tomodulate the calcineurin activity by
direct or indirect interaction with this phosphatase. The CrzA protein of
A. fumigatus affects also expression of some genes involved in different
aspects of calcium metabolism (Soriani et al., 2010). A. fumigatus rcnA
null mutants are affected in the expression of several genes, including the

gene for the calcineurin subunit A (Pinchai et al., 2009) and, therefore,
these authors proposed that RcnA might exert a feedback regulation of
the calcineurin-mediated regulatory cascade.

Members of the Rcn family are conserved in all eukaryotes from
yeast to humans (Kingsbury and Cunningham, 2000). Several
studies provide evidence on the role of calcipressing in fungal
biology including S. cerevisiae (Mehta et al., 2009) and in the
fungi A. fumigatus, A. nidulans, C. neoformans and Magnaporte
oryzae (Pinchai et al., 2009; Liu et al., 2022). The exact mechanism of
regulation of calcineurin by Rcn1 is complex. This protein contains a
proline-serine repeated motif which seems to be phosphorylated in
two different serine residues by the mitogen-activated protein kinase
(MAPK). As a consequence of the phosphorylation of Rcn1 the
interaction with the calcineurin subunit A is modified and
calcineurin phosphatase activity is modulated; when Rcn1 is
unphosphorylated the regulator exert a negative effect on
calcineurin while when Rcn1 is phosphorylated the regulator
does not inhibit the calcineurin phosphatase activity (Hilioti
et al., 2004; Kishi et al., 2007; Li et al., 2011).

Recently the mechanism of regulators of calcineurin on the
biosynthesis of secondary metabolites has been elucidated in M.
oryzae, a fungus that causes the rice blight disease (Zhang et al.,
2016b, 2019). During infection M. oryzae attaches to the rice plant
cells and form a melanin rich appressorium that penetrates the plant
tissue (Zhang et al., 2019). Deletion of the MoRCN1 gene causes a
decrease in virulence and reduces the formation of several secondary
metabolites. Transcriptomic analysis of this M. oryzae mutant has
revealed that the Rcn1 regulator enhances expression of 491 genes
and causes downregulation of 377 genes. The Rcn1 regulated genes
encode enzymes involved in the biosynthesis of lysine, serine,
threonine and the aromatic amino acids, and several genes
involved in lipids biosynthesis and fatty acid degradation that
may provide precursors for secondary metabolites, including
genes for the biosynthesis of staurosporin, indolditerpenoids,
meroterpenoids and aflatoxins. The affected genes encode also an
ABC transporter; these transporters are frequent in many secondary
metabolite gene clusters (García-Estrada et al., 2011; Abu Ammar
et al., 2013; Martín, 2020).

TABLE 2 CrzA regulation of bioactive secondary metabolites in fungi.

Fungi Bioactive metabolite Biological activity References

Aspergillus parasiticus Aflatoxin Toxin Chang (2008)

Fusarium graminearun Trichothecene Toxin Wang et al. (2021)

Fusarium oxysporum Trichothecene Toxin Chen et al. (2019b)

Verticillium dahliae Melanin Protective pigment Xiong et al. (2015)

Penicillium digitatum Melanin Protective pigment Zhang et al. (2009)

Aspergillus fumigatus Melanin Protective pigment Zhang et al. (2009)

Cryptococcus neoformans Melanin Protective pigment Rodrigues et al. (2008)

Glucuronosyl-manan Pathogenicity determinant Rodrigues et al. (2008)

Alternaria alternata AK Toxin Plant Toxin Tsai and Chung (2014)

Neurospora crassa Neurosporene, axthaxantine, carotenoid precursors Protective pigments Avalos et al. (2013)

Barman and Tamuli (2015)
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4 Interaction of phosphate and calcium
regulation: vacuoles and
acidocalcisomes

Acidocalcisomes are membrane bound acidic calcium store
organelles rich in orthophosphate, pyrophosphate and
polyphosphate bound to calcium, magnesium and sodium. In
these organelles calcium is bound to a polyanionic matrix of
polyphosphate although calcium may be released by
alkalinization of these vesicles (Docampo and Moreno, 2011).
Acidocalcisomes have been found in all kingdoms of life from
bacteria to humans. In some bacteria aggregates of
polyphosphate (called volutine granules) have been found to be
surrounded by a membrane. These vesicles were initially
characterized in Trypanosomes but since then they have been
studied in different eukaryotic cells including some fungi
(Docampo et al., 2010; Seufferheld et al., 2011). Acidocalcisomes
have been found in arbuscular mycorrhizae, and acidocalcisome-like
vacuoles occur in S. cerevisiae (Kikuchi et al., 2014; Vila et al., 2022).
Acidocalcisome-like vacuoles are characterized by their biochemical
features, mainly acidic character, storage of polyphosphate and
calcium ions. One or two proton pumps and transporters
maintain the acidity of these organelles including the proton
vacuole ATPase in yeasts and/or the vacuole proton
pyrophosphatase (VP1) in other eukaryotic cells. The synthesis of
polyphosphate and its transport to these organelles is performed by a
vacuole transporter chaperone complex (VTC) that is well
characterized in yeasts and Trypanosomes (Lander et al., 2016).
Regarding calcium transport, acidocalcisomes contain a calcium
ATPse involved in calcium uptake and some eukaryotic organisms
contain additional ATPses that transport magnesium, zinc,
inorganic phosphate and polyamines (Huang et al., 2014).
Indeed, four polyamine transporters named TPO1 to TPO4 have
been found in the vacuole membrane of S. cerevisiae (Tomitori et al.,
2001). They belong to the MFS superfamily and contain
12 transmembrane domains. Disruption of the tpo genes revealed
that these polyamine transporters are involved in uptake of several
polyamines and its accumulation in the vacuoles. The disrupted
mutants showed increase sensitivity to polyamines, indicating that
these transporters participate in polyamine tolerant mechanisms.
Noteworthy, fungal vacuoles have similar behaviour as
acidocalcisomes, including the ability to acidify vacuoles by
calcium ATPses.

Acidocalcisomes are rich in pumps and membrane transporters
involved in cation and phosphate homeostasis and calcium
signaling. Acidic pH conditions are required to bind these metals
to polyphosphate. The biosynthesis of polyphosphate by VTC in
filamentous fungi vacuoles and protozoa acidocalcisomes support
the proposal that these two organelles are somehow functionally
similar. Specialized acidocalcisomes have been found in the tropical
pathogenic fungus Fonsecaea pedrosoi (Franzen et al., 2008). This
fungus contains melanosomes which are membrane bound
organelles that contain high levels of polyphosphate, calcium,
metals and particularly melanin. The internal pH of eukaryotic
melanosomes is very acid and this acidity favours the binding of
metals to polyphosphate. The pathogenicity of this fungus is
associated to its high level of melanin (see above Section 3.7).
Electron microscopy studies, biochemical and immunochemical

analysis of the content of melanosomes revealed that melanin is
accumulated in sequential stages of development of this structure,
suggesting that these organelles are specialized in melanin
accumulation (Huang et al., 2014).

5 Summary and future outlook

During the last decades it has been established that the
biosynthesis of secondary metabolites in filamentous fungi is
controlled by elaborated interactions between the phosphate
concentration in the culture medium and calcium ions that serve
as intracellular messengers in numerous reactions in the fungal
metabolism. The biosynthesis of hundreds of secondary metabolites
is controlled by phosphate in filamentous fungi and in bacteria;
notable advances have been made in our understanding of the
mechanisms of phosphate control of secondary metabolites in
actinobacteria (Martín and Liras, 2021a) but there is less
information on equivalent control in filamentous fungi. Twenty-
two genes were initially reported in the PHO regulon in S. cerevisiae,
nine of them regulatory genes; but manymore genes are regulated by
Pho4 in some filamentous fungi. Noteworthy, eighty-two
phosphatase genes have been reported recently in the genome of
F. graminearum (Yun et al., 2015). The homeostasis of phosphate in
fungi and its role is more elaborate that it was previously reported.
The importance of phosphate availability in fungal metabolism is
reflected by the presence of two well characterized high affinity
phosphate transporters in S. cerevisiae, Pho84 and Pho89, and two
low affinity transporters, Pho87 and Pho90. Pho84 is a well know
transfector (nutrient-related transport effector) that performs both
phosphate sensing and phosphate transport (Popova et al., 2010).
Some phosphate analogues interact with phosphate receptors
exerting a regulatory function although they are not transported
into the cells. These findings open new fields for studying the
interaction of transporting and sensing mechanisms that should
be elucidated in the near future. In contrasts to Pho84, that is a
phosphate and proton symporter, Pho89 is a phosphate/sodium
symporter that in C. albicans is regulated by a TRP calcium ion
channels providing evidence that there is a close connection between
phosphate transport and calcium metabolism (Jiang and Yang,
2018). Regulation of the core components of the PHO regulon is
exerted by dephosphorylation of the master regulator Pho4 that
causes its entry into the nucleus where it exerts the regulation of the
PHO regulon genes or its exclusion from the nucleus. However, how
the degree of phosphorylation/dephosphorylation of Pho4 does
affects the biosynthesis of phosphate regulated secondary
metabolites? Activation of the PHO regulon genes by the master
Pho4 regulator is modulated by competitive binding of other
regulatory proteins such as Pho2 and Cbf1, that recognize the
same Pho4 binding sequences in the promoter of phosphate
regulated genes (Zhou and O´Shea, 2011). It is likely that other
still unknown transactivating or competing factors may modulate
the interaction of Pho4 with its target sequences. Phosphate
regulation of the biosynthesis of secondary metabolites, e.g.
penicillin biosynthesis, is exerted in collaboration with carbon
catabolite regulatory factors (Martín et al., 1999) but further
studies on the mechanism of this concerted regulation still needs
to be fully elucidated (Giots et al., 2003). Phosphate homeostasis in
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fungi is known to be related to the energetic and phosphorylation
status of the cells that responds to the intracellular ATP versus AMP
ratio and this is transmitted in the cells by a family of highly
phosphorylated inositol pyrophosphate molecules (IP6, IP7 and
higher members of the family); this provides an interesting
information on how the overall phosphorylation and energetic
metabolism of the cell is modulated (Secco et al., 2012; Wild
et al., 2016; Azevedo and Saiardi, 2017). Regarding calcium
homeostasis in fungi it is well know that calcium serves as
intracellular messenger in all eukaryotic cells. The intracellular
calcium concentration in fungi responds to a large variety of
input signals including divalent cations, lithium, stressing pH and
temperature, ethanol, caffeine, and some antifungal agents (Thewes,
2014). Filamentous fungi establish a gradient of calcium along the
hyphae and this is related to the targeting of vesicles involved in
secondary metabolism biosynthesis that accumulated in distal
section of the hyphal tips, therefore, molecular mechanism
related to calcium homeostasis and calcium gradients within
hyphae are important aspects of frontier research to elucidate the
secretion mechanism of bioactive metabolites. Calcium regulation of
fungal metabolism is mediated by the calcium binding protein
calmodulin and by its interaction with the phosphatase
calcineurin. Noteworthy, calmodulin in response to calcium
binding interacts directly with three different secondary
metabolite biosynthesis enzymes in B. bassiana, particularly with
the beauvericin synthetase, a non-ribosomal peptide synthetase
(Kim and Sung, 2018). However, there are very few studies on
this direct interaction of calmodulin with secondary metabolism
biosynthesis enzymes and this field needs to be supported by
additional research. A central role in the regulation of calcium
homeostasis is exerted by the calcium-calmodulin-calcineurin
signaling cascade in response to external stressing factors
recognized by G proteins coupled receptors (GPCR). The
membrane phospholipase C triggers the formation of IP3 calcium
releasing factor that, therefore, increases the cytosolic concentration
of this ion; the increased calcium ions bind calmodulin and triggers
the calmodulin-calcineurin cascade (Figure 1). The zinc finger Crz1
(CrzA) factor in response to calcium concentration is
dephosphorylated entering into the nucleus where it controls the
expression of numerous genes by binding the calcineurin dependent
regulatory elements. An important interaction occurs between the
Crz1 factor and the phosphate metabolism as shown by the fact that
Crz1 defective mutants of S. cerevisiae are unable to express the
Pho89 transporter gene. In other word, calcium concentration in the
cell controls phosphate uptake and metabolism by the
Pho89 transporter in a Crz1-dependent manner. An impressive

amount of fungal metabolites that include melanin and carotenoid
pigments, antibiotics, antitumor agents and aflatoxins are regulated
by calcium ions through CrzA (Table 2).

A third example of link between calcium and phosphate
metabolism is the presence in fungi of calcisome-like vacuoles;
calcisomes are membrane-bound typical calcium stores rich in
polyphosphate. In these organelles calcium is bound to a
polyanionic matrix of orthophosphate, pyrophosphate and
polyphosphate; calcium ions may be released by alkalinization of
the cells. In protozoa the cell biology of acidocalcisomes is well
known; therefore, information that serves as model for these fungal
calcisome-like vacuoles might be obtained by comparison of the
calcium and phosphate effect on stress in these organisms. Progress
in the characterization of acidocalcisomes in filamentous fungi will
significantly improve our understanding of the molecular mechanism
of interaction between phosphate control and calcium homeostasis.
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