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SUMOylation is a reversible modification that involves the covalent attachment of
small ubiquitin-like modifier (SUMO) to target proteins, leading to changes in their
localization, function, stability, and interactor profile. SUMOylation and additional
related post-translational modifications have emerged as importantmodulators of
various biological processes, including regulation of genomic stability and
immune responses. Natural killer (NK) cells are innate immune cells that play a
critical role in host defense against viral infections and tumors. NK cells can
recognize and kill infected or transformed cells without prior sensitization, and
their activity is tightly regulated by a balance of activating and inhibitory receptors.
Expression of NK cell receptors as well as of their specific ligands on target cells is
finely regulated during malignant transformation through the integration of
different mechanisms including ubiquitin- and ubiquitin-like post-translational
modifications. Our review summarizes the role of SUMOylation and other related
pathways in the biology of NK cells with a special emphasis on the regulation of
their response against cancer. The development of novel selective inhibitors as
useful tools to potentiate NK-cell mediated killing of tumor cells is also briefly
discussed.
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1 Introduction

Natural Killer (NK) cells are cytotoxic innate lymphoid cells involved in the host
immune response to viral infections and in cancer immunosurveillance (Chiossone et al.,
2018).

The mechanisms of NK cell-mediated killing include the release of lytic granules
containing pore-forming proteins and proteases such as perforin and granzymes and the
induction of target cell apoptosis by engagement of the death receptors FAS and TNF-related
apoptosis-inducing ligand receptor (TRAILR) (Prager and Watzl, 2019).

NK cells also play immunomodulatory functions by producing cytokines including
interferon (IFN)γ and chemokines upon engagement of activating receptors and/or in
response to stimulatory cytokines (Fauriat et al., 2010; Freeman et al., 2015).

NK cell activation depends on the integration of tightly regulated signals from inhibitory
receptors, including KIR in humans, that recognize “self”Major Histocompatibility Complex
(MHC) class I molecules expressed on healthy cells and several activating receptors such as
NKG2D and DNAM-1 able to bind stress-induced molecules in infected or transformed cells
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(Figure 1) (Long et al., 2013; Morvan and Lanier, 2016). During
carcinogenesis, tumor cells can modulate the surface expression of
the ligands for activating receptors and alter the tumor
microenvironment (TME) to evade NK cell-mediated cytotoxicity
(Waldhauer and Steinle, 2008; Cerboni et al., 2014; Morvan and
Lanier, 2016).

Several mechanisms including post-translational modifications
(PTMs) are responsible for the acquisition of a dysfunctional NK cell
phenotype characterized by the down-modulation of the main
activating receptors and the expression of checkpoint inhibitory
receptors able to bind their ligands in the TME to prevent NK cell
activation.

In this article, we summarize and discuss the current state of
knowledge on SUMOylation and other related PTMs able to regulate
NK cell lineage commitment and maturation as well as the
expression of activating receptors and their ligands. Finally, we
outline current strategies based on the use of PTM inhibitors to
potentiate NK-cell immune surveillance against cancer.

2 NK cells: from development to
antitumor functions

NK cells develop from common lymphoid progenitor cells in the
bone marrow (Kondo et al., 1997) and their maturation takes place
in the primary and secondary lymphoid organs from where they
directly join the circulation (Kim et al., 2002; Scoville et al., 2017).

The progenitors that give rise to NK cells are defined by the
differential expression of lineage-specific surface markers. These
markers are different between humans and mice, but the regulated
expression of critical transcription factors (TFs), such as the T-box
transcription factors T-bet and Eomesodermin, controls NK cell-
specific development, maturation and functions in both species
(Simonetta et al., 2016).

During the development of NK cell receptor repertoire, the
interaction of inhibitory receptors with self MHC-I molecules
renders NK cells functional and able to distinguish healthy from
altered cells that downregulate or fail to express MHC-I
molecules, according to the “missing self” hypothesis
(Yokoyama and Kim, 2006). NK cells can also recognize
upregulated molecules on the surface of transformed cells to
efficiently target and kill them.

NK cell mediated cytotoxicity against a variety of spontaneous
tumors mainly depends on activating receptors which include the
Natural Cytotoxicity Receptors (NCRs), Natural-Killer receptor
group 2, member D (NKG2D) and DNAX Accessory Molecule-1
(DNAM1). Indeed, mice deficient in their expression show an
increased incidence of tumor development (Gilfillan et al., 2008;
Guerra et al., 2008; Iguchi-Manaka et al., 2008; Halfteck et al., 2009;
Mentlik James et al., 2013).

NCRs comprise the immunoglobulin-like receptors NKp46 and
NKp30, constitutively expressed on all NK cells, and
NKp44 expressed only on IL-2 activated NK cells (Pazina et al.,
2017).

FIGURE 1
The activating and inhibitory receptor signaling regulates NK cell activation. Cells undergoing stress such as tumor cells lose their MHC class I
molecules, ligands for KIR inhibitory receptors on NK cells. At the same time, they acquire stress-associated molecules which act as ligands for the
activating receptors NKG2D and DNAM1. Thus, the lack of inhibitory signaling coupled with induction of activating signaling shifts the balance toward NK
cell activation, leading to killing of cancer cells. During tumor progression, interaction of immune checkpoint receptors with their cognate ligands
diminishes NK cell cytotoxic potential and prevent NK anti-tumor functions.
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NKp46 engagement induces NK cell cytotoxicity and cytokine
release upon interaction with viral components such as
hemagglutinin, the soluble complement factor P as well as
heparan sulfate proteoglycan, which is expressed by different
tumors (Sivori et al., 1997; Narni-Mancinelli et al., 2017).

NKp44 ligands include Proliferating Cell Nuclear Antigen
(PCNA), platelet-derived growth factor DD (PDGF-DD),
nidogen-1, and NKp44L, an isomer of mixed-lineage leukemia-5
protein (MLL5). All of them by binding NKp44 can improve tumor
sensitivity to NK cell cytotoxicity (Baychelier et al., 2013). However,
when PCNA is aberrantly expressed on the surface of tumor cells it
can associate with HLA-I molecules forming an inhibitory ligand
complex (Rosental et al., 2011).

NKp30 ligands include B7-H6 and the HLA-B-associated
transcript 3 protein (BAT3), also known as BAG6, both able to
promote NK cell cytotoxicity against tumor cells and soluble
galectin-3 implicated in NK cell tumor evasion (von Strandmann
et al., 2007; Brandt et al., 2009; Wang et al., 2014).

Additionally, all NCRs can recognize heparan sulfate
glycosaminoglycans (HS-GAGs) which are significantly
upregulated in tumor cells.

NKG2D is expressed on NK cells but also on CD8+αβ T cells, γδ
T cells, and activated CD4+αβ T cells (Ullrich et al., 2013; Marcus
et al., 2014; Lanier, 2015). To signal, NKG2D associates with DNAX-
activating protein of 10 kDa (DAP10) which has a YINM motif that
induces PI3 kinase and Grb2-Vav signaling. However, in murine NK
cells NKG2D can also associate with DAP12, containing an immune
tyrosine-based activation motif (Diefenbach et al., 2002; Gilfillan
et al., 2002).

Human NKG2D ligands (NKG2DLs) consist of two families of
polymorphic molecules structurally related to MHC class I: MHC
class I related chains (MIC)A and B, mainly expressed as
transmembrane proteins, and six UL16 binding proteins (ULBPs)
that can be associated with the membrane via a transmembrane
domain or by GPI anchor (Raulet et al., 2013; Lanier, 2015; Zingoni
et al., 2018). Murine NKG2DLs include members of the Rae-1
family, which are orthologs of human ULPBs, murine UL16-
binding protein-like transcript 1 (MULT1) and the H60a-c
family (Raulet et al., 2013).

DNAM1 (CD226) belongs to the immunoglobulin receptor
family and is expressed on the surface of NK cells, T cells,
monocytes and subsets of B cells (Shibuya et al., 1996; de
Andrade et al., 2014). It can transmit activating signals
through the association with lymphocyte function-associated
antigen 1 (LFA-1) upon binding with its ligands Nectin2
(CD112) and PVR (CD155) (Bottino et al., 2003; Tahara-
Hanaoka et al., 2004; Chan et al., 2014a). In addition to
DNAM1, PVR can also interact with CD96 (TACTILE) and
with TIGIT, checkpoint receptors that can counterbalance the
DNAM1 mediated activating signals (Chan et al., 2014b; Molfetta
et al., 2020).

Under normal conditions, most of the above-mentioned NK cell
activating ligands are absent in autologous cells but their expression
is induced upon transformation on a broad panel of tumors (Groh
et al., 1999; Pende et al., 2001; Friese et al., 2003; Jinushi et al., 2003;
Salih et al., 2003; Textor et al., 2016). On the other hand, healthy cells
express low levels of Nectin2 and PVR but their amount increases on
malignant cells promoting DNAM1-dependent NK cell cytotoxicity

(Pende et al., 2005; Carlsten et al., 2007; El-Sherbiny et al., 2007;
Lakshmikanth et al., 2009).

Thus, NK cell ability to distinguish their targets is dictated by a
tight regulation of activating ligands on the surface of transformed
cells.

Of note, the low affinity receptor for immunoglobulin G
(FcγRIIIA, CD16) also contributes to tumor clearance, as
revealed by the augment of antibody-dependent cell-mediated
cytotoxicity (ADCC) by NK cells upon the use of therapeutic IgG
monoclonal antibodies (Mentlik James et al., 2013; Battella et al.,
2016).

3 Ubiquitin and ubiquitin-like
modifications able to regulate NK cell
functions

Ubiquitination, SUMOylation and Neddylation are PTMs
whereby small highly conserved proteins called ubiquitin (Ub),
SUMO (Small Ubiquitin-related MOdifier) and NEDD8 (Neural
Precursor Cell Expressed, Developmentally Downregulated 8),
respectively, are covalently bound to lysine (K) residues of target
proteins through the sequential action of selective E1, E2, and
E3 enzymes that are frequently upregulated during malignant
transformation (Chen et al., 2020; Xue et al., 2020).

Despite substantial mechanistic similarities between Ub- and
Ub-like modifications, specific properties of each system can
determine the fate of the modified protein (Figure 2A).

Ubiquitination through the covalent addition of a single Ub
molecule or various Ub chains regulate numerous biological and
functional events. For instance, K48 poly-Ub chain formation is
associated with protein degradation by the 26S proteasome, whereas
the addition of a single Ub molecule through K63 promote non-
degradative fates including membrane protein endocytosis
(Passmore and Barford, 2004; Sadowski et al., 2012).

De-ubiquitinating enzymes (DUBs) remove Ub chains from
proteins to maintain intracellular Ub levels, and the interplay
between ubiquitinating and de-ubiquitinating enzymes is
necessary to maintain cellular homeostasis (Zou and Lin, 2021).

SUMOylation targets a consensus motif, ΨKXE/D (where Ψ

represents a large hydrophobic residue and X any amino acid), in
which the lysine residue serves as acceptor site of different SUMO
family members. The reaction is catalyzed by a dimeric
E1 conjugating enzyme (SAE1/2) and a unique E2 enzyme called
Ubc9 (ubiquitin conjugating enzyme 9), which works together with
a dozen of E3 SUMO ligases to ensure substrate specificity (Flotho
and Melchior, 2013).

SUMO is mainly conjugated as a monomer, however some
SUMO members share with Ub the ability to form SUMO
chains. SUMOylated substrates can recruit proteins bearing
SUMO interaction motifs (SIMs) and undergo conformational
changes that affect their stability, subcellular localization and
functions (Flotho and Melchior, 2013).

Although SUMOylation of target proteins in general does not
lead to their proteasomal degradation, SUMO and Ub pathways
often act sequentially (Lallemand-Breitenbach et al., 2008; Tatham
et al., 2008) and/or can synergize to induce substrate degradation, as
demonstrated for IκBα (Aillet et al., 2012).
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As for ubiquitination, SUMOylation can be reverted by de-
SUMOylated enzymes including the family of Sentrin/SUMO-
specific proteases (SENP1-3 and SENP5-7) (Tokarz and
Woźniak, 2021). SUMOylation and de-SUMOylation have been
shown to control wide arrays of cellular activities including cell
cycle, DNA repair, transcription and chromosome remodeling
(Celen and Sahin, 2020).

Analogous to ubiquitination and SUMOylation, Neddylation
also uses E1 and E2 enzymes as well as multiple E3 ligases to

ensure substrate modification (Kamitani et al., 1997). It is well
recognized that the main substrates for Neddylation are cullins, a
family of multi-components Cullin-RING ubiquitin Ligases
(CRLs): Cullin Neddylation leads to a conformational change,
which allows the simultaneous binding of other components to
cullins and hence the assembly of a functional Ub ligase big
complex (Liu et al., 2002; Ohh et al., 2002; Sakata et al., 2007).
Notably, a dynamic cycling of cullin Neddylation and de-
Neddylation is required for the optimal CRL activity since

FIGURE 2
Comparison of ubiquitin, SUMO and NEDD8 conjugation pathways controlling NK cell-mediated recognition of tumor cells. (A) Schematic
representation of the ubiquitin pathway and the ubiquitin-like protein modifications SUMOylation and Neddylation. Ub, ubiquitin; S, SUMO; N8, NEDD8.
(B)Model depicting how ubiquitin, SUMO andNEDD8 pathways regulate CD16, NKG2D andDNAM-1 surface expression onNK cells (left) andNKG2D and
DNAM-1 ligand expression on cancer cell (right). Therapeutic interventional strategies aimed to prevent post-translational mechanisms affecting
expression of NK cell receptors and their cognate ligands on cancer cells are also shown.
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perturbations of either Neddylation or de-Neddylation cause
accumulation of CRL specific substrates.

Besides cullins, a growing number of non-cullin targets has also
been reported in a process referred as non-canonical Neddylation
(Enchev et al., 2015). This process mainly affects protein
intracellular localization and functions as well as protein stability
(Brillantes and Beaulieu, 2019; Zou and Zhang, 2021).

3.1 Post-translational modifications and
regulation of NK cell maturation

Development and maturation of NK cells is regulated by
progressive and coordinated TF activity (Brillantes and Beaulieu,
2019; Bi and Wang, 2020). In this regard, TFs such as E4BP4, TOX,
ETS1, and ID2 are required for NK cell lineage commitment, while
others such as ID2, T-bet, Eomes and ZEB2 for NK cell maturation,
where they promote the expression of genes coding for effector
molecules, receptors responsible for egress, and cell-surface
maturation markers (Brillantes and Beaulieu, 2019; Bi and Wang,
2020).

In this scenario, SUMOylation and ubiquitination have been
described to regulate the activity of these TFs in cancer models and
during lymphocyte differentiation and activation.

E4BP4 is a basic leucine zipper TF able to regulate different
biological pathways, ranging from circadian rhythms to lymphocyte
differentiation and function (Cowell, 2002; Yin et al., 2017).
E4BP4 is expressed by CLPs, before other NK lineage-defining
TFs, and its expression increases as NK cells undergo
differentiation and maturation (Male et al., 2014).

Studies in E4BP4−/− mice showed that the activity of E4BP4 is
crucial for the generation of ILC subsets and NK cells, although it is
dispensable for the development of “tissue-resident” NK cell
populations in the salivary gland and liver (Gascoyne et al., 2009;
Kamizono et al., 2009; Cortez et al., 2014; Crotta et al., 2014; Seillet
et al., 2014; Yu et al., 2014).

Different stimuli can regulate the expression of E4BP4 such as
IL-7 in ILC progenitors and IL-15 in NK cells (Geiger et al., 2014;
Male et al., 2014; Marçais et al., 2014; Yang et al., 2015). Importantly,
the activity of this TF has been shown to be strongly regulated by
SUMOylation. In this context, mutations of the SUMOylation sites
in the E4BP4, lead to increased transcriptional activity and higher
production of NK cells when compared to the WT protein. These
observations indicate that E4BP4 is critical for early NK cell
development and function, and that control of E4BP4 activity by
PTM such as SUMOylation can have implications for the
production and development of immunotherapeutic strategies
using NK cells.

In a different PTM pathway, ubiquitination and
deubiquitination reactions has been well characterized as
critical for NK cell maturation and anti-cancer activity. In
particular, the activity of the protein MYSM1 (Myb-like,
SWIRM, and MPN domains-containing protein 1), a histone
H2A DUB reported to induce H2A deubiquitination and
activation of several target genes in cancer, has been shown to
regulate NK cell maturation downstream of IL-15 signaling, with
no activity on NK lineage specification and early development
(Nandakumar et al., 2013).

In this context, also the DUB Otub1 has been shown to
control the maturation and activation of NK cells (Zhou et al.,
2019). Deletion of Otub1 in mice had no effect on total NK cell
numbers in the spleen, but it significantly increased the
frequency of stage 4 mature NK cells. Importantly, Otub1-KO
NK cells were more responsive to cytokine-stimulated activation
with increased granzyme B and CCL5 expression.
Mechanistically, Otub1 is a critical modulator of the IL-15-
activated ubiquitination of the AKT kinase, important for
metabolic reprogramming, activation, and homeostatic
lymphocyte maintenance. Interestingly, deletion of Otub1 in
mice was associated with tumor rejection with increased
infiltration of NK cells, thus functioning as a checkpoint for
IL-15 signaling (Zhou et al., 2019).

3.2 PTMs regulate the expression of NK cell-
activating receptors and of their cognate
ligands on tumor cells

NK cells represent the first line of defense against cancer, and
tumor progression is usually accompanied by a decline of their
functions. Activating receptors are frequently down-modulated
and rendered functionally inactive on NK cells derived by
patients affected by different kind of tumors (Costello et al.,
2002; Groh et al., 2002; Doubrovina et al., 2003; Oppenheim et al.,
2005; Fauriat et al., 2007; Coudert et al., 2008; Carlsten et al.,
2009; Garcia-Iglesias et al., 2009; Carlsten et al., 2010; Sanchez-
Correa et al., 2012).

Even though the mechanisms underlying NCRs down-
modulation are still undefined, the decreased surface
expression of engaged CD16, NKG2D, and DNAM1 mainly
occurs through Ub-dependent endocytosis (Paolini et al.,
1999; Molfetta et al., 2014a; Quatrini et al., 2015; Molfetta
et al., 2016; Braun et al., 2020).

NKG2D engagement is rapidly followed by
DAP10 ubiquitination required for receptor internalization and
subsequent lysosomal degradation (Molfetta et al., 2014a;
Quatrini et al., 2015; Molfetta et al., 2016). Of note, NKG2D
downregulation also cross-tolerizes other NK cell activating
receptors (Oppenheim et al., 2005; Coudert et al., 2008; Hanaoka
et al., 2010; Koch et al., 2017; Milito et al., 2023).

Ligand-dependent DNAM1 internalization on NK cells likely
involves Ubmodification, as formally demonstrated inmurine CD8+

T cells (Braun et al., 2020).
On human NK cells, CD16 aggregation in response to antibody-

coated tumor cells is followed by ubiquitin-dependent CD16ζ
subunit endocytosis and lysosomal degradation (Paolini et al.,
1999; Molfetta et al., 2014b). Similarly, anti-CD20 opsonized
tumor cells promote CD16 clearance from NK cell surface
followed by a dramatic reduction of ADCC (Capuano et al.,
2015; Capuano et al., 2017).

Altogether these results demonstrate that interaction with
ligand-expressing tumor cells and/or monoclonal antibody-based
therapies downregulate activating receptor with a mechanism that
involves the Ub pathway.

Whether other PTMs, including SUMOylation, impact on
activating NK cell receptor expression remains unexplored.
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During malignant transformation different stressful stimuli are
responsible for NK cell activating ligand regulation on tumor cells.
The implication of transcriptional mechanisms is quite well known
and deeply described (Raulet et al., 2013; Cerboni et al., 2014) and
recently a role for PTMs has also been envisaged (Molfetta et al.,
2019a).

In this regard, several data demonstrate that surface expression
of human NKG2DLs is regulated by post-translational mechanisms
(Fuertes et al., 2008; Aguera-Gonzalez et al., 2009; Fernandez-
Messina et al., 2016; Soriani et al., 2016; Bilotta et al., 2019). In
melanoma cells, MICA is retained in the endoplasmic reticulum and
degraded by proteasome (Fuertes et al., 2008), while in different
tumor cell lines MICB and ULBP1 are both continuously
internalized and targeted to lysosomal or proteasomal
degradation, respectively (Aguera-Gonzalez et al., 2009;
Fernandez-Messina et al., 2016; Soriani et al., 2016; Bilotta et al.,
2019).

Regarding DNAM1Ls, activation of Unfolded Protein Response
promotes internalization and degradation of PVR in hepatocellular
carcinoma (Gong et al., 2014). Moreover, in MM cells SUMO and Ub
pathways regulate PVR and Nectin2 surface expression, respectively
(Zitti et al., 2017; Molfetta et al., 2019b). In particular, our group
demonstrated that PVR is SUMOylated and prevalently expressed as
intracellular pool in severalMMcell lines. Accordingly, inhibition of the
SUMO pathway promotes PVR translocation to the cell surface
rendering MM cells more susceptible to DNAM1-mediated NK cell
cytotoxicity (Zitti et al., 2017). Notably, the SUMO pathway regulates
PVR surface expression in tumors other than MM, supporting a more
general role for SUMOylation in regulating tumor cell recognition and
killing by NK cells (Zitti et al., 2017). Whether the SUMO pathway
regulates the expression of NK cell activating ligands different than PVR
is currently unknown.

Thus, SUMOylation and other related PTMs represent novel
potential targets for therapeutic intervention aimed to improve NK
cell-mediated tumor surveillance by promoting activating ligand
expression in transformed cells (Figure 2B).

4 Targeting post-translational
mechanisms to regulate NK cell-
mediated recognition and killing of
cancer cells

The specific enzymes involved in human NK cell activating
ligand modification by the Ub/proteasome pathway have not been
identified yet. However, it is possible to change the fate of
ubiquitinated ligands by the use of proteasome inhibitors
(Morrow et al., 2015).

Bortezomib, Carfilzomib and Ixazomib are three FDA-approved
proteasome inhibitors already used as chemotherapeutic drugs for
relapsed and/or refractory MM patients and for the treatment of
other hematological malignancies (Morrow et al., 2015; Schlafer
et al., 2017). Notably, low doses of bortezomib increase the
expression of NKG2D and DNAM-1Ls on MM cells and result in
enhanced NK-cell susceptibility (Soriani et al., 2009; Niu et al., 2017;
Fionda et al., 2018).

Regarding SUMO pathway, Ginkgolic acid was the first
compound identified to inhibit the formation of E1-SUMO

intermediates (Fukuda et al., 2009). Notably, Ginkgolic acid
increase PVR expression on MM cells rendering them more
susceptible to NK cell mediated-lysis (Zitti et al., 2017).
However, inhibition of the SUMO pathway occurs at
micromolar range and can have several non-SUMO-related
effects. Recent advances in the development of synthetic E1-
SUMO inhibitors including ginkgolic acid derivatives and, most
recently, TAK-981 have enabled more specific and efficient
targeting of the SUMO pathway (Kumar et al., 2016; Brackett
et al., 2020; Langston et al., 2021). TAK-981 is currently involved
in phase 1 clinical trials for the treatment of patients with solid
tumors and lymphomas (Lightcap et al., 2021). Of note, TAK-981
treatment promotes anti-tumor innate immune responses
through activation of type I interferon (IFN-I) signaling that
enhances ex-vivo macrophage phagocytosis and NK cell
cytotoxicity (Nakamura et al., 2022). However, the mechanism
by which TAK-981 activates IFN-I responses is still unclear and
need further investigation.

MLN4924 (Pevonedistat) is a first-in-class inhibitor of
NEDD8-activating enzyme currently involved in phase I/II/III
clinical trials for patients suffering from solid and hematological
malignancies (Nawrocki et al., 2012; Sarantopoulos et al., 2016;
Shah et al., 2016). Notably, MLN4924 increases the expression of
NKG2DLs on MM cells, making these cells more susceptible to
NK cell degranulation and killing (Petillo et al., 2021). In
particular, MICA expression is regulated at mRNA level as
result of an increased promoter activity after the inhibition of
the transcriptional repressors IRF4 and IKZF3. Differently,
MLN4924 induces accumulation of MICB on the plasma
membrane with no change of its mRNA levels, indicating a
post-translational regulatory mechanism (Petillo et al., 2021).

5 Discussion

In conclusion, different PTMs regulate NK cell-mediated
surveillance against tumors.

The Ub pathway contributes to downregulate the surface
expression of activating NK cell receptors engaged by their
respective ligands.

On tumor cells, several NK cell activating ligands are retained
intracellularly and/or degraded upon ubiquitination or
SUMOylation. Moreover, inhibition of Neddylation upregulates
cell surface expression of NKG2DLs on MM cells, making them
more efficient to activate NK cell degranulation.

Intriguingly, several inhibitors of those PTMs have been already
developed and their use in combination with conventional therapies
represents a useful tool to potentiate NK-cell mediated recognition
and killing of tumor cells by preserving activating ligand expression
on their surface.

Given the reversible nature of SUMOylation and the other
related PTMs, it is important to deeply consider the balance
between all the potential regulators of those pathways to make
their pharmacological inhibition an attractive therapeutic strategy
for the treatment of cancer patients.

Moreover, in the future, appropriate preclinical models
including an intact tumor microenvironment are needed to
explore the full therapeutic potential of SUMO and SUMO
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related pathway inhibitors on NK cell-mediated anti-cancer
responses.
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