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This study explores the potential of radiomics to predict the proliferation marker
protein Ki-67 levels and human epidermal growth factor receptor 2 (HER-2) status
based on MRI images of patients with spinal metastasis from primary breast
cancer. A total of 110 patients with pathologically confirmed spinal metastases
from primary breast cancer were enrolled between Dec. 2017 and Dec. 2021. All
patients underwent T1-weighted contrast-enhanced MRI scans. The PyRadiomics
package was used to extract features from the MRI images based on the intraclass
correlation coefficient and least absolute shrinkage and selection operator. The
most predictive features were used to develop the radiomics signature. The Chi-
Square test, Fisher’s exact test, Student’s t-test, and Mann–Whitney U test were
used to evaluate the clinical and pathological characteristics between the high-
and low-level Ki-67 groups and the HER-2 positive/negative groups. The
radiomics models were compared using receiver operating characteristic curve
analysis. The area under the receiver operating characteristic curve (AUC),
sensitivity (SEN), and specificity (SPE) were generated as comparison metrics.
From the spinal MRI scans, five and two features were identified as the most
predictive for the Ki-67 level and HER-2 status, respectively. The developed
radiomics signatures generated good prediction performance for the Ki-67
level in the training (AUC = 0.812, 95% CI: 0.710–0.914, SEN = 0.667, SPE =
0.846) and validation (AUC = 0.799, 95% CI: 0.652–0.947, SEN = 0.722, SPE =
0.833) cohorts. Good prediction performance for the HER-2 status was also
achieved in the training (AUC = 0.796, 95% CI: 0.686–0.906, SEN = 0.720,
SPE = 0.776) and validation (AUC = 0.705, 95% CI: 0.506–0.904, SEN = 0.733,
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SPE = 0.762) cohorts. The results of this study provide a better understanding of the
potential clinical implications of spinal MRI-based radiomics on the prediction of
Ki-67 levels and HER-2 status in breast cancer.
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1 Introduction

Breast cancer (BC) is the most common form of cancer
worldwide, and has exhibited an increasing incidence trend in
recent years (Ye et al., 2020; Loibl et al., 2021). Early and
appropriate treatment are warranted to increase the 5-year
survival rates of BC patients (Allemani et al., 2015). The status of
the molecular hallmarks of BC are critical for prognosis and
treatment, and have been extensively characterized (Cheang
et al., 2009). The human epidermal growth factor receptor 2
(HER-2) status and proliferation marker protein Ki-67 levels are
two crucial factors in determining the treatment strategy for BC
patients (Yerushalmi et al., 2010; Loibl and Gianni, 2017). HER-2
displays amplification or protein overexpression in 20%–30% of BC
cases, and is important for the determination of therapy strategies
(Loibl and Gianni, 2017). BC patients that are HER-2 positive
usually have a high likelihood of achieving a pathological
complete response (pCR) after the neoadjuvant treatment and
generating favorable outcomes (van Ramshorst et al., 2017). Ki-
67 is an independent prognostic characteristic reflecting the extent
of proliferative activity (Yerushalmi et al., 2010). High Ki-67
expression levels are associated with more aggressive tumor
growth and poorer prognosis (Wiesner et al., 2009; Yerushalmi
et al., 2010). Patients that are HER-2 positive (van Ramshorst et al.,
2017) and/or have a low Ki-67 expression level (<14%) (Kim et al.,
2014) are usually advised to undergo adjuvant chemotherapy.
Therefore, early and accurate evaluation of the Ki-67 level and
HER-2 status is essential for individual therapy decisions.

Many BC patients suffer from metastasis, with bone as the most
frequent metastatic site (Hagberg et al., 2013; Foerster et al., 2015).
Spinal metastasis is a major cause of severe morbidity for BC (Janjan
et al., 2009). When the primary BC is unavailable, spinal metastasis
provides an important alternative for identifying the tumor
characteristics of the primary BC (Weigelt et al., 2005). However,
clinical routine assessment of the Ki-67 expression andHER-2 status
is based on immunohistochemistry (IHC) (Gnant et al., 2011),
which relies on a punch biopsy. This is an invasive diagnostic
procedure that is dangerous to perform on the spinal column
because of the potential to damage the nerves (Loibl et al., 2021).
Althoughmagnetic resonance imaging (MRI) is commonly used as a
noninvasive imaging method for confirming the existence of spinal
metastases, there is still no specific marker that can be recognized by
visual inspection of MRI images as reflecting the Ki-67 level or HER-
2 status.

Recently, radiomics has emerged as a method that may enable
the profiling of tumor characteristics in a noninvasive manner by
extracting and analyzing large numbers of quantitative features
(Gillies et al., 2016). Radiomics-based computer-aided diagnosis
allows for the quantitative extraction and selection of valuable
features from medical imaging, providing a powerful noninvasive

tool in oncology research (Lambin et al., 2017; Hosny et al., 2018).
Many studies have analyzed the correlations between MRI-based
radiomics and molecular subtypes in BC (Sutton et al., 2016; Fan
et al., 2017; Fan et al., 2019; Leithner et al., 2020; Li et al., 2021; Niu
et al., 2022). Previous studies have proposed the radiological
differentiation of molecular subtypes based on the primary BC.
To the best of our knowledge, radiological characterization for the
identification of Ki-67 and HER-2 status based on bone metastasis
has not been evaluated. Therefore, the purpose of this study is to
investigate the potential of MRI-based radiomics for predicting the
Ki-67 level and HER-2 status on spinal bone metastasis
from primary BC.

2 Methods

2.1 Patients

Retrospective research was approved by the ethics committee of
our hospital, with the informed consent requirement waived because
of the retrospective nature. This study was conducted between Dec.
2017 and Dec. 2021, and included data from 110 patients diagnosed
with spinal metastasis from primary BC. The patients were enrolled
according to the following inclusion criteria: 1) pathological
confirmation of spinal metastasis from primary BC, 2) T1-
weighted contrast-enhanced (T1CE) MRI scans were performed
before treatment, and 3) aged over 18 years. The exclusion criteria
were: 1) lack of pathological data, 2) presence of other tumor
diseases, 3) treated with phosphate drugs or chemoradiotherapy,
4) presence of vertebral compressed fractures, and 5) artifacts or
diffuse spinal metastases in the MRI image. The included patients
were divided into a training group and a validation group at a 2:
1 ratio using stochastic stratified sampling. Figure 1 shows the
process of recruiting patients, including the inclusion and
exclusion criteria and the number of patients. Clinical
characteristics were gathered for each patient from medical
records, and included age, menopausal status, and family history.
Pathological data included estrogen receptor (ER), progesterone
receptor (PR), and lymph node metastatic (LNM) status. The
expression status of ER, PR, HER-2, and Ki-67 was determined
with standard IHC (Gnant et al., 2011). The staining of cells
indicates the expression status of pathological indicators. The ER
and PR expressions were deemed positive if the number of ER or PR
positive-stained nuclei was greater than 1%, and the expression level
of Ki-67 was considered high if its positive staining rate was greater
than 14% (Goldhirsch et al., 2011). Cases with IHC staining intensity
confirmed as 3+ were defined as HER-2 positive, and cases with
staining intensity of 2+ required fluorescence in situ hybridization
(Fehrenbacher et al., 2020) analysis to determine whether they were
HER-2 positive.
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2.2 MRI scans and tumor segmentation

The sagittal T1CE-MRI data were obtained using a Siemens 3.0T
MRI device (Verio, Siemens, Germany) with a repetition time of
420 m, echo time of 9 m, flip angle of 150°, acquisition matrix with
dimensions of 320 × 272, field of view of 100 × 100 mm, and
thickness of 4 mm. The T1CE MRI data were acquired by
intravenous injection of Gadolinium-DTPA contrast agent
(0.1 mmol/kg, Omniscan, GE Healthcare). The MRI data were
stored in DICOM format on the picture archiving and
communication system. The ITK-Snap software (v.3.8, available
for download at www.itk-snap.org) was used by a radiologist with
4 years’ working experience to segment the region of interest (ROI)
along the tumor border on the MRI images. The delineated ROIs
were stored in NII (Data Format Working Group, 2004) format for

further analysis. Figure 2 shows examples of manually delineated
ROIs, including different levels of Ki-67 (Figures 2A, 2B) and
different HER-2 status (Figures 2C, 2D).

2.3 Radiomics feature calculation

The radiomics features were all calculated using the
PyRadiomics package (van Griethuysen et al., 2017). This is a
comprehensive open-source platform that processes and extracts
radiomics features from medical images using a large set of
engineered hard-coded feature algorithms. The radiomics features
are extracted in a four-step process: i) preprocessing of the images
and ROIs; ii) application of enabled filters; iii) calculation of features;
and iv) output of results. The two feature types are original features

FIGURE 1
Patient recruitment in this study.
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(first-order, shape and texture) and transformed features. The
original features were calculated from the original MRI images,
whereas the transformed features were calculated based on
transformed MRI images obtained by applying various filters to
the original images. In this study, the filter types used were the
Exponential, Wavelet, Square, Squareroot, Local Binary Pattern,
Logarithm, Gradient, and Laplacian of Gaussian filters. More
information on the image feature extraction process can be
found in the PyRadiomics documentation (https://pyradiomics.
readthedocs.io/).

2.4 Identification of the most
predictive features

To assess the reliability of the radiomics features and to exclude
unstable features, 30 patients’ data were randomly selected for
intraclass correlation coefficient (ICC) analysis (Koo and Li,
2016). The features with an intraclass correlation coefficient of
greater than 0.80 were further selected by least absolute

shrinkage and selection operator (LASSO) regression with 10-fold
cross-validation. The training set was used to fit the LASSO
regression model, and the sparsity of features was controlled by
adjusting the regularization parameter lambda during the fitting
process. The coefficients of all features were obtained from the
trained LASSO regression model. A larger lambda value will result in
more features having a coefficient of zero, thereby reducing the
complexity of the model and the risk of overfitting (Sauerbrei et al.,
2007). The value of lambda was computed at the position of one
standard error from the maximum AUC (area under the receiver
operating characteristic (ROC) curve), then the regression
coefficient was determined and the valuable features were screened.

2.5 Development and validation of the
radiomics signature

The radiomics signature (RS) formula was calculated by
integrating the final set of radiomics features and their
corresponding coefficients using the glmnet package (Friedman

FIGURE 2
Examples of the T1CE MRI images of spine metastasis and segmented ROIs. (A) Patient with high Ki-67 expression level and (B) low Ki-67 expression
level. (C) Patient with HER-2 positive and (D) HER-2 negative.
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et al., 2010) in R v.3.6. The performance of the RSs was assessed
by ROC curve analysis, with the optimal cutoff values determined
by the maximum Younden index (Ruopp et al., 2008) using the
sklearn andmatplotlib packages in Python v.3.6. The AUC values
for the features were calculated based on logistic regression using
the pROC package in R. Figure 3 depicts the workflow of this
research, including ROI acquisition, feature extraction, feature
selection, and model construction.

2.6 Statistical analysis

To identify statistically significant differences in the clinical and
pathological characteristics between the high- and low-level Ki-67
and HER-2 positive/negative groups, the Chi-Square test and
Fisher’s exact test were used to compare categorical variables.
The normality of continuous variables was verified by the
Shapiro–Wilk test. The Student’s t-test and Mann–Whitney U
test were used to evaluate the continuous values. The hypothesis
tests were two-sided with statistical significance set at 0.05.

3 Results

3.1 Patients’ characteristics

Table 1 presents statistical results regarding the patients’
characteristics. Between the high-level Ki-67 and low-level Ki-
67 groups, the age was found to be significantly different (p < 0.05).
Between the HER-2 positive and negative groups, no significant

differences were observed (p > 0.05), although the age produced
p < 0.05 in the training cohort.

3.2 Radiomics feature selection

The most predictive radiomics features were selected from
the T1CE MRI of the spinal metastasis. Figure 4 depicts the
feature selection process with LASSO (Sauerbrei et al., 2007).
LASSO regression determines the most valuable features by
selecting the appropriate regularization parameter lambda. To
predict the Ki-67 level and HER-2 status, five and two features
were finally selected, respectively. Table 2 lists the prediction
performance of each of these features. Two features have p-values
of less than 0.05 in both the training and validation cohorts.
Figure 5 shows boxplots of the selected features, describing the
maximum, minimum, median, and upper/lower quartiles, as well
as the outliers. A detailed explanation of each selected feature is
shown in Supplementary Table S1.

3.3 Development of the RSs

The finally selected MRI features were used to build the RSs for
predicting the Ki-67 level (RS-Ki-67) and HER-2 (RS-HER-2) status.
The RSs were established based on the selected radiomics features
weighted by the respective LASSO coefficients. The formulas for the
RSs are as follows:

RS-Ki-67 = 0.6505 - wavelet-HHH_ngtdm_Contrast × 0.2005 +
wavelet-LHL_firstorder_Skewness × 0.1802 + lbp-3D-m1_firstorder_

FIGURE 3
Overview of the study design.
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InterquartileRange × 0.1750 + log-sigma-1-0-mm-3D_glcm_Inverse
Variance × 0.2552 + logarithm_glszm_SmallAreaEmphasis × 0.2373.

RS-HER-2 =−0.6762 + logarithm_gldm_LowGrayLevelEmphasis ×
0.0960–lbp-3D-k_firstorder_Skewness × 0.0866.

Figure 6 depicts the ROC curves of the developed RSs, where
the horizontal axis represents the false positive rate and the
vertical axis represents the true positive rate. The AUC was
used to evaluate the classification performance of the

models. As listed in Table 3, RS-Ki-67 generated good
prediction performance, with AUCs of 0.812 (sensitivity
(SEN) = 0.667 and specificity (SPE) = 0.846) in the training
group and 0.799 (SEN = 0.722 and SPE = 0.833) in the validation
group. RS-HER-2 also generated good prediction performance,
with AUCs of 0.796 (SEN = 0.720 and SPE = 0.776) in the training
group and 0.705 (SEN = 0.733 and SPE = 0.762) in the
validation group.

TABLE 1 Characteristics of patients with spinal metastasis from primary BC.

Characteristic Training cohort
(n = 74)

Validation
cohort (n = 36)

Training cohort
(n = 74)

Validation cohort
(n = 36)

High
Ki-67
(n =
48)

Low
Ki-67
(n =
26)

P High
Ki-67
(n =
18)

Low
Ki-67
(n =
18)

P HER-2
positive
(n = 25)

HER-2
negative
(n = 49)

P HER-2
positive
(n = 15)

HER-2
negative
(n = 21)

P

Age (Mean ± SD) 54.48 ±
9.76

54.31 ±
9.06

*0.004 52.50 ±
9.22

49.06 ±
9.51

*0.006 49.73 ±
11.82

53.90 ± 8.70 *0.043 49.01 ± 9.23 56.57 ± 10.01 0.625

Menopausal status,
No (%)

1.000 1.000 1.000 0.138

Premenopausal 7 (63.64) 4 (36.36) 3 (50.00) 3 (50.00) 4 (33.33) 8 (66.67) 4 (80.00) 1 (20.00)

Postmenopausal 41
(65.08)

22
(34.92)

15
(50.00)

15
(50.00)

21 (33.87) 41 (66.13) 11 (35.48) 20 (64.52)

Family history,
No (%)

1.000 1.000 0.547 1.000

Yes 1
(50. 00)

1 (50.00) 0 (0.00) 1
(100.00)

0 (0.00) 2 (100.00) 0 (0.00) 1 (100.00)

No 47
(65.28)

25
(34.72)

18
(51.43)

17
(48.57)

25 (34.72) 47 (65.28) 15 (42.86) 20 (57.14)

LNM, No (%) 0.773 1.000 0.358 0.443

Yes 34
(62.96)

20
(37.04)

12
(50.00)

12
(50.00)

15 (29.41) 36 (70.59) 10 (37.04) 17 (62.96)

No 14
(70.00)

6 (30.00) 6 (50.00) 6 (50.00) 10 (43.48) 13 (56.52) 5 (55.56) 4 (44.44)

ER, No (%) 0.064 0.443 0.113 0.260

Positive 27
(56.25)

21
(43.75)

12
(44.44)

15
(55.56)

13 (26.53) 36 (73.47) 9 (34.62) 17 (65.38)

Negative 21
(80.77)

5 (19.23) 6 (66.67) 3 (33.33) 12 (48.00) 13 (52.00) 6 (60.00) 4 (40.00)

PR, No (%) 0.165 0.499 0.072 0.864

Positive 20
(55.56)

16
(44.44)

9 (42.86) 12
(57.14)

8 (22.22) 28 (77.78) 8 (38.10) 13 (61.90)

Negative 28
(73.68)

10
(26.32)

9 (60.00) 6 (40.00) 17 (44.74) 21 (55.26) 7 (46.67) 8 (53.33)

Histological grade,
No (%)

0.166 0.309 0.609 0.957

Ⅰ 0 (0.00) 1
(100.00)

0 (0.00) 0 (0.00) 0 (0.00) 1 (100.00) 0 (0.00) 0 (0.00)

Ⅱ 40
(63.49)

23
(36.51)

15
(46.87)

17
(53.13)

23 (35.94) 41 (64.06) 13 (41.94) 18 (58.06)

Ⅲ 8 (80.00) 2 (20.00) 3 (75.00) 1 (25.00) 2 (22.22) 7 (77.78) 2 (40.00) 3 (60.00)

HER-2, human epidermal growth factor receptor 2; Ki-67, antigen identified by monoclonal antibody; SD, standard deviation; LNM, lymph node metastasis; ER, estrogen receptor; PR,

progesterone receptor.

*Statistically significant values of p < 0.05.
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FIGURE 4
Feature selection from the T1CEMRI data with LASSO. (A,B) LASSO coefficient analysis of the features with 10-fold cross-validation to select optimal
lambda for predicting the Ki-67 level (A) and HER-2 status (B). (C,D) LASSO coefficients against the lambda, with five and two nonzero coefficients
generated from the T1CE MRI data for predicting the Ki-67 level (C) and HER2 status (D), respectively.

TABLE 2 Performance of the selected features for predicting the Ki-67 level and HER-2 status.

Biomarkers Features Cohorts Mean ± SD AUC P

Ki-67 lbp-3D-m1_firstorder_InterquartileRange Training 6.59 ± 1.12 5.85 ± 1.49 0.686 *0.008

Validation 6.30 ± 1.83 7.02 ± 1.02 0.702 *0.038

log-sigma-1-0-mm-3D_glcm_InverseVariance Training 0.41 ± 0.04 0.43 ± 0.03 0.650 *0.035

Validation 0.41 ± 0.05 0.42 ± 0.02 0.528 0.788

logarithm_glszm_SmallAreaEmphasis Training 0.48 ± 0.15 0.56 ± 0.12 0.659 *0.025

Validation 0.58 ± 0.11 0.54 ± 0.12 0.580 0.420

wavelet-HHH_ngtdm_Contrast Training 0.11 ± 0.03 0.12 ± 0.01 0.672 *0.015

Validation 0.12 ± 0.01 0.11 ± 0.03 0.565 0.617

wavelet-LHL_firstorder_Skewness Training −0.46 ± 0.39 −0.18 ± 0.50 0.699 *0.005

Validation −0.62 ± 0.45 −0.24 ± 0.40 0.744 *0.013

HER-2 lbp-3D-k_firstorder_Skewness Training 0.92 ± 0.42 1.18 ± 0.28 0.706 *0.004

Validation 1.120 ± 0.45 0.97 ± 0.65 0.660 0.109

logarithm_gldm_LowGrayLevelEmphasis Training 0.01 ± 0.02 0.01 ± 0.01 0.664 *0.022

Validation 0.01 ± 0.02 0.02 ± 0.02 0.667 0.095

SD, standard deviation; AUC, area under the ROC curve; Ki-67, antigen identified by monoclonal antibody; HER-2, human epidermal growth factor receptor 2.

*Statistically significant values of p < 0.05.
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4 Discussion

Early identification of molecular subtypes is essential for
treatment in BC cases. Although there have been many studies
on this topic, all have focused on the primary tumor (Ye et al., 2020).
In clinical practice, however, we frequently receive BC patients
carrying metastases whose primary tumor has already been

surgically removed. Many of these patients lack complete records
of molecular subtypes because the resection of the primary BC was
previously performed in a county-level hospital. Noninvasive use of
the metastasis to reflect the molecular subtype status provides an
alternative, but this has not yet been investigated.

We found that both the Ki-67 level and HER-2 status can be
assessed based on the spinal bone MRI. The developed RS-Ki-

FIGURE 5
Boxplots of the selected features for predicting the Ki-67 level (A–E) and HER-2 status (F, G).

FIGURE 6
ROC curves of the developed RS-Ki-67 and RS-HER-2 for predicting the Ki-67 level and HER-2 status in the training (A) and validation (B) cohorts.

TABLE 3 Performance of the developed RS-Ki-67 and RS-HER-2.

Model Training cohort Validation cohort

AUC (95% CI) SEN SPE AUC (95% CI) SEN SPE

RS-Ki-67 0.812 (0.710–0.914) 0.667 0.846 0.799 (0.652–0.947) 0.722 0.833

RS-HER-2 0.796 (0.686–0.906) 0.720 0.776 0.705 (0.506–0.904) 0.733 0.762

AUC, area under the ROC curve; CI, confidence interval; SEN, sensitivity; SPE, specificity; Ki-67, antigen identified by monoclonal antibody; HER-2, human epidermal growth factor receptor 2.
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67 generated predictive AUCs of 0.812 and 0.799 on the training and
validation cohorts, respectively; for RS-HER-2, the corresponding
AUCs were 0.796 and 0.705. These values are lower than the results
generated in recent MRI-based studies on primary BC (Fan et al.,
2019; Li et al., 2021; Jiang et al., 2022b). We found that RS-Ki-
67 always outperforms RS-HER-2 for predicting the Ki-67 level and
HER-2 status in both the training and validation groups. This may
be because Ki-67 expression reflects the cell proliferation ability,
thus resulting in more obvious signal changes within the metastatic
tumor. In contrast, HER-2 reflects the expression of receptors on the
tumor cell surface and may produce smaller changes in the MRI
signal. Our findings are partially in accordance with a recent
comparison study on primary BC, which indicated that MRI-
based radiomics are better at identifying high-level Ki-67 patients
than HER-2 positive patients (Li et al., 2021).

From spinal MRI data, we calculated a total of 1967 radiomics
features, and identified the five and two most important features
for predicting the Ki-67 level and HER-2 status, respectively.
Three of these seven features belong to the first-order feature
category, and the other four belong to the texture feature
category. The first-order features describe the distribution of
signal intensity within the tumor, reflecting the heterogeneity of
the tumor; texture features quantify the texture patterns and
spatial distribution information inside tumors through texture
matrices (Tagliafico et al., 2019; Jiang et al., 2022a). Our findings
indicate that Ki-67 levels and HER-2 status are related to the
heterogeneity and spatial complexity of tumors. These findings
are partially in line with previous studies on primary tumors,
which also indicated a strong relationship between the textural/
first-order information and the Ki-67/HER-2 status in BC (Fan
et al., 2017; Li et al., 2021; Niu et al., 2022). Additionally, our
results may explain why visual inspection of spinal MRI images
by radiologists struggles to determine the molecular subtype
status, i.e., all predictive features are transformed features that
are hidden in the high-dimensional space, and therefore cannot
be recognized by humans.

Age was found to be related to the Ki-67 level. Although this
result is not supported by several previous studies (Fan et al., 2019;
Li et al., 2021; Niu et al., 2022), it is consistent with at least one
prior conclusion (Son et al., 2020). We believe this is caused by the
limited number of enrolled patients. Although the developed RSs
produced acceptable AUCs, the predictive sensitivities were still
low, especially for RS-HER-2, compared with a previous study on
primary BC (Weigelt et al., 2005). The findings of this study are
encouraging, and may widen the understanding of assessment for
molecular subtypes and reveal the prediction efficiency of
metastasis from primary BC.

There are several limitations to our study. The first issue is the
small sample size, with all data obtained from a single center. The
reliability of the identified features and RSs should be validated on
multi-center data in future work. Second, we only analyzed the
T1CE MRI on the bone metastasis. The T2-weighted fat-suppressed
fast spin echo sequence should be further studied because this can
suppress the fat hyperintensities of yellow bone marrow and may
reflect the metastasis heterogeneity. Third, some other tumor
markers (ER and PR) that are important for the prognosis and
treatment of BC were not studied due to problems associated with
data collection. Finally, the primary BC was not evaluated for

comparison because of incomplete data, which should be
addressed in future research.

5 Conclusion

This study has revealed that radiomics features derived from
MRI images of bone metastasis from primary BC are predictive of
the Ki-67 level and HER-2 status. The developed RSs, which
integrate predictive MRI features, have the potential to be used
as noninvasive tools for the assessment of molecular subtypes in BC.
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