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Acute myeloid leukemia (AML) is one of the most aggressive hematological
malignancies with a low 5-year survival rate and high rate of relapse.
Developing more efficient therapies is an urgent need for AML treatment.
Accumulating evidence showed that ferroptosis, an iron-dependent form of
programmed cell death, is closely correlated with cancer initiation and clinical
outcome through reshaping the tumor microenvironment. However,
understanding of AML heterogeneity based on extensive profiling of ferroptosis
signatures remains to be investigated yet. Herein, five independent AML
transcriptomic datasets (TCGA-AML, GSE37642, GSE12417, GSE10358, and
GSE106291) were obtained from the GEO and TCGA databases. Then, we
identified two ferroptosis-related molecular subtypes (C1 and C2) with distinct
prognosis and tumor immune microenvironment (TIME) by consensus clustering.
Patients in the C1 subtype were associated with favorable clinical outcomes and
increased cytotoxic immune cell infiltration, including CD8+/central memory
T cells, natural killer (NK) cells, and non-regulatory CD4+ T cells while showing
decreased suppressive immune subsets such as M2 macrophages, neutrophils,
and monocytes. Functional enrichment analysis of differentially expressed genes
(DEGs) implied that cell activation involved in immune response, leukocyte
cell–cell adhesion and migration, and cytokine production were the main
biological processes. Phagosome, antigen processing and presentation,
cytokine–cytokine receptor interaction, B-cell receptor, and chemokine were
identified as the major pathways. To seize the distinct landscape in C1 vs.
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C2 subtypes, a 5-gene prognostic signature (LSP1, IL1R2, MPO, CRIP1, and
SLC24A3) was developed using LASSO Cox stepwise regression analysis and
further validated in independent AML cohorts. Patients were divided into high-
and low-risk groups, and decreased survival rates were observed in high- vs. low-
risk groups. The TIME between high- and low-risk groups has a similar scenery in
C1 vs. C2 subtypes. Single-cell-level analysis verified that LSP1 and CRIP1 were
upregulated in AML and exhausted CD8+ T cells. Dual targeting of these two
markers might present a promising immunotherapeutic for AML. In addition,
potential effective chemical drugs for AML were predicted. Thus, we concluded
that molecular subtyping using ferroptosis signatures could characterize the TIME
and provide implications for monitoring clinical outcomes and predicting novel
therapies.

KEYWORDS

acute myeloid leukemia, ferroptosis, molecule subtyping, outcome, immune
microenvironment

Introduction

Acute myeloid leukemia (AML) is a type of aggressive blood
malignancy characterized by the stagnant transition of immature
myeloid cells to mature cells in the bone marrow and peripheral
blood (Thomas and Majeti, 2017). Despite great advancements in
therapies for most blood cancer types, treatment options for AML
are still limited over decades. Therapeutic resistance and a high rate
of relapse lead to a low 5-year survival rate (Jemal et al., 2017;
Marando and Huntly, 2020). Chemotherapy has been used as
standard care for patients with AML; unfortunately, most
patients eventually succumb to this disease due to relapse or
resistance. New therapies such as molecular targeting therapy,
bispecific antibodies, chimeric antigen receptor (CAR) T-cell
therapy, and immune checkpoint inhibitors (ICIs) are emerging,
aiming for leaps forward (Winer and Stone, 2019; Marofi et al., 2021;
Nair et al., 2021). For example, targeting CD33 on AML cells using
gemtuzumab ozogamicin showed remission in AML patients, while
serious side effects such as severe myelosuppression and tumor lysis
syndrome limited its use in clinical practice (Feldman et al., 2005).
CAR T-cell and bispecific antibody therapies (He et al., 2020) are still
under pre-clinical or clinical testing stages, and patients still face
serious complications such as graft-versus-host disease and cytokine
release syndrome (Wang et al., 2019a). Identification of novel targets
or less toxic and more efficient therapy strategies is an urgent need.

Ferroptosis was recognized as a non-apoptotic and iron-
dependent lipid peroxidation-induced type of programmed cell
death, which is distinct from other forms of cell deaths, including
necroptosis, apoptosis, and autophagy, in morphology and
mechanisms (Dixon et al., 2012; Stockwell et al., 2017). The
hallmarks of ferroptosis are the redox-active iron levels,
dysfunction of lipid peroxide repair capacity, and oxidation of
polyunsaturated fatty acid. Accumulating evidence indicated that
ferroptosis susceptibility is mediated by RAS/MAPK signaling,
amino acid and iron metabolism, cell adhesion, phospholipid
biosynthesis, p53 mutant status, and NRF2 activity (Li J. et al.,
2020). An increasing number of genes, such as G6PD, TP53 (Jiang
et al., 2015), GPX4 (Ma et al., 2016), SLC7A11 (Wang et al., 2016),
and DHODH (Mao et al., 2021), have been identified as drivers,
regulators, and suppressors of ferroptosis which are called

ferroptosis-associated genes (FAGs) in tumor cells. It is found
that ferroptosis of tumor cells or immune cells is correlated with
cancer progression and treatment response and plays multiple roles
in biological regulations and signaling pathways (Stockwell et al.,
2017; Shen et al., 2018; Stockwell and Jiang, 2019). Previous studies
have demonstrated that ferroptosis acts as a promising anticancer
therapeutic strategy (Yang et al., 2014; Miess et al., 2018; Badgley
et al., 2020). APR-246, which targets p53-mutated proteins, can
induce ferroptosis in AML, representing a new therapeutic drug
(Birsen et al., 2021). 4-Amino-2-trifluoromethyl-phenyl retinate
(ATPR) is a novel all-trans retinoic acid derivative which exhibits
strong anticancer activity in AML. Targeting ferroptosis promotes
ATPR-induced AML differentiation via the
ROS–autophagy–lysosomal pathway (Du et al., 2020). Zhu et al.
(2019) showed that typhaneoside can prevent AML progression by
suppressing proliferation and inducing ferroptosis associated with
autophagy. Furthermore, Wang et al. (2019b) found that ferroptosis
mediates antitumor activities; for example, immunotherapy-
activated CD8+ T cells by the combination of PD-1 blockade and
CTLA-4 therapy aggravate ferroptosis-specific lipid peroxidation in
tumor cells, suggesting that enhanced ferroptosis contributes to
immunotherapy efficacy. Most studies on FAGs focused on solid
tumors, but their functions in AML were not well understood.
Therefore, it might provide new prospects for developing anti-
leukemia agents for treating AML through the understanding of
the ferroptosis regulatory heterogeneity of the tumor
microenvironment (TME).

In this study, we systematically profiled FAGs expression datasets
and clinical features in patients with AML obtained from The Cancer
Genome Atlas (TCGA) and GEO (GSE37642, GSE12417, GSE31580,
and GSE106291) databases. The molecular diversity of AML was
delineated by molecular subtyping using ferroptosis signatures. The
tumor immune microenvironment (TIME) was characterized using
multiple immune cell subset deconvolutions, and the immune status
between classifications was compared. To further specify the TIME, we
developed a prognostic signature based on the overall survival (OS)-
related differentially expressed genes between molecular subtypes.
External validation demonstrated that the signature could predict
patient prognosis and reflect TIME, which might have implications
for developing new therapies by targeting ferroptosis in AML.
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Methods and materials

AML gene expression datasets and
processing

An AML gene expression dataset with clinical features was
downloaded from The Cancer Genome Atlas (TCGA) database and
regarded as the training set. The gene expression profile of 514 normal
cases was acquired from the Genotype-Tissue Expression (GTEx)
database. For external validation sets, five AML cohorts with clinical
information (GSE37642, GSE12417, GSE10358, and GSE106291;
Supplementary Table S1) were downloaded from Gene Expression
Omnibus (GEO). Briefly, raw “CEL” files were downloaded. Those
samples measured by the same platform were merged following a
robust multi-array averaging method using affy packages for
background adjustment and quantile normalization, and batch
effects removal was performed by the combat algorithm in the sva
package (Leek et al., 2012). The samples measured using the
GPL96 platform from GSE37642 and GSE12417 were merged as
validation set 1. The samples measured using the GPL570 platform
from GSE37642, GSE12417, and GSE10358 were combined as
validation set 2. The GSE106291 dataset was used as validation set 3.

Differential gene expression analysis

Differential gene expression analysis was conducted by
comparing GTEx normal blood samples and AML samples using
the limma package (Ritchie et al., 2015) in the R platform.
Differentially expressed genes (DEGs) were determined with the
cutoff value of |LogFC| >1 and adjusted p < 0.05.

A total of 259 ferroptosis-related genes (FAGs), including
drivers, suppressors, and markers, were obtained from the
FerrDb database (http://www.zhounan.org/ferrdb/) (Zhou and
Ferrdb, 2020). Differentially expressed FAGs were selected for
further analysis.

In addition, protein–protein interaction network analysis of
differentially expressed FAGs was retrieved from the STRING
database and illustrated using Cytoscape (version 3.8).

Functional enrichment analysis

To delineate the difference in enriched biological activities and
signaling pathways of the target gene list, Gene Ontology (GO),
including biological processes (BP), molecular function (MF), and
cellular components (CC), was conducted using the ‘‘clusterProfiler’’
package (Wu T. et al., 2021). In addition, the enriched pathways
were identified through Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analysis. A p-value and a q-value <0.05 were
considered statistically significant.

Identification of overall survival (OS)-related
FAGs

The expression matrix of these differentially expressed FAGs
was extracted from the TCGA-AML dataset, and the clinical features

were merged with the expression matrix. OS-related FAGs in AML
with p < 0.05 were identified through univariate Cox regression
analysis.

Molecular subtyping of AML using
consensus clustering

To assess the molecular heterogeneity within the AML dataset
related to FAGs, cluster robustness was calculated through K-means
consensus clustering using the ConsensusClusterPlus package
(Wilkerson and Hayes, 2010), with cluster numbers from 2 to 10.
The minimum number of stable clusters was determined by plotting
the cumulative distribution.

Differential gene expression analysis was conducted to
screen the differentially expressed genes between molecular
subtypes, and functional enrichment analysis was used to
investigate the biological processes and pathways as described
previously.

Characterization of the tumor immune
microenvironment (TIME) between
ferroptosis subtypes

The tumor and its surrounding microenvironment, including
immune cells, stromal cells, signaling molecules, and extracellular
matrix, constitute the tumoral niche. The TIME between
ferroptosis-related subtypes was deciphered from transcriptomes
using multiple cell subset deconvolution algorithms including
CIBERSORT (Newman et al., 2019), TIMER (Li T. et al., 2020),
and xCell (Aran et al., 2017). The relative percentage of infiltrating
cell subsets between the subtypes was compared using the
Wilcoxon test.

In addition, expression levels of inhibitory or stimulatory
checkpoint molecules between the subtypes were compared using
the Wilcoxon test. A p-value <0.05 was considered statistically
significant. The human leukocyte antigen (HLA) system is a
complex of proteins that are closely involved in the regulation
of immune responses such as antigen presentation and
stimulation of T-helper cells (Sendker et al., 2021). The
expression of these HLA molecules was also compared
between the subtypes.

Construction and validation of ferroptosis
subtyping-related signature

Differentially expressed genes between subtypes were
identified using the limma package with |LogFC| >1 and
adjusted p < 0.05. OS-related DEGs were screened using
univariate Cox regression analysis. To avoid the overfitting
effect, OS-related DEGs were selected using the least absolute
shrinkage and selection operator (LASSO) algorithm, following
the multivariate Cox regression analysis. The minimum number
of features that comprised the optimal signature was
determined by the Akaike information criterion (AIC)
(Vrieze, 2012). The ferroptosis subtype-associated signature
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risk score (termed as FSAscore) for each patient was formulated
as follows:

FSAscore � ∑ n
i
Coef x Si,

where Coef represents the regression coefficient, “i” represents the
signature gene, “S” represents the relative value of the ferroptosis
signature gene expression, and “n” represents the number of
signatures.

Model discrimination ability was predicted by the receiver
operating characteristic (ROC) curve using the timeROC package
(Blanche et al., 2013). The risk score for individual patients was
calculated using the signature, and patients were divided into high-
and low-risk groups by the median risk score. The performance of
the signature in prognosis prediction was assessed by a log-rank test
using the “survminer” package and presented using the
Kaplan–Meier curve.

The prognostic utility of the signature was independently
validated by three external validation sets. Furthermore, the
predictive performance was assessed by the ROC curve.

Compound sensitivity and immunotherapy
response prediction

To investigate the potential of the signature in predicting treatment
sensitivity, NCI-60 tumor cell line growth inhibition screening was used
to identify the ferroptosis defined nature of the cell lines to the
sensitivity of relevant compounds in the NCI Development
Therapeutics Program (DTP) (dtp.cancer.gov). The expression
profile based on Affymetrix U133 Plus 2.0 microarray was
normalized using GC-robust multi-array averaging. FSAscore was
derived and correlated with compound sensitivity using CellMiner
(discover.nci.nih.gov/cellminer) (Shankavaram et al., 2009).

Single-cell analysis of ferroptosis subtype-
related signature

Since five DEGs that constitute the risk signature were
prognostic in AML, we compared the expression of these genes
in AML vs. normal cells using the GEPIA database (http://gepia.
cancer-pku.cn/). Single-cell-level analysis was further conducted to
verify their transcripts in the AML microenvironment in the Tumor
Immune Single-cell Hub (TISCH, http://tisch.comp-genomics.org/;
GSE116256 and GSE154109) (Sun et al., 2021).

Results

Identification of differentially expressed
FAGs in AML

The differential gene expression analysis was performed to compare
the FAG expression levels betweenAML and normal samples. A total of
3,093DEGswere identified, of which 1,501 genes were upregulated, and
1,592 genes were downregulated in AML. We found 72 differentially
expressed FAGs in AML vs. normal samples. These FAGs showed a

distinct expression pattern (Figure 1A), which was also reflected in two
well-separated dimensions calculated by principal component analysis
(Supplementary Figure S1A). Protein–protein interaction network
analysis was performed to investigate the potential interactions of
these FAGs. Two significant modules, HIF1A and ALB, were
identified in the whole network sorted by the degree value
(Figure 1B). The HIF1A module contained 10 nodes and 31 edges,
and the ALB module had 11 nodes and 34 edges. Most of the genes in
the HIF1A module play leukemia-promoting roles in AML, such as
HIF1A (Abdul-Aziz et al., 2018), CEBPG (Jiang et al., 2021), JUN (Zhou
et al., 2017), andATF4 (Heydt et al., 2018). These genes also contributed
to treatment resistance in AML (Zhu et al., 2020). Genes with similar
biological functions in the ALB module were found such as SIRT1 (Li
et al., 2014), XBP1 (Kharabi Masouleh et al., 2015), and ATG7 (Piya
et al., 2016). In addition, the top 10 targets (HIF1A, JUN, ALB, SIRT1,
MAPK3, VEGFA, PTGS2, SLC2A1, HRAS, and HSPA5) with the
highest degrees in the network were regarded as the hub genes using the
cytoHubba plugin (Chin et al., 2014) (Supplementary Figure S1B).
Inhibition of these targets represents potential therapeutics for AML, as
evidenced by previous reports. The clinical relevance of differentially
expressed FAGs in AML was determined, and 17 of 72 FAGs were
associated with patient survival (Figure 1C). GO term analysis indicated
that these FAGs are enriched in stimulus, chemical, or oxidative stress-
related biological processes, lysosome and membrane, transcription
factor binding, and transmembrane transporter activities (Figure 1D).
Cell death events, including ferroptosis, autophagy, necroptosis,
apoptosis, and cellular senescence, HIF1 signaling, acute myeloid
leukemia, and metabolic pathways, such as cancer central carbon
metabolism, were listed as the most enriched pathways (Figure 1E).
Dysfunctions of these pathways in AML have been demonstrated to
promote disease progression or induce therapy resistance (Garcia-Bates
et al., 2008; Carneiro et al., 2015; Saito et al., 2015; Piya et al., 2017),
which suggests that these FAGs play a non-redundant role in AML
progression.

Molecular subtyping of AML

To delineate the molecular heterogeneity of AML linked to
ferroptosis, we attempted to determine the ferroptosis-related
molecular subtypes using consensus clustering based on the
transcriptome of OS-related FAGs. Two subtypes (C1 vs. C2)
were identified with distinct ferroptosis gene expression patterns
following K-means clustering (Figures 2A–C). Decreased OS was
observed in patients in the C2 subtype compared to those in the
C1 subtype (Figure 2D). A favorable clinical outcome in
C1 prompted us to comprehend the potential factors such as key
DEGs and signaling pathways that modulate the prognosis.
Differential gene expression analysis found that many
upregulated genes in the C2 subtype were associated with
increased leukemia cell survival, proliferation, and drug
resistance, such as S100A8, S100A9, LILRB3, KLF4, LST1, and
ITGB2 (Figure 2E). In addition, the differentially expressed genes
showed apparent disparity between C1 and C2 subtypes (Figure 2F).
These upregulated leukemia-promoting genes might promote
disease progression. To identify the difference in key pathways
involved, GO enrichment analysis was conducted to identify the
biological processes of DEGs. The results suggested that these DEGs
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were enriched in the biological processes of cell activation involved
in immune response, cytokine production, and leukocyte migration
(Figure 2G). Phagosome, antigen processing and presentation, cell
adhesion molecules, cytokine–cytokine receptor interaction, Fc
gamma R-mediated phagocytosis, B-cell receptor, and chemokine
signaling pathways were the main significant pathways that closely
correlate with immune response during antitumor activities
(Figure 2H). Therefore, ferroptosis molecule classification might
characterize the tumor immune microenvironment (TIME).

Characterization of TIME in ferroptosis
subtypes

We noted that these DEGs were mainly enriched in immune
regulatory pathways, which prompted us to investigate the TIME
between C1 and C2 subtypes. Multiple cell subset deconvolution
algorithms, including CIBERSORTx, TIMER, and xCell, were

used to characterize and compare various infiltrating cell types in
these two subtypes. The CIBERSORTx deconvolution revealed
that CD8+ T cells, B-cell plasma cells, NK cells, and CD4+

memory resting cells showed higher infiltration in patients in
the C1 subtype, while monocyte, activated CD4+ memory cells,
and macrophages showed lower infiltration in those in the
C2 subtype (Figure 3A). This suggested that patients in
C1 have enhanced anti-leukemia TIME compared to those
patients in the C2 subtype. xCell analysis also indicated
similar high infiltration of reactive immune cell subsets such
as CD8+ effector memory cells, B cells, non-regulatory CD4+

T cells in the C1 subtype and low infiltration of M2 macrophages,
plasmacytoid dendritic cells, and myeloid dendritic cells
(Figure 3B). The results of TIMER deconvolution were
consistent with the evidence of activated TIME in the
C1 subtype (Figure 3C). Further assessment of the expression
of immune inhibitory molecules revealed that most inhibitory
checkpoints including PD-1, PD-L1/L2, TIM3, CTLA4, VISTA,

FIGURE 1
Identification of differentially expressed FAGs in AML. (A) Heatmap of differentially expressed FAGs in AML vs. normal samples. (B) The
protein–protein interaction network of differentially expressed FAGs in AML. (C) Forest plot showing the correlations of differentially expressed FAG
expression with clinical outcomes of AML patients. (D) Significantly enriched GO terms (biological process, molecular function, and cellular component)
of differential expressed FAGs. (E) Significantly enriched KEGG signaling pathways of differentially expressed FAGs.
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BTLA, and SIGLEC7 showed significantly increased expression
in C2 vs. C1 subtypes, suggesting that suppressive TIME in
C2 might lead to decreased immune response (Figure 3D).
The majority of stimulatory checkpoint molecule expression
did not show any significant difference between these two

subtypes other than 4-1BB and OX40 (Figure 3E). In addition,
most of the human leukocyte antigen (HLA) genes were
upregulated in C2 compared to the C1 subtype (Figure 3F).
These results indicated that C2 was correlated with the
dysfunctional immune niche, implying that immune

FIGURE 2
Ferroptosis molecular subtyping by consensus clustering. (A) Consensus clustering with k = 2. (B) Cumulative distribution from consensus matrices
for clustering with 2–10 clusters. (C) Principal component analysis illustrating C1 and C2 subtypes. (D) Kaplan–Meier curve of C1 vs. C2 subtypes. The log-
rank test was used to determine the survival difference. (E). Volcano plot showing differentially expressed genes by comparing C2 vs. C1 subtypes with |
LogFC| >1 and Log10 (adjusted p) < 0.05. (F) Heatmap of differentially expressed genes between C2 vs. C1 subtypes. (G) Significantly enriched GO
terms of differentially expressed genes between C2 vs. C1 subtypes. (H) Significantly enriched KEGG pathways of differentially expressed genes between
C2 vs. C1 subtypes.
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FIGURE 3
Characterization of the tumor immunemicroenvironment (TIME) defined by ferroptosis-related subtyping. (A) Abundance of infiltrated immune cell
subsets in C1 vs. C2 subtypes deconvoluted using CIBERSORTx in the TCGA–AML dataset. (B) Abundance of infiltrated immune cell subsets in C1 vs.
C2 subtypes deconvoluted using xCell. (C) Abundance of infiltrated immune cell subsets in C1 vs. C2 subtypes deconvoluted using TIMER. (D) Expression
levels of inhibitory immune checkpoint molecules between C1 vs. C2 subtypes. (E) Expression levels of stimulatory immune checkpoint molecules
between C1 vs. C2 subtypes. (F) Expression levels of human lymphocyte antigens between C1 vs. C2 subtypes.
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checkpoint blockade might represent promising
immunotherapeutics for AML patients in the C2 subtype.

Construction and validation of ferroptosis
subtype-related signature

To develop a signature that could characterize the TIME
difference between C1 and C2 subtypes, OS-related DEGs were
determined using univariate Cox regression analysis
(Supplementary Figure S2). To avoid overfitting, minimum

features were selected by LASSO regression (Supplementary
Figures S3A, B). A ferroptosis classification-defined prognostic
signature was constructed through multivariate Cox stepwise
regression analysis. The optimal signature that comprised five
genes (LSP1, SLC24A3, CRIP1, MPO, and IL1R2) was
determined by the Akaike information criterion (AIC) algorithm
using the survival package (Figure 4A). The FSAscore was calculated
using the following formula: FSAscore = LSP1 *(0.1504) + MPO *
(−0.0743) + IL1R2 * (0.0934) + CRIP1 * (0.1599) + SLC24A3 *
(−0.1516). Patients were divided into high- and low-risk groups
based on the median FSAscore. To determine the predictive

FIGURE 4
Construction of the ferroptosis-related classification-based signature. (A)Hazard ratio of the signature genes. (B) Kaplan–Meier curve of patients in
high- and low-risk groups. The log-rank test was used to determine the survival difference. (C)Distribution of patient risk scores. (D) Patient survival time
and risk scores. (E) Receiver operating characteristic (ROC) curves of the prognostic signature for 1-, 3-, and 5-year in the TCGA-AML dataset. (F) Alluvial
diagram showing the relationship of molecular subtypes, risk groups, and survival status.
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potential of the FSAscore, the Kaplan–Meier curve was generated,
and decreased OS was observed in patients in the high-risk group
compared to those in the low-risk group (p = 1.37e-4, Figure 4B).
The number of deaths increased with the increasing FSAscore
(Figures 4C, D). The predictive potential of the FSAscore was
evaluated by the ROC curve. The AUC values of 1-, 3-, and 5-
year survival of FSAscore for AML patients were 0.72, 0.84, and 0.86,
respectively (Figure 4E), suggesting that FSAscore has high
predictive performance. Furthermore, alluvial plots clearly
showed that most of the patients in the C2 subtype have
FSAscore; on the contrary, patients with low-risk FSAscore were
mainly concentrated in the C1 subtype (Figure 4F).

Validation for predictive performance from external
independent AML cohorts is required for a reliable signature
that is established on limited datasets. Three AML validation sets
measured using a microarray platform were used to test the
signature. Patients were divided into high- and low-risk groups
based on FSAscore. In validation set 1, patients in the high-risk
group have significantly shorter OS than those in the low-risk
group (p = 5e-03, Figure 5A). A similar decreased OS was found
in validation set 2 (p = 8.9e-03, Figure 5B) and validation set 3
(p = 5.3e-03, Figure 5C). This demonstrated that the signature

still performs well on both array-based and RNA sequencing
platforms. As the FSAscore increased, the death rate increased
accordingly (Figures 5D–F). Then, the ROC curve was used to
assess the predictive robustness. The AUC values of 1-, 3-, and 5-
year OS were over 0.6 (Figures 5G–I). These data suggested that
the signature has moderate performance for OS prediction for
AML patients.

Association of ferroptosis subtype-related
signature with TIME and therapy

To investigate whether the ferroptosis subtype-related signature
could characterize the TIME for AML patients, immune cell subsets
were deconvoluted from the TCGA-AML dataset. We found that
FSAscore was negatively correlated with the infiltration of CD8+

T cells and B cells and positively correlated with regulatory T cells
and neutrophils (Figure 6A). This suggested that patients in the high-
risk group exhibited suppressive TIME compared to those in the low-
risk group, which might lead to a better prognosis in patients with low
FSAscore, representing the immune phenotype of ferroptosis molecule-
based classification. Accumulating evidence has supported the notion

FIGURE 5
Validation of the ferroptosis-related classification-based signature. (A–C) Kaplan–Meier curves of patients in high- and low-risk groups in AML
validation sets 1/2/3. The log-rank test was used to determine the survival difference. (D–F) ROC curves of the prognostic signature for 1-, 3-, and 5-year
in AML validation set -1/-2/-3. (D–F)Distribution of patient risk scores in AML validation set 1/2/3. (G–I) ROC curves of the prognostic signature for 1-, 3-,
and 5-year in AML validation set -1/-2/-3.
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FIGURE 6
Association of the signature with TIME and drug sensitivity. (A) Pearson correlations of infiltrated CD8+ T cells, Tregs, B cells, and neutrophils with
signature scores. (B) Cell clusters of AML (GSE116256) measured by single cell RNA-sequencing. (C) The expression levels of five signature genes in
different cell clusters (GSE116256). (D) Cell clusters of AML (GSE1 54109) measured by single cell RNA-sequencing. (E) The expression levels of five
signature genes in different cell clusters (GSE154109). (F) Heatmap of five signature genes expression in different cell clusters (GSE116256 and
GSE154109). (G) Pearson correlations of GI50 of compounds under clinical trials or approved by the FDA with signature scores.
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that TIME is closely correlated with treatment response. We used the
library of compound sensitivity developed by DTP at NIH using
60 tumor cell lines to identify the sensitivity of relevant compounds
of the ferroptosis-defined nature of the cell lines. The differential
expression levels of five genes used to construct the signature were
observed in the NCI-60 tumor cell line. LSP1 was highly expressed in
most leukemia cell lines (shown in the dotted box, Supplementary
Figure S3C), while IL1R2, MPO, and CRIP1 were highly expressed in
one or two leukemia cell lines. SLC24A3 expression was quite low
compared to the expression of the aforementioned four genes. In
addition, their expression levels were upregulated in AML compared
to those of normal cells (Supplementary Figure S3D). To further
investigate the expression of these genes at the single-cell level
derived from the AML microenvironment, we found that the
expression of LSP1, MPO, and CRIP1 was higher in malignant cells
in the GSE116256 dataset, which were consistent with aforementioned
findings and previous reports (Zhao et al., 2018; Hosseini et al., 2019;
Ma et al., 2020), while IL1R2 and SLC24A3 exhibited an extremely low
level (Figures 6B, C). This was validated in an independent dataset
(GSE154109, Figures 6D, E). Interestingly, LSP1 and CRIP1 were also
expressed highly in immune cell subsets, including CD8+ T cells,
exhausted CD8+ T cells, and mono/macrophages (Figures 6B–F),
suggesting that targeting LSP1 and CRIP1 for AML might present a
promising strategy. FSAscore was calculated for each cell line including
leukemia cell lines. The correlation analysis of FSAscore with the
concentration for 50% of maximal inhibition of compounds showed
that 11 compounds under clinical trials or approved by the FDA were
significantly positively correlated (Figure 6G; Supplementary Table S2).
The evaluation of these compounds for their mechanisms of action
(MOA) suggested that 4 of 11 compounds were alkylating agents,
particularly those at the N-7 position of guanine showed significance,
and tumor cell lines with high FSAscore were predicted to be more
sensitive to these drugs.

Discussion

Therapies with high efficacy and less toxicity forAML treatment are
still under clinical trials. The low 5-year survival and high relapse rate of
AML pose an urgent need to identify new prognostic biomarkers or
develop effective therapies. Most effective antitumor treatment
strategies are pursued to selectively eradicate cancer cells by
inducing minimized damage to normal tissues or cells (Chen et al.,
2021). Cell deaths are regulated or programmed by various forms of
mechanisms, including apoptosis, necrosis, pyroptosis, autophagy, and
autosis. Biological homeostasis and disease progression are usually
controlled by different types of cell deaths (D’Arcy, 2019).
Ferroptosis is a distinct form of cell death characterized by iron
dependency and lipid peroxidation. An increasing number of studies
have indicated that ferroptosis plays a dual role in tumorigenesis and the
efficacy of anticancer therapeutics (Zuo et al., 2020; Chen et al., 2021).
Genes that directly or indirectly drive or inhibit ferroptosis have been
identified and have attracted significant attention recently. Ali
Ghoochani et al. (2021) reported that ferroptosis inducers erastin or
RSL3 could function independently or in combination with standard of
care second-generation antiandrogens to inhibit cancer cell growth and
migration in vitro and tumor growth in vivo, suggesting that induction
of ferroptosis represents a promising therapeutic strategy for advanced

prostate cancer. Cytotoxic T lymphocytes (CTLs), such as CD8+ T cells
with potent activation and functions, are critical to kill leukemia cells,
while most of these cells are inclined to exhibit an exhausted phenotype,
leading to leukemia growth in the tumor niche. In addition, increased
regulatory T-cell infiltration in bonemarrow during disease progression
suppresses anti-leukemia activities. Wang et al. (2019) demonstrated
that ferroptosis is mediated by CD8+ T cells, which in turn influences
the efficacy of immune checkpoint blockade. The role of ferroptosis in
AML remains fully unexplored. Patients benefited from novel therapies
including bispecific antibodies ormolecular targeted therapies, while the
long-term remission rate was quite low. Understanding ferroptosis
within the AML immune microenvironment might have implications
for identifying prognostic markers and developing novel therapies
for AML.

Here, we demonstrated that the expression of FAGs is closely
related to patient survival and TIME of AML. Two distinct
molecular subtypes were identified by consensus clustering based
on FAG expression. C1, with favorable clinical outcomes, was
associated with enhanced infiltration of immune cells, especially
CTL subsets that mainly function as tumor killers in the process of
immune response such as CD8+ T cells. To characterize the immune
landscape defined by the ferroptosis classification, we developed a 5-
gene signature that showed performance efficiency in predicting
prognosis, which was validated by multiple independent AML
cohorts. This might provide a prognostic indicator for AML
patients; however, it can be confirmed once it is verified in
datasets from multi-centers and preferably even in clinical
settings in the future. We predicted the potency of its association
with TIME. The strong correlations of the signature with immune
cells re-engraved the same trend of ferroptosis subtyping.

Ferroptosis has attracted significant attention in tumor biology
and treatment strategy in recent years. The FAG expression in
various solid tumors has been profiled, and many signatures
based on the ferroptosis notion used to monitor outcomes and
predict drug sensitivity have been proposed (Chang et al., 2021;
Hong et al., 2021; Lu et al., 2021). Ruiming Qu et al. explored the
association of ferroptosis-related genes with patient survival and
found that increased expression of ARNTL in AML correlates with a
poor prognosis (Yin et al., 2022). Comprehensive investigation of
FAGs in AML is required because of the intensive genetic and
epigenetic heterogeneity in the nature of AML (Li et al., 2016), and
single genes might not capture the landscape. We noted that dozens
of FAGs showed differential expression in AML compared to
normal samples from the GTEx database. Some of those
differentially expressed FAGs were linked with AML survival. In
addition, pathway analysis showed that these genes are involved in
cell death, metabolism, AML, and immune response. Among these
survival-related FAGs, neutrophil cytosolic factor 2 (NCF2), a 67-
kilodalton cytosolic subunit of the multi-protein NADPH oxidase
(NOX) complex, was higher in AML and linked to decreased
survival. NOX was one of the major contributors to reactive
oxygen species (ROS) production (Valko et al., 2007). Low ROS
release was correlated with the self-renewal of leukemia stem cells,
and increased ROS promoted blast proliferation (Hole et al., 2013).
NCF2 was also listed as one of the most upregulated genes in the
unfavorable C2 subtype. Chemotherapeutic resistance is the major
cause of treatment failure in AML. Paolillo et al. (2022) found that
NOX genes, including NCF2, were elevated in AML cells that are
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resistant to daunorubicin or cytarabine and associated with immune
signaling and inflammation. However, how NCF2 promotes AML
aggressiveness and resistance was not specifically depicted. The role
of NCF2 on immune cells in the TIME might be important, but it
needs further research. Autophagy was also a dominant enriched
pathway following ferroptosis, suggesting that these genes play
multiple roles in cell death and partially share mechanisms of
action in regulatory leukemia, which was also observed in our
previously proposed autophagy-related signature that exhibits
potent predictive performance for patient outcomes and immune
landscape (Fu et al., 2021). This is consistent with emerging reports
that ferroptosis is closely related to autophagy (Gao et al., 2016).

TMEhas been demonstrated to assess patient outcomes and response
to therapies. Immune cell subsets were quantified using CIBERSORTx,
TIMER, and xCell algorithms. Decreased CD8+ T cells and B cells were
observed in the C2 subtype, while infiltrated suppressive subsets were
increased, including neutrophils, macrophages, and Treg cells.
Differential expression analysis found that many immune regulatory
pathways are enriched that are representative of antigen processing and
presentation, cytokine–cytokine receptor interaction, and B-cell receptor
signaling. These results indicated hot immune activities in theC1 subtype.
Accumulating studies have indicated that some crosstalk between
autophagy and ferroptosis exists at the molecular level (Zhou et al.,
2019). The infiltrating immune cell subsets stratified by our autophagy-
related signature in AML in our previous analysis also showed similar
results as the ferroptosis-based subtyping. Higher CD8+ T cells and lower
Treg cells were observed in the low-risk group defined using an
autophagy signature. Moreover, the correlations of these two types of
cell death-related signatures with immune checkpoints showed overlap
and difference similar to PD-1 (Fu et al., 2021). This may be induced by
the complicated leukemia niche.We and other researchers have analyzed
the TME of AML by scoring immune, stromal, and environments using
the Estimation of STromal and Immune cells in MAlignant Tumor
tissues using the Expression data (ESTIMATE) algorithm (Huang et al.,
2019). TME-related genes were identified by comparing patients with
high vs. low immune scores. Many of them also acted as the differentially
expressed genes betweenC2 andC1, such as S100A8/9/12,CD163, CD86,
IL1RN, CD1D, and NCF2. Their increased expression in the C2 subtype
was associated with poor survival, which was also confirmed by
comparing immune high vs. low AML groups in our previous
publication (Huang et al., 2019). Accumulating evidence showed that
S100A8 and S100A9 play pathogenic and prognostic roles in solid cancer
types and hematologicalmalignancies. Their expression is higher inAML,
and patients with high S100A8 have poor prognosis (Laouedj et al., 2017;
Mondet et al., 2021). S100A8 is reported to regulate autophagy-dependent
ferroptosis in experimental subarachnoid hemorrhage (Tao et al., 2022),
and S100A9 may also play regulatory roles in ferroptosis but lack “wet”
experimental validation in head and neck squamous cell carcinoma (Liu
et al., 2022). Increased KLF4 expression has been observed in AML and
promotes disease progression (Morris et al., 2016). It can reverse
polyphyllin Ⅲ-induced ferroptosis in triple-negative breast cancer by
upregulation of xCT (Zhou et al., 2021), while its role in ferroptosis in
AML has not been studied. The expression of LILRB3 and ITGB2 is also
higher in AML, and LILRB3 acts as a marker for AML by modulating
NF-κB signaling and promoting survival and immune evasion (Wu et al.,
2021). LST1 is a regulator in inflammatory processes (Fabisik et al., 2021),
and its role in AML is not defined. These findings indicated that data
interpretation should be performed cautiously, and further work is

warranted to reveal the roles of these genes in AML initiation and
progression. Patients with liquid tumors benefited much from immune
checkpoint inhibitors, while stable remission is still unsatisfactory
(Pizzitola et al., 2014). We checked inhibitory immune checkpoint
molecule expression and found that most of them were increased in
the C2 subtype, suggesting that the patients in C2 might be sensitive to
ICI-based therapies. This needs to be specified as some of these
checkpoints could express on AML and immune cells. To further
investigate the signatures that were used to calculate FSAscore in
AML vs. normal cells, we found that all of them were increased in
malignant cells using bulk RNA-seq data. As AML TME is complicated
and associated with the outcome and treatment response, we investigated
these signatures at a single-cell level and verified that they are higher in
AML vs. non-malignant cells. In addition, some of them were also
expressed on immune cells, such as cytotoxic T cells and NK cells, which
are the main fighters against tumors. High LSP1 and CRIP1 levels
correlate with unfavorable outcomes in our study, which is consistent
with the previous evidence, suggesting they may serve as prognostic
markers for AML patients. LSP1 and CRIP1 were elevated in exhausted
CD8+ T cells, indicating that dual-targeting them may reverse the
dysfunction of CD8+ T cells and inhibit leukemia growth to delay
disease progression; however, further work is required to be carried
out. In addition, the association analysis of the signature with NCI-60
tumor cell line growth inhibition screen data facilitated the identification
of the potential compounds for AML. A total of 11 compounds that were
under clinical or approved by the FDA for diverse tumors were screened,
such as alkylating agents, particularly those at theN-7 position of guanine.
Meanwhile, we should consider drug safety as it has been reported that
they may increase the risk of AML, which needs to be confirmed in
further experiments.

It is noteworthy that this study has potential limitations that
inspire future validation and mechanistic studies. The molecular
subtyping was established on the limited retrospective datasets;
further validation in multi-centric AML sets may provide
adjusted clues to make the classification to be more accurate.
The utility of the proposed signature was not tested in a clinical
setting, and quantification of immune subsets following applying
the signature in AML patients will convince TIME predictive
potential. Additionally, as CRIP1 and LSP1 are expressed on
leukemia and cytotoxic immune cells, functional investigation of
CRIP1 and LSP1 by AML cells or immune cells from TIME
in vitro and in vivo assays will consolidate the dual-targeting
treatment strategy for AML. Finally, we found that the expression
of most immune checkpoint molecules was elevated in the
unfavorable C2 subtype, indicating that patients with the
C2 subtype may be sensitive to ICI-based therapy, while the
association of our molecular subtyping with treatment response,
especially immunotherapy, was not explored due to a lack of
available datasets.

Conclusion

This study depicted the molecular heterogeneity of AML
through molecular subtyping by consensus clustering based on
ferroptosis signatures. Two subtypes with distinct outcomes and
TIME landscape were identified. Then, a 5-gene signature was
constructed and validated, which could predict patient prognosis
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and characterize the ferroptosis subtype-related TIME. However,
these data are derived from retrospective public datasets, and further
investigation on the roles of FAGs in AML progression and
assessment of the clinical use of the signature are imperative.
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