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Telomerase determines cell lifespan by controlling chromosome stability and cell
viability, m6A epigenetic modification plays an important role in the regulation of
telomerase activity. Using CRISPR epigenome editing to analyze specific m6A
modification sites in telomerase will provide an important tool for analyzing the
molecular mechanism of m6A modification regulating telomerase activity. In this
review, we clarified the relevant applications of CRISPR system, paid special
attention to the regulation of m6A modification in stem cells and cancer cells
based on CRISPR system, emphasized the regulation of m6A modification on
telomerase activity, pointed out that m6A modification sites regulate telomerase
activity, and discussed strategies based on telomerase activity and disease
treatment, which are helpful to promote the research of anti-aging and tumor
related diseases.
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1 Introduction

The research of telomere and telomerase is of great significance to the aging of organism.
Telomerase is an eukaryotic ribonucleoprotein (RNP) composed of RNA-protein complex
(Blackburn and Collins, 2011). It extends the 3‘end of linear chromosome by synthesizing the
telomere repeat TTAGGG to maintain telomere length and chromosome stability (Liu et al.,
2022). Telomerase activity is closely related to tumorigenesis (Shay, 2016; Trybek et al.,
2020), cell proliferation and cell aging (Chakravarti et al., 2021). N6-methyladenosine (m6A)
RNA modification is an important epigenetic modification mode in post-transcriptional
regulation (Schmidt et al., 1975; Roundtree et al., 2017a; Tang et al., 2020), which involves
almost all aspects of RNA metabolism and affects various physiological and pathological
processes by regulating mRNA cytoplasmic transport, splicing, stability, structure and
translation (Dominissini et al., 2012). The composition of telomerase fully shows that it
has a close relationship with m6A modification. The study of the mechanism of m6A
modification regulating telomerase activity and maintaining telomere length will promote
human anti-aging to provide new ideas.

With the application and improvement of CRISPR (clustered regularly interspaced short
palindromic repeats)/Cas system (Jinek et al., 2012; Cong et al., 2013), the modified fusion
protein dm6ACRISPR system can achieve precise and efficient m6A site-specific modification
in RNA transcripts (Liu et al., 2019; Wilson et al., 2020), this will help to further explore the
mechanism of m6A modification. In clinical cancer research, it was found that there was a
site mutation in the promoter region of telomerase reverse transcriptase (TERT) gene. Use
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FIGURE 1
CRISPR/Cas system classification, typical structure, important members of Class II CRISPR/Cas system and principle of CRISPR/Cas system. (A) The
structure of class I and class II CRISPR/Cas system loci. The class I of CRISPR/Cas system is composed of multiple Cas proteins to form a crRNA complex,
which plays a role in the binding and processing of targets; The class II of CRISPR/Cas system is composed of a single multi-domain crRNA-binding
protein, and its function is similar to the effect complex in the class I of CRISPR system. (B)CRISPR/Cas9 system is mainly composed of Cas9 protein
and single-stranded guide RNA (sgRNA). Cas9 protein has the function of cutting DNA double-stranded, and sgRNA plays a guiding role. In the presence
of the adjacent motif (PAM) of the prototype spacer, Cas9 protein can reach different target sites through base complementary pairing under the
guidance of sgRNA, and achieve DNA double strand break (DSB) by cutting the target gene through the two nuclease domains of RuvC and HNH. (C)
CRISPR/Cas12 system is mainly composed of Cas12 protein and single-stranded guide RNA (sgRNA). Cas12 protein has side-cutting activity and can cut
double and single strands of DNA. It mainly plays the role of inducing DSBs through a single RuvC-like nuclease domain. (D) CRISPR/Cas13 system is
mainly composed of Cas13 protein and single-stranded guide RNA (sgRNA). Cas13 protein is a single protein composed of multiple domains. It has the
function of recognizing crRNA, cutting RNA, and even cutting pre-crRNA. It has the phenomenon of side-cutting activity similar to CRISPR/Cas12 system.
It cuts RNA through twoHEPN domains. (E)CRISPR/Cas system is an acquired immune system from bacteria and archaea. Taking the principle of CRISPR/
Cas9 system as an example: the acquisition of highly variable spacer of CRISPR - the expression of CRISPR loci (transcription and post-transcriptional
maturation) - the development of CRISPR/Cas9 system activity.
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the base editing function of CRISPR system to reduce the
transcription and protein expression of TERT, and induce the
aging and proliferation stagnation of cancer cells, which verifies
the feasibility of activated TERT promoter mutation as a cancer-
specific therapeutic target (Killela et al., 2013; Li et al., 2020).
Therefore, the CRISPR system technology, combined with the
m6A modification of RNA and the regulation of telomerase
activity, is used to regulate the aging and proliferation of cells in
the body and achieve the treatment of various diseases.

In this review, we reviewed and discussed the latest research
progress, and found that the CRISPR system was used to carry out
m6A site-specific modification of RNA, regulate telomerase activity

and affect telomere length by regulating telomerase assembly and
other processes, which provided a direction for the study of epigenetic
modification to regulate cell aging mechanism, and provided a
prospect for the future research on cell proliferation and aging.

2 CRISPR system introduction

CRISPR/Cas9 system widely exists in prokaryotes and provides
acquired immunity against the invasion of foreign viruses and
plasmids (Ghaemi et al., 2021). The developed CRISPR/Cas
system can accurately edit DNA or RNA targets at specific sites

FIGURE 2
DNA editing tools-CRISPR/dCas9.
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FIGURE 3
CRISPR system in RNA editing applications.

FIGURE 4
CRISPR system and m6A modification (A) N6-methyladenosine (m6A) regulation mechanism. Writers and erasers strictly regulate the presence of
m6A on transcripts by targeting them6Amotif (DRACH).m6A is recognized by readers and starts the steps of regulatingmRNA stability and translation. The
modification system can be extended to include Cas9 (base editor, writer/eraser fusion) and Cas13 (methylation system). (B) Application of CRISPR/
dCas9-ALKBH5/FTO tool in m6A modification. (C) Application of CRISPR/dCas13-Writer Complex tool in m6A modification; Application of CRISPR/
dCas13-ALKBH5/FTO tool in m6A modification.
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and has been widely used in gene editing (Hsu et al., 2014;
Manghwar et al., 2019; Zhang et al., 2021). According to the
composition of Cas effector proteins, CRISPR system is divided
into Class I and Class II (Figure 1). These systems use site-specific
guide RNA to guide Cas protein and accurately edit site-specific
sequences (Wang et al., 2022; Yu et al., 2022). At present, the most
widely used CRISPR systems are Class II Type II Cas9, Type V
Cas12 and Type VI Cas13 (Figure 1).

The CRISPR system is mainly used to modify specific target genes
in the genome of organisms. The main editors include DNA cytosine
base editor (CBE), adenine base editor (ABE) and primer editor (PE)
(Kantor et al., 2020). PE is a multi-functional and high-precision
genome editor (Anzalone et al., 2019), which is composed of two
parts: the leader editor protein and primer editing guided RNA
(pegRNA). Using the CRISPR Cas protein targeted DNA to make
nicks and the DNA synthesis ability of reverse transcriptase, the
sequence encoded by pegRNA can be accurately and efficiently
copied into the targeted DNA sequence to achieve accurate editing,
including replacement, insertion and deletion (Anzalone et al., 2019;
Kantor et al., 2020; Kim et al., 2020). The advantage of PE is that it does
not cause DNA double strand breakage, only cutting one strand of
DNA, thereby avoiding potential risks such as chromosome loss and
rearrangement caused by double strand DNA breakage. Researchers
can further improve the accuracy and specificity of PE by optimizing
lead editing proteins, pegRNA, and AAV genomic elements, such as
introducing engineered Cas9 mutants, especially eSpCas9 and Sniper
Cas9 mutants, into PE (Kim et al., 2020). The PE editing efficiency
prediction models DeepPrime, DeepPrime FT, and the off target
prediction model DeepPrime Off make the design and screening of
pegRNAs more convenient and efficient, providing strong guarantees

for the future widespread application of PE systems (Yu et al., 2023).
Using PE to repair sickle cell anemia (SCD)mutations in hematopoietic
stem cells or progenitor cells of patients, the repaired cells are treated for
hereditary blood diseases through transplantation (Everette et al., 2023).
The gene editing system developed based on CRISPR technology has
brought prospects for the research and treatment of genetic diseases.

3 CRISPR system and RNA editing

At present, CRISPR/Cas9 and CRISPR/Cas13 systems have
become tools for the research and application of DNA and RNA
epigenetic modification (Figure 2; Figure 3) (Zhan et al., 2019; Kordyś
et al., 2022). Nucleic acid endonuclease deficient Cas9 (dCas9)/Cas13
(dCas13) still has the activity of binding enzyme, which can combine
with effector protein to regulate the expression of DNA or RNA,
becoming an effective method to study gene function and regulation
mechanism (Yang et al., 2019; Liu et al., 2020).

Working principle of CRISPR/dCas9 system and related tools
based on CRISPR/dCas9 system development (gene editing, live cell
imaging, base editing, methylation modification, histone
modification and transcription regulation). Ac, acetylation; Me,
Methylation; Dme, Demethylation.

3.1 RNA editing tools: based on CRISPR/
dCas13 system

The modification of CRISPR system for gene editing at the DNA
level is irreversible, especially the ethical issues involved in the safety

TABLE 1 Application of CRISPR system associated key regulatory factors in m6A modification.

CRISPR
system

m6A key factor Function Year [Ref]

CRISPR/Cas9 METTL3 Promotes the increase of telomerase activity 2021 Lee et al. (2021)

Mediates CDCP1 mRNA specific m6A installation to promote BC development 2020 Ying et al.
(2020)

ALKBH5 Significantly reduce methylation by targeting A2577 site with sgRNA 2019 Liu et al. (2019)

FTO

METTL3-METTL14 heterodimer Catalyzes 5‘UTR to increase m6A modification

CRISPR/Cas13 ALKBH5 Promotes the stability of mRNA 2021 Li et al. (2020a)

Accurate and reversible demethylation of targeted m6A sites of mRNA 2021 Chen et al.
(2021)

Mediates specific demethylation of m6A site to adenosine 2021 Xia et al. (2021)

METTL3 Improves the modification efficiency of m6A in endogenous RNA transcripts 2020 Wilson et al.
(2020)

Mediates m6A specific methylation of adenosine sites 2021 Xia et al. (2021)

YTHDF3 Inhibition of melanoma metastasis by interfering with YTHDF3-LOXL3 axis 2022 Shi et al. (2022)

METTL3-METTL14
methyltransferase complex

Targeting m6A modification of exogenous RNA sites 2020 Wilson et al.
(2020)

FTO Mediates m6A demethylation of long-interspersed element-1 (LINE1) RNA, regulating
LINE1 RNA abundance and the local chromatin state

2022 Wei et al.
(2022)
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of human germ cell and embryonic cell editing cannot be ignored
(Leibowitz et al., 2021; Höijer et al., 2022). p53 gene is a tumor
suppressor gene that participates in the regulation of cell growth,
differentiation, apoptosis and other processes (Fischer et al., 2016).
After Cas9 protein was introduced into cells to realize CRISPR/
Cas9 mediated genome editing, p53 pathway was upregulated and
DNA repair level was increased. Cas9 protein induces p53 pathway
activation and p53 mediated DNA damage response (Enache et al.,
2020). These findings are of great significance for the correct
application of CRISPR/Cas9 mediated genome editing (Enache
et al., 2020; Sinha et al., 2021). Therefore, the use of CRISPR/
Cas9 technology in human pluripotent stem cells (hPSCs) cell
replacement therapy should be carefully carried out and the
p53 function of hPSCs cells should be monitored (Ihry et al.,
2018). The modification of Cas13 protein at the RNA level
successfully avoids irreversible permanent changes to the
genome, and is an important tool for studying the most
abundant m6A modification on RNA. At the same time, it plays

an important role in studying the structure and function of
telomerase composed of RNA and protein.

In terms of RNA editing, the CRISPR system has been deeply
modified and applied to mRNA epigenetic modification research.
The m1A modification detection method based on the CRISPR/
Cas13a system has been successfully used to identify m1A in 28S
rRNA (Chen et al., 2019). The catalytic inactivation of RfxCas13d
(dCasRx) is fused with the m1A demethylase ALKBH3, and the
dCasRx ALKBH3 fusion protein can mediate effective
demethylation of m1A modified RNA, known as Reengined m1A
modification valid eraser (“REVER”), providing a tool for further
elucidating the relationship between m1A modification of specific
transcripts and their phenotypic results (Xie et al., 2021). m1A
regulates the level of glycolysis in tumor cells by regulating the
expression of ATP5D in the mitochondrial ATP synthase
F1 domain. The dm1ACRISPR system can upregulate the
expression of ATP5D through targeted removal of ATP5D m1A
modification, resulting in an increase in the level of glycolysis of

FIGURE 5
Application of CRISPR/Cas9 system in regulating telomerase and telomere (A) Use CRISPR/Cas9 and CRISPR/dCas9 systems to cut telomeres
through telomerase to produce DNA damage and induce cancer cell death. (B) Use CRISPR/Cas9 system to introduce TGS1 gene frameshift mutation to
realize the deletion of TGS1 hypermethylation enzyme and promote the increase of telomerase RNA and telomere elongation.
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tumor cells (Wu et al., 2022). This is similar to using the CRISPR
system to study m6A modification, where endogenous editing
studies can be conducted by identifying the targets of epigenetic
modifications on mRNA such as m1A and m5C. Because the
CRISPR/RfxCas13d (CasRx) related transcriptome epigenetic
modification editor has the characteristics of small size and high
editing efficiency (Konermann et al., 2018; Zhang et al., 2018), which
is suitable for packaging into lentivirus vector for gene function
research. At present, CasRx has been successfully used to knock
down specific mRNA transcripts in zebrafish embryos (Kushawah
et al., 2020), and to mediate RNA targeted treatment of age-related
macular degeneration in model mice (Zhou et al., 2020).

4 CRISPR system and m6A modification

As an important biological function of RNA modification, m6A
modification widely exists in almost all types of RNA molecules in
cells (Yang et al., 2018; Hu et al., 2022). In the regulation of m6A
modification, combining the modified protein specific domain with
the inactivated CRISPR protein can produce a new precise editing tool
for RNA methylation modification (Figure 4) (Li et al., 2020; Wilson
et al., 2020; Kordyś et al., 2022). Liu et al. designed m6A modified
eraser by combining CRISPR/Cas9 with demethylase ALKBH5 or
FTO to realize RNA site-specific demethylation (Liu et al., 2019).
Considering the important regulatory role of m6A modification on
RNA in the nucleus, based on the RNA-targeted endonuclease system
CRISPR/Cas13, an editor for targeted RNA methylation (TRM) was
constructed, which became a new accurate editing tool for m6A
modification. The editor can achieve efficient and accurate editing
of m6A modification of RNA in nucleus and cytoplasm through
nuclear export-signal (NES) and nuclear localization signal (NLS)
(Wilson et al., 2020). The dm6ACRISPR editing tool can realize m6A
modification of RNA sites, providing a more powerful weapon for in-
depth research on the function of m6A modification (Table 1).

5 CRISPR system and telomerase

Telomerase, as an enzymatic RNP complex, plays a role of reverse
transcriptase in the process of telomere elongation, and is significantly
associated with cell aging and tumorigenesis (Sun et al., 2019). In cancer
cells (Bajaj et al., 2020; Negrini et al., 2020; Wu et al., 2020),
hematopoietic stem cells (Celtikci et al., 2021) and germ cells
(Dogan and Forsyth, 2021; Lupatov and Yarygin, 2022), telomerase
showed high activity (Demanelis et al., 2020). Cancer is closely related to
a series of changes in intracellular genome and epigenome (Ushijima
et al., 2021). Telomerase is silent in most normal somatic cells, but
activated in 90% of cancer cells, making it an excellent target for cancer
treatment. In the treatment of cancer, all kinds of telomerase activity
inhibitors have failed due to their side effects. Coats plus (CP) is a rare
autosomal recessive disease caused by CTC1 mutation, which is
important for maintaining telomere length. CTC1L1142H mutation
caused telomere damage. The point mutation of CTC1 using CRISPR/
Cas9 technology confirmed that the interaction between CTC1 and
STN1 is necessary to inhibit telomerase activity (Gu et al., 2018).
Combining the biological functions of CRISPR/Cas9 and telomerase,
the development of telomerase activating gene expression (Tage) has
gradually become a new cancer gene therapy method. The Tage system
consists of three components: the effector gene expression vector
carrying 3‘telomerase recognition rod end, the dCas9-VP64
expression vector and the sgRNA artificial transcription factor
expression vector targeting the telomere repeat sequence. Using
AAV as a gene vector, the Tage system can effectively kill cancer
cells and safely realize its application in the body (Dai et al., 2019). In
cancer research using CRISPR system, CRISPR activation screening of
targeted gRNAwas carried out, gRNA libraries targeting different genes
were established, targeted genes in cancer cells were systematically and
accurately knocked out, and cancer gene therapy was achieved (Joung
et al., 2022; Katti et al., 2022; Ye et al., 2022).

Telomerase activity usually depends on the expression level of
TERT, which is the catalytic subunit of RNP complex (Barthel et al.,
2017; Wu et al., 2021). The recruitment of telomerase to telomere
occurs in the S phase of the cell cycle. By using CRISPR genome
editing system and CRISPR-aided nano microscope technology to
track telomerase in the nucleus, it is proved that telomerase uses
three-dimensional diffusion to search for telomeres, and the
recruitment of telomerase to telomere is driven by the dynamic
interaction between the rapidly diffusing telomerase protein TERT
and telomere protein TPP1 (Schmidt et al., 2016). In the study of
human telomerase RNA (hTR) biogenic post-transcriptional
modification, the use of CRISPR system consumes trimethyl
guanosine synthetase 1 (TGS1). The reduction of trimethylation
will increase the coupling of hTR with cap-binding complex (CBC)
and Sec1/Munc-18 (Sm) chaperone protein, The accumulation of
mature hTR in the nucleus and cytoplasm increases, and the
increased hTR is assembled with TERT protein to produce
increased active telomerase complex and increased telomerase
activity, thus realizing the telomere elongation of cultured human
cells. This study provides a new treatment scheme for telomerase
dysfunction in telomeric syndrome (Figure 5) (Chen et al., 2020).

In order to further study the activation of telomerase and its
activity regulation mechanism, in view of the low editing efficiency
of CRISPR/Cas9 at the TERT gene locus, the genome editingmethod
of “pop in/pop out” is used to realize precise modification of

FIGURE 6
Telomerase.
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endogenous TERT gene sites in cells. This method provides a
powerful tool for studying the biological function of telomerase
using CRISPR/Cas9 (Kühn and Chu, 2015; Xi et al., 2015). Thus, the
emergence of CRISPR system will provide an important tool for
human research on telomerase and the regulation mechanism of cell
aging.

6 dm6ACRISPR system and telomerase

As a repeat DNA sequence at the end of chromosome, telomere
shortening is considered as a biological marker of cell aging (Al-

Turki and Griffith, 2023). At each cell division, 50–100 pairs of base
pairs will be lost in the chromosome end sequence, resulting in cell
aging and even death (Blasco, 2005; Rossiello et al., 2022).
Telomerase contains specialized TERT and telomerase RNA
(TER), and has its own template and catalytic core required by
TERT (Cash and Feigon, 2017; Jiang et al., 2018; Wang et al., 2019).
In most human cancers, the increase of telomerase level makes
cancer cells have the ability to proliferate indefinitely (Roake and
Artandi, 2020). According to the characteristics of telomerase
structure, composition and epigenetic modification (Figure 6;
Figure 7), the telomere repeat sequence at the end of
chromosome is extended to maintain the stability of genome,

FIGURE 7
Relationship between telomeres and telomerase (A) Cell proliferation and telomere length reduction. Telomere is a repetitive DNA structure at the
top of the chromosome. When the cell division DNA replicates, the telomere will protect the integrity of the chromosome. The activity of telomerase in
normal cells was inhibited, and the telomere gradually shortened and disappeared with the continuous cell division. Chromosomes are finally completely
exposed, cells cannot proliferate, DNAmolecules degrade, and life ends. (B) The life cycle of telomerase and its regulationmechanism. Telomerase-
protein RNA complex uses the non-coding RNA subunit hTR as a template, and the reverse transcriptase TERT catalyzes the telomere elongation. The life
cycle of telomerase includes post-transcriptional modification (PTM) and maturation of hTR, intracellular localization, and effective assembly with TERT
until the formation of a whole enzyme that can prolong telomeres.
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and the gradual loss of telomere caused by genome replication is
offset. These are important for studying cell proliferation and
delaying cell aging (He et al., 2021; Liu et al., 2022; Sekne et al., 2022).

The abnormal modification of RNA methylation is closely
related to a series of cancer occurrence, and studying the
relationship between m6A modification and tumor occurrence is
of great significance for the treatment of cancer. In liver cancer
research, it was found that methyltransferase METTL14 has a dual
effect of promoting cancer cell proliferation and differentiation and

inhibiting cancer cell metastasis (Ma et al., 2017; Chen et al., 2018);
Overexpression of METTL5 promotes the growth, proliferation,
migration, and invasion of liver cancer, knockdown of
METTL5 promotes cell apoptosis, and inhibits the growth,
proliferation, migration, and invasion of liver cancer (Peng et al.,
2022). METTL3 has carcinogenic function in human liver cancer,
and downregulation of METTL3 can weaken the tumorigenicity and
lung metastasis of liver cancer (Chen and Wong, 2020). In
glioblastoma, METTL3 can promote the maintenance and

TABLE 2 Function of m6A regulator in telomerase activity.

m6A regulator Key factor Mechanism Year [Ref]

METTL3 Cbf5 CircMEG3 relies on HULC to inhibit the expression of m6A
methyltransferase METTL3, thus inhibiting the expression of
Cbf5 and telomerase activity

2021 Jiang et al. (2021)

HMBOX1 METTL3 overexpression mediates the downregulation of
HMBOX1, which leads to telomere loss in cancer cells by
interfering with the recruitment of telomerase complex

2021 Lee et al. (2021)

ALKBH5 Telomerase RNA (hTR) Overexpression of ALKBH5 inhibits the assembly of TCAB1 and
DKC1 in the telomerase structure by regulating the m6A
modification in the H/ACA scaRNA domain of hTR, and inhibits
telomerase activity

2020 Han et al. (2020)

YTHDF1 AGO2 The downregulation of YTHDF1 leads to abnormal deposition in
AGO2 cytoplasm and the decrease of AGO2 content in nucleus,
which destroys the relationship between TERT and TERC in the
assembly of active telomerase RNP and inhibits telomerase
activity

2019 Laudadio et al. (2019)

2022 Li et al. (2022b)

HNRNP hTERC HNRNP F/H is overexpressed as a binding partner of hTERC and
telomerase holoenzyme, activating telomerase and delaying stem
cell aging

2021 Xu et al. (2020)

FIGURE 8
Application of m6A editing tool of dCas13b-METTL3 in telomerase activity regulation.
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radiation resistance of glioblastoma stem cells and inhibit their self-
renewal and proliferation (Cui et al., 2017; Visvanathan et al., 2018).
Inhibition of FTO expression can hinder the growth, differentiation
and self-renewal of glioblastoma stem cells (Cui et al., 2017).
ALKBH5 can promote stem cell self-renewal and proliferation
(Zhang et al., 2017). Overexpression of ALKBH5 was found in

breast cancer research to enhance the enrichment of breast cancer
stem cells (BCSC) (Zhang et al., 2016). In lung cancer and bladder
cancer, METTL3 knockout can reduce the growth, survival and
invasiveness of lung cancer cells, as well as the proliferation,
invasion, in vitro survival and in vivo tumorigenicity of bladder
cancer cells (Lin et al., 2016; Han et al., 2019). The m6Amodification

FIGURE 9
The mechanism of the m6A editing tool of CRISPR system to regulate telomerase activity and maintain telomere length in the p53 signal pathway.

FIGURE 10
m6A reading protein and telomerase (A) The interaction between AGO2 and 23 nt sRNA produced by TTS of telomerase RNA component TERC
(position 425–447) - terc-sRNA. (B) YTHDF1 interacts with AGO2 through YTH domain. YTHDF1 downregulates and destroys the interaction between
YTHDF1 and AGO2. AGO2 deposits abnormally in the cytoplasm. AGO2 depletion destroys the association between TERT and TERC RNA, reduces
telomerase activity, and leads to telomere shortening.
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is closely related to the occurrence of cancer, and the m6A editing
tool based on the CRISPR system will help to analyze the correlation
mechanism between m6A modification and cancer occurrence.

At present, the dm6ACRISPR editing tool is constructed by
combining the catalytically inactivated Cas protein with the m6A
modification related protein (Li et al., 2020). This laid a foundation
for studying the relationship between epigenetic modification and
telomerase function and exploring the mechanism of m6A
modification on telomerase activity regulation.

Telomerase structure. Telomerase is a ribonucleoprotein
complex, which is composed of scaffold non-coding human
telomerase RNA (hTR), telomerase reverse transcriptase (TERT)
and related cofactors. Telomerase is composed of two RNA-linked
structures. One is the H/ACA domain of hTR, which is composed of
two groups of dyskerin complex (dyskerin, NHP2, NOP10 and
GAR1) and TCAB1. The other contains the catalytic core, where
hTR and TERT surround the telomere substrate. The two are
connected through the CR4/5 domain of hTR.

6.1 Regulation of telomerase activity by m6A
modification

RNA epigenetic modifications commonly include 5-methylcytidine
(m5C) (Bohnsack et al., 2019), N6-methyladenosine (m6A) (Oerum
et al., 2021), N7-methylguanosine (m7G) (Malbec et al., 2019), N1-
methyladenosine (m1A) (Zhou et al., 2019), inosine (I) (Srinivasan et al.,
2021), and pseudo uracil (Ψ) And dihydrouracil (D) (Haruehanroengra
et al., 2020). m6A modification is closely related to many kinds of
carcinogenesis, and altered m6A modification is widely involved in the
progression of various tumorigenesis (Gu et al., 2020; Li et al., 2022).

Deeply study m6A modification by regulating telomerase activity to
maintain telomere homeostasis and genome stability is of great
significance to clarify the role of m6A modification in cell aging and
carcinogenesis (Table 2). Through Pan-Cancer Analysis of Whole
Genomes (PCAWG) analysis of m6A modification of telomerase
components, it was found that in most cancers, the expression level
of telomerase components was positively correlated with methylase
METTL3, negatively correlated with methylase METTL14, negatively
correlated with demethylase FTO, negatively correlated with reading
proteins YTHDC1, YTHDC2, YTHDF3 and FMR1, and positively
correlated with reading proteinsHNRNPC,HNRNP2B1, YTHDF1 and
RBMX (Wang et al., 2023). These showed that there was a close
relationship between telomerase component activity and m6A
regulatory factors. With the help of the established CRISPR/
dCas13 system to accurately edit the m6A modification platform, it
is proved that the METTL3-HMBOX1 axis regulates telomere
recruitment and telomere length related to telomerase in cancer
cells, and leads to DNA damage reaction (Figure 8) (Lee et al.,
2021). METTL3 promotes the stabilization of p53 protein and the
expression of target genes in response to DNA damage and
carcinogenic signals through catalytic activity dependent and
independent mechanisms (Zhao et al., 2020; Raj et al., 2022). In
addition, METTL3-m6A-p53 axis may be a potential target for the
treatment of hepatocellular carcinoma (HCC) (Ke et al., 2022).
Therefore, we can use CRISPR system to modify specific target
genes with m6A, and regulate telomerase activity by regulating
p53 signal pathway to maintain telomere homeostasis (Figure 9).

dCas13b-METTL3, a m6A editing tool based on CRISPR system,
proves that METTL3-catalyzed HMBOX1 methylation is involved
in regulating telomerase recruitment, resulting in telomere loss in
cancer cells, and m6A is involved in carcinogenesis.

FIGURE 11
Regulation of telomere by m6A modification of NLS-dCasRx-NLS-METTL3 system.
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The m6A editing tool of CRISPR system modifies mRNA with
m6A, affects telomerase activity through p53 signal pathway,
participates in phosphorylation of PKC and AKT or
dephosphorylation of PP2A, telomere shortening leads to DNA
damage, and activates p53 signal pathway.

Through its reading protein, m6A modification is widely
involved in biological processes such as pre-mRNA splicing,
RNA output, mRNA translation and RNA degradation, and
regulates the stability of targeted mRNA (He and He, 2021). In
the study of m6A reading protein, it was found that proteins
containing YTH domain (YTHDF1 and YTHDC1) used YTH
domain to recognize m6A modification, YTHDF1 and
YTHDF3 worked together to affect the translation of m6A
containing mRNA, YTHDF2 accelerated the decay of mRNA,
and YTHDC1 affected the nuclear processing of its target, further
regulating the function and fate of m6A labeled mRNA (Roundtree
et al., 2017b; Hsu et al., 2017; Shi et al., 2017).

Knockout of YTHDF1 by CRISPR/Cas9 system will destroy the
interaction between YT521-B homologous domain of YTHDF1 and
AGO2 (argonaute 2), leading to the transformation of
AGO2 droplets into gel/solids deposited in the cytoplasm (Li
et al., 2022). In the nucleus, AGO2 interacts with 23 nt sRNA
produced by TTS of telomerase RNA component telomerase
RNA component (TERC) (position 425–447), which is called
terc-sRNA. TERT and TERC constitute the core telomerase that
maintains telomere length. As an RNA-binding protein, AGO2 has
been found to promote telomerase activity and stimulate the
association between TERT and TERC (Figure 10).
AGO2 depletion leads to shorter telomeres and lower cell

proliferation rate in vitro and in vivo (Laudadio et al., 2019). By
regulating the recognition protein YTHDF1, it can regulate the
consumption of AGO2 in the cytoplasm, affect the content of
AGO2 in the nucleus, and lead to the change of telomerase
activity in cells, which may lay the foundation for new
therapeutic targets of tumor and telomeric diseases.

6.2 Site-directed modification of telomerase
by dm6ACRISPR system

After CRISPR/Cas9 system, CRISPR/Cas13 system of type VI
belongs to a known type that specifically binds and cleaves
exogenous RNA (Abudayyeh et al., 2016; Shmakov et al., 2017;
Smargon et al., 2017). CRISPR/Cas13 system can resist pathogenic
RNA virus or regulate gene expression, and promote the knockout of
mRNA, circular RNA and non-coding RNA (Wessels et al., 2020; Li
et al., 2021). In addition, CRISPR/Cas13 system has been used for
RNA modification in vivo, including editable regulation of selective
splicing, A-to-I and C-to-U editing and m6A modification
(O’Connell, 2019; Kordyś et al., 2022). Using CRISPR/
Cas13 system, m6A can be added to specific RNA sites in a
targeted way to achieve precise m6A modification at specific
RNA sites. Since the methylation and demethylation process of
m6A mainly occurs in the nucleus, two nuclear localization signal
(NLS) peptides are added to dCasRx-METTL3 and dCasRx-
ALKBH5 editors to realize the nuclear localization of the editing
complex, which are called NLS-dCasRx-NLS-METTL3 and NLS-
dCasRx-NLS-ALKBH5 (Xia et al., 2021). m6A methyltransferase

FIGURE 12
Regulation of telomerase assembly by m6A modification of NLS-dCasRx-NLS- ALKBH5 system m6A gene editing tool NLS-dCasRx-NLS-
ALKBH5 locates dCasRx-ALKBH5 in the nucleus to achieve specific demethylation. Use the gene editing tool dCasRX-ALKBH5 to modify the m6A
demethylation of telomerase hTR, regulate the assembly of telomerase components TCAB1 and DKC1, and reduce cell telomerase activity.
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METTL3 can increase the methylation modification level of
telomerase related gene Cbf5 mRNA, promote its transcription
and translation, and enhance telomerase activity (Jiang et al.,
2021). As a nuclear protein reverse transcriptase, telomerase is
composed of RNA template and catalytic protein (Wang et al.,
2019). There is a 5-nt GGACU sequence with m6A common motif
matching in the H/ACA scaRNA structure of hTR (Han et al., 2020),
adenosine in the motif (A435) is located in the double stranded
region of the RNA, suggesting that its secondary structure may be
affected by m6A modification (Liu et al., 2015). The double stranded
structure of the H/ACA scaRNA domain of hTR has been shown to
be important for the assembly of telomerase complexes (Zhang et al.,
2011). Overexpression of demethylase ALKBH5 leads to a decrease
in the assembly efficiency of TCAB1 and DKC1 on telomerase,
resulting in a decrease in telomerase activity. This may be mediated
by modifying hTR to regulate telomerase assembly and function
(Han et al., 2020).

If telomerase activity is regulated by m6A modification, we
consider attempting to achieve precise regulation using the
nuclear localization CRISPR system combined with dCasRx and
NLS. Assuming that the NLS-dCasRx-NLS-METTL3 system
overexpressing METTL3 promotes Cbf5 transcription and
translation (Figure 11), enhancing telomerase activity, and using
NLS-dCasRx-NLS-ALKBH5 overexpressing ALKBH5 to remove
m6A modification on hTR, Studying the regulation of
TCAB1 and DKC1 assembly on telomerase by m6A modification
(Figure 12) provides new insights into the potential application of
CRISPR based m6A modification in telomerase regulation.

m6A gene editing tool NLS-dCasRx-NLS-METTL3 locates
dCasRx-METTL3 in the nucleus to achieve specific methylation.
Using the gene editing tool dCasRX-METTL3, the methylation
modification level of Cbf5 mRNA was increased, the
transcription and translation level of Cbf5 was enhanced, and
Cbf5, as a component of telomere synthetase, increased telomere
synthetase activity and regulated telomerase activity.

7 Conclusions and future prospects

CRISPR gene editing system, as the most revolutionary
breakthrough in the field of biotechnology, is an unprecedented
tool to cure human genetic diseases (Gillmore et al., 2021; Fox et al.,
2022). m6A modification plays an important role in almost all-
important biological processes (Liu et al., 2022; Boulias and Greer,
2022). Telomerase is highly active in stem cells, immune cells and
germ cells to maintain telomere length (Jiang et al., 2018; Wan et al.,
2021). Using CRISPR system to study the regulation mechanism of
m6A modification on telomerase activity is of great significance for
exploring the mechanism of cell proliferation and aging.

In this review, we systematically describe the latest
application of CRISPR system in m6A modification and the

regulation of telomerase activity, providing ideas for
understanding the basic mechanism of regulating cell aging.
When considering that m6A is the most common, frequent
and conservative internal modification, and that telomerase
activity is inhibited in normal cells, but remains high in most
cancer cells, it is reasonable to propose that further exploring the
mechanism of m6A modification on telomerase activity
regulation will help to identify and develop gene therapy that
can fight aging and treat cancer. It is now clear that the expression
and activity of these proteins are essential for the correct
regulation of the cell’s non-stop replication process. Strong
evidence has emerged about the various functions of these
proteins and the corresponding functions of targeted RNA in
stem cells, immune cells, germ cells and sperm. So as we continue
to decipher the epigenetic modification of m6A and the biology of
cell proliferation and aging, we will have an important and in-
depth understanding of the molecular mechanism of
physiological and pathological cell aging.
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