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At present, extracellular vesicles (EVs) are considered key candidates for cell-free
therapies, including treatment of allergic and autoimmune diseases. However,
their therapeutic effectiveness, dependent on proper targeting to the desired cells,
is significantly limited due to the reduced bioavailability resulting from their rapid
clearance by the cells of the mononuclear phagocyte system (MPS). Thus,
developing strategies to avoid EV elimination is essential when applying them
in clinical practice. On the other hand, malfunctioning MPS contributes to various
immune-related pathologies. Therapeutic reversal of these effects with EVs would
be beneficial and could be achieved, for example, by modulating the macrophage
phenotype or regulating antigen presentation by dendritic cells. Additionally,
intended targeting of EVs to MPS macrophages for replication and repackaging
of their molecules into new vesicle subtype can allow for their specific targeting to
appropriate populations of acceptor cells. Herein, we briefly discuss the under-
explored aspects of the MPS-EV interactions that undoubtedly require further
research in order to accelerate the therapeutic use of EVs.
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1 Therapeutic extracellular vesicles

Extracellular vesicles (EVs), usually divided into exosomes, microvesicles, and less
studied apoptotic bodies, are released by all types of human cells and present in all body
fluids (Wiklander et al., 2019). However, EV’s isolation, characterization, and classification
especially, poses many difficulties, constituting a challenge limiting the practical use of these
membranous structures (Théry et al., 2019). In addition, they are isolated from other
eukaryotic cells, including fungi (Rizzo et al., 2020) and plants (Urzì et al., 2021), and can also
be released by bacteria (Sartorio et al., 2021). The therapeutic potential of these lipid
membrane-enclosed vesicles and thus the future development of a new class of EV-based
therapeutics has been clearly emphasized in recent years (Conlan et al., 2017; Bernardi and
Balbi, 2020; Jahromi and Fuhrmann, 2021; Cheng andHill, 2022). EVs derived from immune
cells, such as T cells, dendritic cells (DCs) or macrophages, as well as from other sources,
such as mesenchymal stem cells (MSCs), have a clear immunomodulatory capacity (Zhang
et al., 2014; Zhou et al., 2020; Hazrati et al., 2022) due to the expression of costimulatory
molecules, antigen presenting activity and transfer of specific cargos, which makes them
useful tools in the propagation of anti-tumor response or autoimmune suppression (Marar
et al., 2021). New opportunities for EVs’ engineering are proposed for the treatment of
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neurological, bone, cardiac and metabolic diseases, as well as cancers
(Nazimek and Bryniarski, 2020b; Liu et al., 2022; Sun et al., 2023),
and in regenerative medicine (Lelek and Zuba-Surma, 2020; Lee and
Kim, 2021; Karnas et al., 2023). Moreover, modified EVs are
described as promising vehicles for targeted drug delivery,
especially in cancer therapy (Chen J. et al., 2022; Sun et al., 2022,
2023; Tan et al., 2022).

2 Biodistribution of EVs in the context
of their therapeutic efficacy and
clearance

In vivo biodistribution studies are one of the necessary steps
towards the translational application of EVs (De Sousa et al., 2023).
Biodistribution of EVs depends on various parameters, including the
route of administration, source of parental cells, target cells, as well
as the size of vesicles (Wiklander et al., 2015; Murphy et al., 2019).
Obviously, the appropriate dose of administered EVs is equally
important for their future fate in the organism (Gupta et al., 2021).
EVs with their cargos are able to reach different distant organs
following various routes of administration, and the most commonly
described targeted organs are those enriched in cells of the
mononuclear phagocyte system (MPS), and include liver, spleen,
kidneys, lungs, intestines, heart and brain (Wen et al., 2016; Manca
et al., 2018; Kang et al., 2021; Samuel et al., 2021; Verweij et al., 2021;
Driedonks et al., 2022; López de las Hazas et al., 2022; Lorca et al.,
2022). These findings suggest the crucial role of MPS cells in the
uptake and clearance of exogenously-delivered EVs. Due to the
technical difficulties encountered, the issue of MPS uptake of
endogenous EVs remains open. However, it can be concluded
that the vast majority of vesicles secreted by body cells are
naturally removed from the extracellular space by this route.
Similarly to other new therapeutics, EVs’ biodistribution studies
focus on validation of pharmacokinetic parameters, including half-
lives of distribution and elimination phases (Kang et al., 2021). The
rapid clearance of therapeutic EVs, resulting in their short half-life in
circulation, is one of the main difficulties when adapting them to
therapy (Esmaeili et al., 2022; Lu et al., 2022). Accordingly, some
researchers point to the relatively short half-life of EV in various
tissues, estimated at 30 min or less (Lai et al., 2014; Ronquist, 2019),
while others note the time-dependent changes in the circulation and
biodistribution of administered EVs, as recently analyzed by Kang
et al. (2021).

Under physiological and disease-associated conditions,
excretion of EVs into urine or even exhaled air makes them
promising biomarkers, but accelerates their removal from
circulation (Lai et al., 2014; Lucchetti et al., 2021). However, the
crucial role in EVs’ rapid clearance has been attributed to
mononuclear phagocyte system.

3 Mononuclear phagocyte system

There have been many milestones along the way to the current
definition of the mononuclear phagocyte system (MPS), formerly
known as the reticuloendothelial system (RES) (Yona and Gordon,
2015). Gordon and Plüddemann (2019) define it as a dispersed

organ (Figure 1), due to different tissue residence of MPS cells that
include monocytes, macrophages and DCs (Chow et al., 2011), but
some authors prefer to focus only on monocytes and macrophages
(Hume et al., 2019). MPS cells inhabit all tissues of the body where
they can acquire specific, tissue-oriented functions, as in the case of
microglia and osteoclasts (Ngo et al., 2022). Conversely, DCs are
more motile than macrophages and therefore more likely to migrate
to local lymphoid tissues to present antigens during the induction
phase of an immune response, while macrophages rather induce an
effector phase at the site of inflammation (Hull et al., 2014).

This system is essential for maintaining homeostasis as a major
part of the first line of defense against pathogens. Physiologically,
MPS is mainly responsible for phagocytosis of self- and foreign
antigens, as well as antigen processing and presentation to T cells.
Therefore, MPS is considered to link the innate and adaptive
immunity (Pahari et al., 2018; Uribe-Querol and Rosales, 2020),
and to play a critical role in tissue repair (Viola et al., 2019) as well as
in the clearance of damaged, senescent, dying and apoptotic cells
(Gordon and Plüddemann, 2018). However, MPS also contributes to
immune-related pathologies, especially in infections and chronic
inflammation (Hume et al., 2021).

After systemic administration, accumulation of EVs inMPS cell-
enriched organs, such as spleen and liver, causes their rapid
clearance and inhibit their delivery to distant target organs
(Charoenviriyakul et al., 2017; Mentkowski et al., 2018; Tian
et al., 2018). Additionally, this may significantly affect the
effectiveness of EV-based vaccines, e.g., in anti-tumor
immunotherapies (Chen W. et al., 2022) (Figure 1). The lack or
significant decline of EVs’ elimination from circulation in
macrophage-depleted mice confirms the essential role of MPS in
this process (Imai et al., 2015; Matsumoto et al., 2020; Warashina
et al., 2022). It is worth to note, however, that EVs released by MPS
cells, such as monocytes, appear to be less extensively phagocytosed
(You et al., 2022).

MPS cells are also considered the major biological barrier
limiting the efficacy of systemically administered therapeutic
nanomaterials or synthetic nanoparticles (Cong et al., 2022; Mills
et al., 2022; Ruan et al., 2022; Lu et al., 2023), especially due to their
accumulation in liver macrophages (Ngo et al., 2022), which
promotes research into strategies to avoid MPS phagocytosis.

4 Evasion from clearance by MPS

EVs’ escape from phagocytosis has been described as one of the
strategies delaying their clearance and improving uptake by targeted
cells (Esmaeili et al., 2022). Different camouflage approaches are
proposed to avoid reducing EVs amount as a result of MPS action
after systemic administration (Parada et al., 2021). The “don’t eat
me” signal transmitted by CD47 on tumor cells contributes to the
inhibition of their phagocytosis by interacting with signal regulatory
protein-alpha (SIRPα) displayed by macrophages (Liu Y. et al.,
2023). Also, the expression of CD47 or CD24 molecules
protecting against phagocytosis on tumor cell-derived EVs has
been reported (Altevogt et al., 2020). A similar strategy is also
suggested for therapeutic EVs (Belhadj et al., 2020). Kamerkar
et al. demonstrated that CD47 expression on fibroblasts-derived
EVs limits their clearance by circulating monocytes (Kamerkar et al.,
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2017). Additionally, Li Y. et al. (2022) showed that overexpression of
this molecule on EVs, unlike cells, does not transmit cell death
signals. Zhang et al. (2019) constructed artificial chimeric exosomes
by integrating membrane proteins from red blood cells (containing
surface CD47) and cancer cells into a synthetic phospholipid bilayer,
that have anti-tumor activity and the ability to resist phagocytosis.
Similarly, Du et al. (2021) showed that CD47-overexpressing EVs
loaded with ferroptosis inducer and photosensitizer effectively evade
MPS phagocytosis, which improved their bioavailability and
delivery to targeted tumor. Moreover, CD47-containing EVs may
competitively interact with macrophage-expressed SIRPα to disturb
“don’t eat me” signaling, thereby promoting tumor cell phagocytosis
(Cheng et al., 2021). Other molecules that could be expressed by EVs
to avoid their phagocytosis and extend the half-life are CD31, CD44,
or β2-microglobulin (Parada et al., 2021).

Rapid clearance after intravenous administration disturbs
targeted EVs delivery to injured heart tissue (Chen et al., 2021),
while therapeutic, miRNA-loaded EVs derived from CD47-
overexpressing MSCs were present in serum longer than
unmodified EVs and preferentially accumulated in the heart of
mice with myocardial infarction reperfusion injury (Wei et al.,
2021). A two-step strategy of successful EVs’ delivery to
myocardium has also been described recently. First, blocking the
macrophage-expressed endocytosis gene CLTC for the clathrin
heavy chain with EV-delivered siRNA was used to impair the
phagocytic activity of hepatic and splenic macrophages. Secondly,
therapeutic, miR-21a-containing EVs were injected to significantly
improve the cardiac function (Wan et al., 2020).

Another method to reduce the clearance of intravenously
administered EVs is based on their conjugation with micelles
containing polyethylene glycol (PEG) (Kooijmans et al., 2016). In
addition, combination of PEG and CD47 expression on engineered
lipid nanoparticles greatly increased their anti-HIV activity by

escaping from MPS phagocytosis (Zhang et al., 2023). Modern
research approaches propose the use of PEGylation to protect
EVs from phagocytosis by MPS cells, which may also support the
targeted cargo delivery by constructing “smart exosome platforms”
(Guo et al., 2021). Moreover, reduction of the amount of negatively
charged phosphatidylserine-derived groups on the EVs’membranes
may also suppress their uptake by macrophages (Matsumoto et al.,
2017; Esmaeili et al., 2022).

Various strategies are proposed to solve similar problems with
the therapeutic administration of synthetic nanoparticles, especially
thatWilhelm et al. (2016) estimated the level of their delivery to solid
tumors at only 0.7% of the administered dose. These approaches
involve either manipulation of nanomaterials by surface coating
with protective factors or changing their shape, or inhibiting and
depleting MPS cells (Liu et al., 2017; Ai et al., 2018; Xia et al., 2019;
Mills et al., 2022; Lu et al., 2023), and should be combined to increase
the biological efficacy. It might be a good idea to use bacteria as an
example, as they develop different mechanisms to escape
phagocytosis, allowing them to expand and weaken the host’s
immune system (Leseigneur et al., 2020; Pidwill et al., 2023).

5 Phagocytosis of EVs as a desirable
process

Therapeutic functions of EVs depend on the suitable targeting of
acceptor cells by direct interaction with extracellular receptors or
fusion with cell membrane (Gurung et al., 2021). They are then
captured by target cell through different pathways, including
caveola-, clathrin- or receptor-mediated and lipid raft-dependent
endocytosis as well as macro- and micropinocytosis (Kwok et al.,
2021; Pedrioli and Paganetti, 2021; Hazrati et al., 2022). Moreover,
internalization of EVs by phagocytosis is also considered (Tkach and

FIGURE 1
Positive and negative effects of the interaction of the mononuclear phagocyte system (MPS) and extracellular vesicles (EVs). MPS cells, such as
monocytes, macrophages and dendritic cells, are found in virtually all body tissues, where they play an important role in tissue homeostasis and in
immune defense. However, MPS cells remove both intrinsically-released and therapeutically-administered EVs, which limits their bioavailability. On the
other hand, EVs targeting MPS cells can restore their impaired functions to induce the expected biological/clinical effect.
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Théry, 2016; Jadli et al., 2020). Some studies described phagocytosis
as the most efficient mechanism of internalization of cancer and
leukemic cell-derived EVs (Feng et al., 2010; Emam et al., 2018).
However, EV phagocytosis appears to be a very complex process.
Accordingly, observations by Montecalvo et al. (2012) on EV-
shuttled miRNA transfer between DCs suggest that EVs release
their content to targeted cell cytosol by the complete fusion with the
phagosome membrane. This can be preceded by EV hemifusion
with the cell membrane followed by endocytosis and/or by
internalization as free vesicles.

Moreover, resident alveolar macrophages internalize most of the
microvesicles released into the alveoli under the homeostatic
conditions (Soni et al., 2022), and their phagocytosis results in
alleviation of inflammation during acute lung injury in mice
(Mohning et al., 2018), while impaired EV phagocytosis in cystic
fibrosis significantly reduces antibacterial immune defenses
(Koeppen et al., 2021). The diversity of surface receptors on
phagocytic cells allows for the binding of a large number of
ligands on the EV surface, which makes phagocytes almost ideal
recipient cells (Gonda et al., 2020). Thus, under certain
circumstances, it can be assumed that targeting EVs to
phagocytes is a desirable process (Figure 1).

6 MPS cells as the target of EVs

Under certain circumstances, MPS cells contribute to immune-
related pathologies. Thus, targeting them by EVs becomes an
interesting immunotherapeutic approach. While maturation,
migration, and antigen-presentation processes are the primary
targets of DC-directed immunomodulatory EVs (Liu X. et al.,
2023), switching and balancing the activation/polarization status
appears to be most effective in targeting macrophages (Hu et al.,
2021).

As recently reviewed, MSC-derived EVs rather downregulate the
antigen-presenting capabilities of DCs (Liu X. et al., 2023), while
EVs from other cell sources, including engineered CAR-T
lymphocytes, can stimulate the presentation of antigens by DCs,
e.g., in cancer (Buzas, 2023).

However, tissue-resident macrophages seem to attract more
research attention. Activated microglia are involved in
neuroinflammation and related disorders, including
neurodegenerations such as Alzheimer’s and Parkinson’s diseases
(Muzio et al., 2021). Thus, microglia as MPS cell population can be
considered as an interesting target for therapeutic EVs (Xin et al.,
2021). Recent studies indicate the possibility of modulating
microglial cells by administering EVs isolated from human
induced pluripotent stem cell-derived neural stem cells. Following
EV administration, a dose-dependent decrease in the secretion of
tumor necrosis factor-α (TNF-α) and interleukin 1β (IL-1β) was
observed, mediating anti-inflammatory effects of EVs on
proinflammatory microglia (Upadhya et al., 2022). Furthermore,
the latest findings demonstrated a therapeutic effect of intravenously
injected Schwann cell-derived EVs on spinal cord injury by
suppressing M1- and stimulating M2-polarization of infiltrating
macrophages and microglia (Ren et al., 2023). The latter suggest that
EV-mediated MPS cell phenotype switching may produce
therapeutic effects.

Accordingly, the contribution of EVs to macrophage
polarization and induction of regulatory phenotype is
emphasized (Hyvärinen et al., 2018; Li et al., 2021; Gharavi et al.,
2022). For instance, MSC-derived EVs reduced IL-23 and IL-22
secretion by CD80low/intermediate, CD86+, CD163low, and CD206low

regulatory macrophages, enhancing their anti-inflammatory and
tolerance-promoting phenotype (Hyvärinen et al., 2018).
Moreover, MSC-derived EVs may polarize human macrophages
into radioprotective cells that exhibit high phagocytic activity and
have an ability to improve hematopoiesis in mice with lethal acute
radiation syndrome (Kink et al., 2019).

In addition, MSC-derived EVs were shown to attenuate
myocardial ischemia-reperfusion injury by promoting
macrophage polarization towards M2 phenotype (Zhao et al.,
2019; Li Q. et al., 2022). Interestingly, fusion of MSC-derived
EVs with platelet membrane fragments promoted their trafficking
to the ischemic myocardium due to the binding to circulating
monocytes (Li Q. et al., 2022). Similar therapeutic effect was
observed in myocardial infarction under the activity of miRNA-
transferring, DC-derived EVs that activated M2 macrophages in a
Treg cell-dependent manner (Zhang et al., 2021).

After local administration, MSC-derived EVs containing
therapeutic miRNAs may promote M2 macrophage-mediated
angiogenesis and tendon regeneration after its rapture (Xu et al.,
2023). Additionally, EVs isolated from adipose tissue-derived MSCs
ameliorated tendinopathy by promoting phagocytosis and
M2 polarization of macrophages (Wu et al., 2023). Furthermore,
stimulating M2 macrophage phenotype by MSC-derived EVs may
also improve ligament healing (Chamberlain et al., 2021). Adipose
tissue macrophages from lean mice release EVs that modulate
macrophage polarization via contained miRNAs to promote
wound healing in diabetic mice (Xia et al., 2023), whereas human
serum-derived EVs encouraged angiogenesis and osteogenesis by
reducing the expression of M1-related genes in macrophages (Xiang
et al., 2023). Therapeutic EVs may also diminish the activity of
M1 macrophages to alleviate periodontitis (Luo et al., 2023).

M1 macrophages exert anti-tumor activity in cancer
environment, and could be induced by miRNA-33- and miRNA-
130-overexpressing EVs (Moradi-Chaleshtori et al., 2021) as well as
by macrophage-derived EVs expressing human glycyl-tRNA
synthetase-1 that trigger cancer cell death (Park et al., 2022).
Interestingly, EVs isolated from plasma of post-irradiated
patients with cervical cancer promoted the M1 phenotype switch
in tumor-associated macrophages (Ren et al., 2022). Similar
reprogramming could be induced by tumor cell-derived
microparticles loaded with chemotherapeutic drugs (Wei et al.,
2023). Furthermore, engineered hybrid cell membrane
nanovesicles containing M2-to-M1 repolarization signals and
expressing SIRPα prevented both local cancer recurrence and
distant metastasis, through triggering an anti-tumor immune
response (Rao et al., 2020).

Macrophage activation status in bacterial-host communication
may be modulated by EVs. MCS-derived, miRNA-466-containing
EVs may participate in the host immune response to multidrug-
resistant bacteria by promoting macrophage phagocytosis (Shi et al.,
2021). However, internalization of bacterial EVs by macrophages
modifies their antimicrobial activity against Escherichia coli
(Guangzhang et al., 2023). Moreover, both bacterial EVs and EVs
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derived from infected macrophages may alter macrophage
polarization during infection (Qu et al., 2022). Interestingly,
microvesicles released by host cells and carrying bacterial pore-
forming toxins can be delivered tomacrophages, which induces their
polarization into the CD14+MHCIIlowCD86low cells that exhibit an
enhanced response to Gram-positive bacterial ligands (Köffel et al.,
2018). Recently, the mechanism of inflammasome activation or
silencing in monocytes by EVs isolated from amniotic fluid
during pregnancy has been described (Nunzi et al., 2023),
suggesting that monocyte activation status may also be
modulated by EVs.

Efficient clearance of dying and apoptotic cells by MPS allows
for the maintenance of immune homeostasis and peripheral
tolerance (Trahtemberg and Mevorach, 2017; Gordon and
Plüddemann, 2018). Thus, EV-mediated strategies to restore and/
or increase the phagocytosis of apoptotic cells by MPS may induce
therapeutic effects in autoimmune and inflammatory diseases.
Recently, significantly enhanced efferocytosis of apoptotic
cardiomyocytes by macrophages was observed after treatment
with EVs secreted by cardiosphere-derived cells to induce the
cardioprotective effects (de Couto et al., 2019). Moreover,
opsonization of apoptotic cardiomyocytes with MSC-derived EVs
significantly increased their phagocytosis by macrophages, which
augmented cardiac repair and function (Patil et al., 2021). On the
other hand, Chen et al. (2019) showed that apoptotic cell-derived
EVs increased macrophage production of transforming growth
factor (TGF)-β, which in turn enhanced the clearance of dead
cells, which led to the alleviation of colitis.

Our recent findings demonstrated that macrophages can multiply
the EV-mediated immunoregulatory signaling (Nazimek et al., 2021).
After selective engulfment of suppressor T cell-derived, miRNA-150-
carrying EVs that depends on the interaction of antibody light chains
with antigenic determinants complexed with MHC class II (Bryniarski
et al., 2013; Nazimek et al., 2015, 2018, 2019, 2020), macrophages
appear to synthesize additional miRNA-150 molecules and then
package them into antigen/MHC-expressing EVs, which enables
specific targeting of acceptor T cells (Nazimek et al., 2021). Thus,
one can speculate that MPS cells can replicate and repackage
immunoregulatory and therapeutic molecules derived from primary
EVs to then allow the signal to specifically reach the desired target cell
via secondary EV transmission.

7 Conclusion

EVs are considered key candidates for cell-free therapies,
including allergy and autoimmunity treatment (Nazimek and
Bryniarski, 2020a; Nazimek and Bryniarski, 2021). However, EV
therapeutic efficacy is affected by limited bioavailability due to their

rapid clearance by MPS cells. Thus, strategies to avoid vesicle
removal by MPS are considered essential to circumvent the
limitations associated with their clinical use. On the other hand,
dysregulated MPS cell functions contribute to various immune-
related pathologies. Thus, restoring MPS cell activity to normal by
EV treatment would be beneficial. Finally, the bystander effect of EV
removal by MPS cells can be turned positive by considering
macrophages as a multiplier of signaling contained in EVs.
Hence, all the aspects discussed briefly in this summary
(Figure 1), which have not been sufficiently researched so far, are
undoubtedly an interesting direction worth further research in order
to accelerate the use of EVs in therapy.

However, future research needs to be directed towards
standardization of processes for the production and isolation of
therapeutic EVs along with the development of strategies allowing
EVs to specifically target the desired cells when administered at
established doses, routes and schedules.
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