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Liver hepatocellular carcinoma (LIHC) is one of the most common malignant
tumors, which is difficult to be diagnosed at an early stage due to its poor
prognosis. Despite the fact that PANoptosis is important in the occurrence and
development of tumors, no bioinformatic explanation related to PANoptosis in
LIHC can be found. A bioinformatics analysis on the data of LIHC patients in TCGA
database was carried out on the basis of previously identified PANoptosis-related
genes (PRGs). LIHC patients were divided into two PRG clusters whose gene
characteristics of differentially expressed genes (DEGs) were discussed. According
to DEGs, the patients were further divided into two DEG clusters, and prognostic-
related DEGs (PRDEGs) were applied to risk score calculation, the latter of which
turned out to be practical in identifying the relationship among risk score, patient
prognosis, and immune landscape. The results suggested that PRGs and relevant
clusters were bound up with the survival and immunity of patients. Moreover, the
prognostic value based on two PRDEGs was evaluated, the risk scoring model was
constructed, and the nomogram model for predicting the survival rate of patients
was further developed. Therefore, it was found that the prognosis of the high-risk
subgroupwas poor. Additionally, three factors, namely, the abundance of immune
cells, the expression of immune checkpoints, and immunotherapy and
chemotherapy were considered to be associated with the risk score. RT-qPCR
results indicated higher positive expression of CD8A and CXCL6 in both LIHC
tissues and most human liver cancer cell lines. In summary, the results suggested
that PANoptosis was bound up with LIHC-related survival and immunity. Two
PRDEGs were identified as potential markers. Thus, the understanding of
PANoptosis in LIHC was enriched, with some strategies provided for the
clinical therapy of LIHC.
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Introduction

Hepatic carcinoma is the sixth most common cancer and the
fourth most frequent cause of cancer mortality throughout the
world. Although liver hepatocellular carcinoma (LIHC) and
intrahepatic cholangiocarcinoma (iCCA) are two typical forms of
primary liver cancer, the incidence rate of LIHC accounts for 70%
(Bray et al., 2018; Beaufrère et al., 2021). With the wide vaccination
against hepatitis B and the application of antiviral drugs, the
proportion of viral LIHC has decreased, and thus nonalcoholic
steatohepatitis (NASH) has been considered to be an important
cause of LIHC (Karim et al., 2022). In the past 10 years, several
treatment methods, including surgical therapy and nonsurgical
therapy, have been proven to have positive effects on liver
cancer. However, the high malignancy and occult nature of LIHC
left most patients with advanced or terminal cancer few
opportunities for surgical eradication (Chung et al., 2022). In
recent years, the treatment of LIHC has entered the era of
immunotherapy. The experimental results from CheckMate
040 and Keynote-224 pointed out that two programmed death 1
(PD-1) inhibitors (nivolumab and pembrolizumab) were approved
as second-line therapy for LIHC by the U.S. Food and Drug
Administration (El-Khoueiry et al., 2017; Zhu et al., 2018).

To maintain the physiological balance under normal or stressful
conditions, cells undergo a series of cell death pathways. Of all
recognized types of programmed cell death (PCD), pyroptosis,
apoptosis, and necroptosis are typical ways to control the initiation,
transduction, and execution of cell death through complicated
molecular mechanisms (Galluzzi et al., 2018; Kesavardhana et al.,
2020). The biological functions of three PCDs have been discussed
in previous studies, respectively, but they were found not to exist
separately in subsequent studies. Research studies have been
conducted on common biomarkers from three PCDs in injury or
infectious diseases (Malireddi et al., 2020a; Banoth et al., 2020; Karki
et al., 2020; Zheng et al., 2020; Karki et al., 2021a). The following
question arises: are the three modes triggered individually or taken
control by a sort of cell death induction compound, PANoptosome, that
has been identified? The pathway in which the compound is involved
has been named PANoptosis (Wang and Kanneganti, 2021). Through
the regulation of PCD pathways, it is noted that the majority of
chemotherapy drugs have reached a presentable therapeutic effect.
However, owing to mutations in tumor cells, drug tolerance can
often be seen in PCD pathways, but with stimulated PANoptosis
triggering immune system activation and drug-resistance reduction
(Malireddi et al., 2020b). For example, PANoptosis could be induced in
a variety of cancer cell lines by IFNγ in combination with TNFα, which
diminished the size of tumors in immune-deficient mice (Malireddi
et al., 2021). Additionally, oncogenesis was promoted with PANoptosis
inhibited after interdicting the interplay of ZBP1 and RIPK3 (Karki
et al., 2021b). Despite controversies and complexities, the functions of
caspase-8 enabled it to become a new target and research hotspot in
oncology research and possibly a molecular switch among three cell
death pathways (Newton et al., 2019). Hence, it is evident that obtaining
more cognition about the impact of PANoptosis on tumors is crucial for
exploring novel therapeutic strategies.

At present, in order to predict the survival and immune
landscape of cancer patients, various gene sets are employed to
construct cancer classification and prognostic features. For instance,

Chen et al. (2022a) forecasted the survival prognosis, immune
infiltration, and drug efficacy of hepatocellular carcinoma based
on pyroptosis-related genes. Among 14 differentially expressed
apoptotic genes, Zhu et al. (2020) selected two genes that could
effectively predict the diagnosis and prognosis of LIHC. By
analyzing necroptosis-related genes, Chen et al. (2022b)
discovered novel approaches for risk stratification and LIHC
treatment optimization. Nevertheless, there are no data assessing
the impact of genes associated with PANoptosis on LIHC from the
bioinformatics aspect.

Our latest data suggested that molecular aggregation and
prognostic characteristics found in PANoptosis could forecast
immunologic and prognostic conditions of LIHC patients. To
begin with, 377 LIHC patients were divided into two separate
clusters depending on the PANoptosis-related gene (PRGs)
expression level. Following the separation, the differentially
expressed genes (DEGs) of the aforementioned two clusters
assisted in the further division of the patients into additional two
clusters. Meanwhile, to predict overall survival (OS) and analyze the
effects of immunotherapy in LIHC patients, prognostic
characteristics and risk scores were conducted.

Materials and methods

Data collection

Based on clinical data and transcriptome datasets of LIHC
patients from TCGA (https://portal.gdc.cancer.gov), 374 LIHC
and 50 adjacent normal samples were analyzed. A total of
377 cases with complete clinical and pathological information
were selected for the study. Definite clinical information of LIHC
patients is provided in Supplementary Table S1. R software (version
4.1.1) was used to convert fragments per kilobase million (FPKM)
from LIHC of TCGA into transcripts per million (TPM). According
to previous research (Malireddi et al., 2019; Malireddi et al., 2020b;
Karki et al., 2020; Samir et al., 2020; Briard et al., 2021; Jiang et al.,
2021; Lee et al., 2021; Place et al., 2021; Nguyen and Kanneganti,
2022), 19 PRGs were determined, and the details are listed in
Supplementary Table S2.

PRG consensus clustering analysis

The ConsensusClusterPlus package in R language was applied to
explore the relationship between LIHC subtypes and PRG expression.
We used PAM algorithm for clustering analysis and selected the
Euclidean distance as the method for calculating distance. The seed
was set to 123,456. The Kaplan–Meier (KM) method and logarithmic
rank test were used to contrast prognostic factors of the two clusters;
meanwhile, the principal component analysis (PCA) was carried out.
The limma package andWilcoxon test were used to explore the DEGs
and clinical characteristic differences derived from two clusters. DEGs
were selected with the threshold of |log fold change (FC)| > 2 and
p-value <0.05. The gene set variation analysis (GSVA) R package was
utilized to analyze discrepancy in the biological process. Immune cell
infiltration score was counted, and immunological competence was
assessed by single-sample gene set enrichment analysis (ssGSEA).
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Functional enrichment analysis of DEGs

Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene
Ontology (GO) analyses were performed to predict the metabolic
pathways and gene function, respectively, using ggplot2,
Bioconductor, Hs.eg.db, and org R packages. The threshold was
set at p-value <0.05.

Establishment of prognostic features based
on PANoptosis

Genes used to build the prognostic features based on PANoptosis
were identified according to the aforementionedDEGs. Additional two
clusters of patients were constructed with genes derived from DEG
expression, which were compared on PRG expression,
clinicopathological characteristics, and length of survival at once. In
addition, the survival, survminer, and glmnet R packages were used to
carry out least absolute shrinkage and selection operator (LASSO)
regression analyses and multivariable Cox regression analyses. The
following formula was used to calculate the individual risk score:
∑n

i�1βi * λi, where n, βi, and λi represent the number of genes,
regression coefficient, and gene expression value, respectively. As a
result, two genes were added to the establishment of prognostic
features. High-risk and low-risk patients were separated through a
median risk score that was estimated depending on both DEG and

PRG expression. The discrepancy between the survival time of high-
risk and low-risk patients was compared through Kaplan–Meier (KM)
analysis, and the predictive accuracy of themodel was assessed through
performing the area under the curve (AUC) of the receiver operating
characteristic (ROC) curve. The nomogram of LIHC patients was
constructed according to the risk model, which was checked using a
calibration chart. In addition, TCGA data were randomly divided into
a training queue and verification queue. In order to avoid the impact of
random allocation deviation on the stability of subsequent modeling,
all samples were returned to the random grouping 100 times in
advance, and the packet sampling was carried out according to the
7:3 ratio of the training queue and the verification queue. According to
the median risk score of the training queue and the validation queue,
the samples were all divided into high-risk and low-risk subgroups.
TheKMandROCanalyses were performed for the two queues. Finally,
we validated the survival analysis of key genes through the
GSE10186 dataset.

Assessment of the tumor microenvironment
in high-risk and low-risk subgroups

Quantity peaks of infiltrated immunocytes, which were obtained
from high-risk and low-risk subgroups, were calculated using
CIBERSORT, to grasp the relevance to the risk model and tumor
microenvironment (TME). Simultaneously, the analysis was

FIGURE 1
Hereditary variability of PRGs in LIHC. (A) Mutation situations of 19 PRGs in LIHC patients. (B) Copy number alterations of PRGs. (C) Locations of CNV
alterations for PRGs on 23 chromosomes. (D) Expression difference of PRGs between LIHC and adjacent normal samples. *p < 0.05; **p < 0.01; ***p < 0.001.
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performed to identify the relationship of two prognostic genes and
the quantity peaks of infiltrated immunocytes. In addition, the
Wilcoxon rank test was applied to TME scores consisting of
stromal, immune, and ESTIMATE scores between the
aforementioned two subgroups. We used the following R
packages: “ggplot2” for creating visualizations, “limma” for the
analysis of gene expression data, and “plyr” for data manipulation.

Assessment of mutations, effects on
immune therapy, and chemotherapeutics in
high-risk and low-risk subgroups

Mutation annotation format (MAF) was programmed through
the maftools R package, to grasp gene mutations in LIHC patients
from two subgroups. Spearman’s method was utilized to discuss the
relationship between the risk model and tumor mutation burden
(TMB) score. The tumor immune dysfunction and exclusion (TIDE
http://tide.dfci.harvard.edu/) was used to predict the potential
immune checkpoint-blocking reaction in LIHC. A comparison
between immunologic checkpoint expression and drug IC50 in

both risk subgroups was conducted, to understand the
relationship between the risk model and the effects of immune
therapy and chemical agents.

Evaluation of CD8A and CXCL6 by RT-qPCR

A total of 11 pairs of LIHC and adjacent normal samples were
obtained from The Second Affiliated Hospital of Harbin Medical
University. Furthermore, this study was approved by the Ethics
Committee of the hospital. Meanwhile, expression levels of CD8A
and CXCL6 were assessed in human hepatoma cell lines (HepG2,
Hep3B, Huh7, HCCLM3, and PLC/PRF/5) and normal human
hepatic cell lines (LO2, Chang liver, and WRL68), which were
obtained from Zhongqiaoxinzhou Biotech (Shanghai, China).
HepG2, Hep3B, Huh7, HCCLM3, Chang liver, and WRL68 were
cultured in Dulbecco’s modified Eagle’s medium (DMEM, Gibco
Thermo Fisher Scientific, Inc. United States) containing 10% fetal
bovine serum (FBS, Biological Industries, Beit Haemek, Israel) and
1% penicillin–streptomycin (P/S, Solarbio, Beijing, China). LO2 was
cultured in Roswell Park Memorial Institute 1640 medium (RPMI-

FIGURE 2
Construction of PRG clusters in LIHC. (A) Interactions among PRGs in LIHC. (B) Construction of two PRG clusters depending on consensus
clustering analysis. (C) Good distribution between two PRG clusters shown on PCA. (D) Better prognosis from PRG cluster A (p = 0.043). (E) Relationship
among PRG clusters, clinical features, and PRG expression shown on the heat map. (F) Difference in the enriched pathways between PRG clusters. (G)
Difference in immune cell infiltration between PRG clusters. ***p < 0.001.
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1640, HyClone, UT, United States), supplemented with the
aforementioned ingredients. In addition, PLC/PRF/5 was cultured
in minimum essential medium (MEM). Total RNA was harvested
from tissues and cell lines utilizing TRIzol reagent (Invitrogen,
United States). cDNA was generated using the synthesis kit
(Accurate Biology), and RT-qPCR was carried out utilizing the
real-time SYBR Green Premix Pro Taq HS qPCR Kit (code
AG11701; Accurate Biology). The primers used for RT-qPCR are
listed in Supplementary Table S3.

Statistical analysis

R version 4.1.0 software was used to conduct the statistical
analysis, and |log fold change (FC)| > 2 and p-value <0.05 were
considered statistically significant.

Results

Hereditary variability of PRGs in LIHC

To reveal the hereditary variability and differential expression of
PRGs, the analysis of 377 LIHC patients was performed, which included

the comparison of 374 LIHC and 50 adjacent normal samples. The
investigation of the somaticmutagenesis rate of 19PRGs in LIHCpatients
revealed that 25 PRGs (6.74%) from 371 samples showed amutation, and
the maximummutation frequency was observed for NLRP3 (Figure 1A).
The positions of copy number variation (CNV) changes for PRGs were
observed on human chromosomes (Figure 1B). ThemaximumCNVwas
observed for AIM2, GSDMD, PIPK1, and NLRP3, whereas there was a
diminished CNV for CASP6, TAB2, CASP7, and TNFAIP3 (Figure 1C).
There existed differential expression of 16 PRGs between LIHC and
adjacent normal samples, amongwhich the expression of CASP8, FADD,
GSDMD, PARP1, and TRADD was upregulated, whereas that of AIM2,
CASP1, CASP6, CASP7, IRF1,NLRP3, RIPK1, RIPK3, TAB2, TAB3, and
ZBP1 was downregulated in tumor samples (p < 0.05) (Figure 1D).

Construction of PRG clusters in LIHC

To explore the relationship between LIHC subtypes and PRG
expression, PRG clusters were constructed. The interplay and prognostic
effects of PRGs were illustrated in the net graph (Figure 2A). Consensus
clustering analysis was performed to determine clusters with the best
interclass relevance and theworst intergroup relevance, which discussed the
relationship between LIHC classification and PRG expression. To study
what situations satisfied the criterion requirement, we adjusted the cluster

FIGURE 3
Identification of DEGs for PRG clusters. (A) GO analysis of DEGs. (B) KEGG analysis of DEGs. (C) Better prognosis from DEG cluster B (p = 0.017). (D)
Expression difference of PRGs between two DEG clusters. (E) Relevance between DEG clusters and clinical features shown on the heat map. *p < 0.05;
**p < 0.01; and ***p < 0.001.
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variables (k) and derived at k = 2 (Figure 2B; Supplementary Figure S1).
TwoPRGclusters of LIHCpatientswere classified satisfactorily (Figure 2C).
We added the KM curves, which revealed an association between LIHC
prognosis and PRG expression (Supplementary Figure S2). In addition,
therewas a statistical difference in survival durationbetweenPRGclustersA
and B (p = 0.043) (Figure 2D). A heat map was constructed to explore the
relationship among clinical characteristics, PRG expression, and PRG
clusters (Figure 2E). Compared with PRG cluster B, immune-associated
pathways accumulated in PRG cluster A, such as NOD-like and toll-like
receptor signaling pathways and T-cell receptor signaling pathway
(Figure 2F). ssGSEA was performed to compare infiltration of
immunocytes between two clusters, the outcome of which
demonstrated that activated B cells, activated CD4+/CD8+ T cells, and
others showed heightened levels in PRG cluster A (Figure 2G). In
conclusion, PRGs were related to prognosis and immunity in LIHC.

Identification of DEGs in PRG clusters

To further explore the relationship between LIHC and PRGs, GO
classification and enrichment analysis were performed on the basis of
DEGs. These DEGs were involved in biological processes of complement
activation and phagocytosis recognition, cellular components of
immunoglobulin complex, and molecular functions of antigen binding
and immunoglobulin receptor binding (Figure 3A). KEGG analysis
demonstrated that DEGs were involved in the cytokine–cytokine

receptor interaction pathway, chemokine signaling pathway, and T-cell
receptor signaling pathways (Figure 3B). Next, additional two clusters of
patients were constructed with genes derived from DEG expression
(Supplementary Figure S3). In addition, there was a statistical
difference in survival duration between DEG clusters A and B (p =
0.017) (Figure 3C). There existed differential expression of 10 PRGs
between two DEG clusters, among which the expression of NLRP3,
TNFAIP3, CASP7, PARP1, MLKL, IRF1, AIM2, ZBP1, CASP1, and
RIPK3 was upregulated in DEG cluster B (Figure 3D). A heat map was
constructed to explore the relevance among clinical characteristics, PRG
clusters, DEG clusters, and DEG expression (Figure 3E).

Analysis of prognosis of PANoptosis

The prognosis-related DEGs (PRDEGs) were selected on the
basis of LASSO and Cox regression analyses (Figures 4A, B). The
following formula was used relying on two PRDEGs: Risk score =
∑n

i�1βi p λi, where n, βi, and λi represent the number of genes,
regression coefficient, and gene expression value, respectively. The
results of the risk score pointed out that PRG cluster A and DEG
cluster B were, respectively, lower than their counterparts (Figures
4C, D). The relevance of clusters of PRGs and DEGs to the status of
risk and survival was analyzed as shown in Figure 4E. The expression
of NLRP3, MLKL, IRF1, AIM2, ZBP1, CASP1, and RIPK3 was
higher in the low-risk subgroup (Figure 4F). The relationship

FIGURE 4
Analysis of risk score. (A, B) LASSO regression analysis and partial likelihood deviance on the prognostic genes. (C, D) Relevance between risk score
and PANoptosis-relevant subgroups. (E) Relevance among PANoptosis-relevant subgroups, risk subgroups, and survival status shown on the Sankey plot.
(F) Expression difference of PRGs in two risk subgroups. **p < 0.01; ***p < 0.001.
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between PRDEG expression and risk subgroups was shown in the
heat map (Figure 5A). According to the risk score of each patient,
patients were divided into low-risk and high-risk subgroups, which
showed better survival prognosis of patients in the low-risk
subgroup (Figure 5B). Once again, the analysis results of the KM
curve supported our view (Figure 5C). Time-dependent ROC curve
analysis showed that the AUCs of 1-, 3-, and 5-year survival periods
were 0.632, 0.665, and 0.707, respectively, indicating that the risk
model had a high predictive ability for prognosis (Figure 5D). The
clinical characteristics and risk score were analyzed by the
nomogram to predict the 1-, 3-, and 5-year survival of patients
with LIHC (Figure 5E). The calibration chart showed that the
predicted probability of survival from the nomogram was highly
consistent with the observed survival probability (Figure 5F). TCGA
data were randomly divided into a training queue and a test queue.
The results of KM survival analysis and ROC curve analysis of both
queues are shown in Supplementary Figure S4. In the training queue,
the survival probability of patients in the high-risk subgroup was
significantly lower than that in the low-risk subgroup (p < 0.001),
and the AUCs of 1, 3, and 5 years were 0.693, 0.704, and 0.750,
respectively. Similarly, ideal results were obtained in the test queue,
which indicated that risk scores could effectively forecast the patient
outcome. In short, the creation of risk score would be helpful for the
analysis of prognosis and treatment. In the validation dataset, the
results showed that CXCL6, with a p-value of 0.042, was a prognostic
factor for hepatocellular carcinoma. CD8A had a p-value of 0.057
(Supplementary Figure S5).

Assessment of tumor microenvironment
between two risk subgroups

As illustrated in Figure 6A, the risk score was related to the
abundance of immune cells. For instance, naive B cells, memory
B cells, activated dendritic cells, and M0 macrophages all had a
positive correlation with risk scores. Nevertheless, M1 macrophages
activated memory CD4+ T cells, CD8+ T cells, and follicular helper
T cells, where all had a negative correlation with risk scores. The
relationship between two PRDEGs and the abundance of immune
cells was discussed (Figure 6B). The result showed that the stromal
and immune scores of the low-risk subgroup were higher
(Figure 6C).

Assessment of mutation, effects on immune
therapy, and chemotherapeutics in two risk
subgroups

To explore the discrepancy of gene mutations between two risk
subgroups of LIHC patients, the maftools R package was adopted,
which showed TTN, TP53, MUC16, LRP1B, and ARID1A had the
most mutations in both risk subgroups (Figure 7A). In addition,
TMB had no significant associations with risk scores (Figure 7B).
There were many immune checkpoint genes existing differences in
expression between two risk subgroups, which included BTLA,
CD160, CD244, CD274 (PD-L1), and PDCD1, with high

FIGURE 5
Analysis of the prognosis of PANoptosis. (A) Expression of two genes in two risk subgroups shown on the heat map. (B) Risk score and survival
outcome of each patient. (C) Better prognosis from the low-risk subgroup (p < 0.001). (D) AUCs of 1-, 3-, and 5-year survival periods were 0.632, 0.665,
and 0.707, respectively. (E) A nomogram using risk score and other clinical features was constructed for predicting the survival of LIHC patients. (F)
Calibration graphs showed that the actual survival rates of LIHC patients were close to the nomogram-predicted survival rates.
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expression in the low-risk subgroup (Figure 7C). Based on the
expression of CD8A and CXCL6, respectively, the high- and low-
risk subgroups were divided. As shown, the higher the TIDE, the
worse the reaction to immunotherapy (Figure 7D). In addition, we
found that IC50 of veliparib, all-trans retinoic acid, NVP-AUY922,
axitinib, and olaparib was higher in the high-risk subgroup except
AKT inhibitor VIII (Figure 7E). In conclusion, the low-risk
subgroup had a higher possibility of benefiting from
immunotherapy and chemotherapy.

Evaluation of CD8A and CXCL6 by RT-qPCR

mRNA expression levels of CD8A and CXCL6 were compared
through RT-qPCR. As shown in Figures 8A–D, the higher positive
expression of CD8A and CXCL6 was found in both LIHC tissues
and most human liver cancer cell lines.

Discussion

As a newly discovered programmed cell death mode,
PANoptosis participates in fine-tuning anti-tumor immunity in
TME by regulating the enrichment of immune cells and

accelerating the death of tumor cells (Hao et al., 2022; Liu et al.,
2022). Only a few malignant tumors in advanced LIHC can be
completely removed by surgery. Furthermore, at present, safe and
effective treatment for advanced LIHC can hardly be found, which
leads to the rapid development and metastasis of the disease and the
rising mortality (Llovet et al., 2021). Characterized by the infiltration
of a large number of immune cells, LIHC is a highly immunogenic
malignant tumor. Nowadays, even if the survival and immune status
of LIHC patients have been constructed on the grounds of various
forms of gene sets related to cell death, more research studies on the
function of PANoptosis in LIHC are needed to be conducted. Multi-
omics research refers to the simultaneous analysis of multiple types
of biological molecules, such as genomics, transcriptomics,
proteomics, and metabolomics. These omics types provide in-
depth insights into different levels of biological systems, which
can help provide a more comprehensive understanding of
biological phenomena and aid in the diagnosis and treatment of
diseases (Su et al., 2020).

The majority of the 19 PRGs discussed in this paper were related
to the occurrence and development of LIHC. It has been
demonstrated in the previous study that the expression of RIPK1,
RIPK3, and MLKL-p has relevance to the better OS of patients with
LIHC (Nicolè et al., 2022). Since the overexpression of PARP1 in
patients with LIHC partly affected the poor clinical prognosis,

FIGURE 6
Assessment of the tumor microenvironment between two risk subgroups. (A) Relevance between risk score and different immune cell types. (B)
Relevance between immune cells and two PRDEGs. (C) Relevance between risk score and TME scores. *p < 0.05; **p < 0.01; ***p < 0.001.
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sorafenib’s ability to eliminate residual tumors was strengthened
with the help of the PARP inhibitor olaparib so that the treatment
efficiency was improved (Yang et al., 2021). GSDMD-N and
GSDMD, whose positive expression indicated poor prognosis,
were upregulated in LIHC tissues or metastatic tissues (Lv et al.,
2022). The results presented previously were entirely consistent with
our research about differential expression of PRGs between LIHC
and adjacent normal samples. Considering the relevance of LIHC
classification to PRG expression, it was found in this paper that the
prognosis of PRG cluster A showed a more positive result than that
of PRG cluster B with its enrichment of immune-related pathways
and immune cell infiltration. The correlational research suggested
that RIPK3 was downregulated in LIHC-related macrophages,
which indicated its connection with tumorigenesis, enhanced
M2 polarization, and accumulation in TAM (Wu et al., 2020).
Moreover, in LIHC cells with intrinsic RIPK3 deficiency, the
knockout of MLKL is capable of enhancing the blocking of the
immune checkpoint. Infiltrating CD8+ T cells could cause a better
prognosis in LIHC, with RIPK1, RIPK3, and MLKL-p significantly
correlated with CD3+ and CD8+ T cells in tumor (Nicolè et al., 2022;
Jiang et al., 2023). In addition, inhibition of cellular FADD-like
interleukin-1β-converting enzyme-inhibitory protein (c-FLIP)
expression in LIHC cells could promote γδ T-cell-induced LIHC

cell lysis (Chen et al., 2020). The larger part of GSDMmembers were
considered to be positively related to the infiltration of B cells,
neutrophils, and dendritic cells in LIHC (Hu et al., 2021).
Correspondingly, the DEGs of two PRG clusters were enriched in
tumor immune-related pathways, and two DEG clusters based on
DEGs differed significantly in survival and PRG expression.

PRDEGs based on DEGs were screened to construct prognosis
and calculate the risk score, and finally, CD8A and CXCL6 were
selected. There were previous studies establishing that both genes
were associated with LIHC. For instance, higher CLCF1–CXCL6/
TGF-β axis levels were found to be related to poor prognosis in
LIHC (Song et al., 2021). In addition, the low expression of CD8A in
tumor tissue could predict the low survival rate of patients with
LIHC (Tan et al., 2021). Thus, it was indicated that both PRDEGs
could be used as underlying biomarkers for tumor diagnosis and
treatment. On the basis of the risk score of each patient, patients
were divided into low-risk and high-risk subgroups. The prognosis
of the low-risk group was better, which was verified by the training
and test queues. The study investigating the relationship between
immune subtypes and the prognosis of LIHC suggested that the
higher the expression of CD8A, the longer the survival time of the
patients (Xu et al., 2020). These further implied the accuracy of the
risk model.

FIGURE 7
Assessment of mutation, effects on immune therapy, and chemotherapeutics in high-risk and low-risk subgroups. (A) Somatic gene mutations in
high-risk and low-risk subgroups. (B)No significant relevance between TMB score and risk score. (C)Differences in immune checkpoint gene expression
in high-risk and low-risk subgroups. (D) Relevance between risk score and TIDE score. (E) Significant IC50 difference from six therapeutic drugs between
two risk subgroups. *p < 0.05; **p < 0.01; ***p < 0.001.
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The connection between risk score and the abundance of
immune cells was investigated, and seven were positively
correlated while five were negatively correlated. CD8A and
CXCL6, two PRDEGs that were closely related to immune
cells, have been found to be new indicators of the prognosis
and immunotherapy response of other tumors. In bladder
cancer, as a new protective gene, CD8A presented the
highest correlation with T cells and M1 macrophages.
Moreover, in advanced cancer patients receiving
immunotherapy, it is noted that low CD8A expression
showed an association with poor immunotherapy effect and
survival (Zheng et al., 2022). Regarding adamantinomatous
craniopharyngioma, the infiltrating abundance of γδ T cells
was positively correlated with CXCL6, while CD8+ T cells were
negatively correlated with CXCL6 (Lin et al., 2022). The
analysis of 81 samples from LIHC patients revealed a
significant correlation between the expression of CD8A and
B cells (Garnelo et al., 2017). The findings were in line with the
majority of our research results, suggesting the predictive
potential of both PRDEGs. The effect of anti-tumor therapy
in the low-risk subgroup turned out to be better than that of the
high-risk subgroup, with its immune score and stromal score
higher than those of the high-risk subgroup. A number of
immune checkpoint gene expression differences between risk
subgroups presented high expression in the low-risk subgroup,
such as BTLA, CD160, CD244, CD274 (PD-L1), and PDCD1.
By comparing the expression differences of PRGs in various
risk subgroups, it was pointed out that the expression of
NLRP3, MLKL, IRF1, AIM2, ZBP1, CASP1, and RIPK3 was
higher in the low-risk subgroup. The relevant studies have
reported that NLRP3 inflammasome upregulates the
expression of PD-L1 in patients with diffuse large B-cell
lymphoma (Lu et al., 2021), and IRF1 promoted the
expression of PD-L1 in hepatoma cells (Xiao et al., 2019).
Meanwhile, the TIDE score suggested a lower possibility of
immune escape in the low-risk subgroup and a higher
possibility of benefiting from the therapy of immune
checkpoint inhibitors in the LIHC patients, which turned
out to be consistent. The results of IC50 showed that the
low-risk subgroup was more sensitive to chemotherapy

drugs, and both immunotherapy and chemotherapy effects
echoed with TME analysis. Therefore, all our results could
be applied to guide clinical immunotherapy and chemotherapy
for LIHC patients and contribute to a further understanding of
the impact of PANoptosis on LIHC. Through the experiment, it
was found out that CD8A and CXCL6 showed higher positive
expression in both LIHC tissues and most human liver cancer
cell lines, which implied that both PRDEGs might be potential
biomarkers for the diagnosis and treatment of LIHC.

Surely, some limitations existed in the research. First and
foremost, the data to be analyzed were from the public database,
with few random prospective samples included. Second, the
limited molecular biology experiments only achieved
preliminary verification. However, relevant functional
experiments have not been carried out. Finally, the inclusion
of clinical features was not rich enough; thus, actual clinical
cases were needed to evaluate our findings. In a nutshell, with
the help of the combination of bioinformatics and molecular
biology, it was suggested that PANoptosis was bound up with
LIHC-related survival and immunity, and two PRDEGs were
identified as potential markers for diagnosis and treatment. In
this way, the study provided us with a richer understanding of
PANoptosis in LIHC and a few strategies in the clinical therapy
of LIHC.
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