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The recent COVID-19 pandemic led to many drastic changes in not only society,
law, economics, but also in science and medicine, marking for the first time when
drug regulatory authorities cleared for use mRNA-based vaccines in the fight
against this outbreak. However, while indeed representing a novel application of
such technology in the context of vaccination medicine, introducing RNA into
cells to produce resultant molecules (proteins, antibodies, etc.) is not a novel
principle. It has been common practice to introduce/inject mRNA into oocytes
and embryos to inhibit, induce, and identify several factors in a research context,
while such aspects have also been proposed as potential therapeutic and
diagnostic applications to combat infertility in humans. Herein, we describe key
areas where mRNA-based platforms have thus far represented potential areas of
clinical applications, describing the advantages and limitations of such
applications. Finally, we also discuss how recent advances in mRNA-based
platforms, driven by the recent pandemic, may stand to benefit the treatment
of infertility in humans. We also present brief future directions as to how we could
utilise recent and current advancements to enhance RNA therapeutics within
reproductive biology, specifically with relation to oocyte and embryo delivery.
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Introduction

mRNA and its therapeutic potential

Messenger RNA (mRNA)-based therapies revolve around the concept of translating
exogenous mRNA into functional proteins. Exogenous mRNAs are synthesized by in vitro
transcription, and a cap analogue is attached to their 5′end for cellular recognition. Since
mRNA is largely unstable, targeted delivery requires a form of delivery vehicle which
encapsulates the mRNA, such as lipid nanoparticles (LNPs), polyplexes and polymeric
nanoparticles, lipopolyplexes (LPPs), and cationic polypeptides. In 1990, the first trial to
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introduce exogenous mRNA successfully was performed by Wolff
et al. (1990), while Martinon et al. (1993) used the concept of
transcript mRNA of influenza nucleoprotein to produce a vaccine.
The mRNA was encapsulated into liposomes and injected into mice,
observing the production of virus-specific cytotoxic T lymphocytes.
However, the first clinical application of such an approach was the
utilisation of an mRNA-based strategy as a novel rabies vaccine in
2013 (NCT02241135), successfully yielding a functional antibody
response targeting viral rabies antigens (Alberer et al., 2017). The
most recent example of such technology was also observed in 2020,
with the advent of mRNA-based vaccine against Severe Acute
Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) (Kim,
2022). Three such vaccines, Pfizer-BioNTech (BNT162b2),
Moderna (mRNA-1273), and CureVac101–103 were the fastest
vaccines to be developed in medical history, with the Pfizer-
BioNTech iteration being the first vaccine to be approved by the
FDA for commercialization and use in children 5–11 years old
(Yaqinuddin et al., 2021; Fang et al., 2022), with subsequent
vaccines also being approved (albeit with some concerns) (Kashir
et al., 2022a). Indeed, numerous other applications are also
attributed to mRNA platforms within Biomedicine (Table 1).

The causative factor underlying the global coronavirus disease-19
(COVID-19) pandemic was of course sever acute respiratory syndrome
coronavirus-2 (SARS-CoV-2), which enters host cells via the surface S
protein - comprising S1 and S2. S1 consists of the receptor-binding
domain (RBD), while S2 oversees viral-cell membrane fusion and
cellular entry through its cognate receptor - the angiotensin-
converting enzyme 2 (ACE2) receptor, which seems to be the case
with all current variants of the virus (Kashir et al., 2021; Shafqat et al.,
2022). The main antigen target in the case of the COVID vaccine was
the S antigen, designed following a 2Pmutation, and S1/S2 cleavage site,
strategies. In the 2Pmutation strategy, two amino acids at the top of the
helical position of the S2 subunit center were substituted with prolines
(K986P and V987P), to enhance the stability of S protein (Corbett et al.,
2020; Wrapp et al., 2020; Zhang et al., 2020). For the S1/S2 cleavage site
strategy, part ofQ677TNSPRRARYSV687 sequence inwild-type SARS-
CoV-2 protein S was deleted to Q677TILRYSV683, causing a change in
the amino acid sequence from (RRAR to GGSG), preventing S protein
degradation in the host cell. It is cleaved into two subunits, S1 and S2 by

the enzyme, Furin, and transmembrane serine protease 2 (TMPRSS2)
(Hoffmann et al., 2020a; Hoffmann et al., 2020b). The role of these
subunits is to interact with cellular angiotensin-converting enzyme 2
(ACE2), mediating viral fusion to the host cell membrane, resulting in
post-fusion confirmation (Fang et al., 2022).

Due to its large molecular weight (104–106 Da), negative charge,
and proneness to degradation by nucleases, mRNA cannot pass
through the phospholipid bilayer membrane of the host cell. Thus,
delivery vesicles such as nano-scale vesicle were developed,
composed of structures such as ionizable lipids, helper
phospholipids, cholesterol, and polyethylene glycosylated
(PEGylated) lipids. These components facilitate the endosomal
escape of mRNA, determine the specificity of target organs, and
reduce aggregation (Malone et al., 1989; Kauffman et al., 2015; Chen
et al., 2016; Cheng & Lee, 2016; Cullis & Hope, 2017; Ball et al., 2018;
Sabnis et al., 2018; Hassett et al., 2019; Lokugamage et al., 2019;
Buschmann et al., 2021; Fang et al., 2022).

Perhapsmost importantly, mRNAvaccine strategies (both ssRNA
and dsRNA) exhibit ‘self-adjuvant’ effects, while also inducing
antibody production, and adequate immune responses
(Alexopoulou et al., 2001; Diebold et al., 2004; Verbeke et al.,
2019; Linares-Fernández et al., 2020; Xu et al., 2020). However,
regardless of the synthesis/delivery strategy, the concept is that the
host cell translates the mRNA sequence by cellular ribosomes to
express the antigen of interest, which is degraded into small peptides
that will be presented by MHC class I to CD8+ cytotoxic T Cells as
endogenous antigens. These antigens can be secreted to the
extracellular membrane as exogenous antigens and presented by
MHC class II to CD4+ T Cells (Cagigi & Loré, 2021), which in
turn secrete cytokines and activate B Cells for humoral immune
response. Upon infection, the immune system recognizes the S
antigen on the surface of the virus and triggers humoral and
cellular responses (Fang et al., 2022).

RNA/mRNA processing in oocytes/embryos

RNAs are frequently kept in membrane-free compartments that
arise naturally when proteins and/or nucleic acids spontaneously

TABLE 1 Summary of applications of mRNA technologies in biomedical applications.

Application Description References

Cancer immunotherapy and
biomarkers

Utilisation of mRNA encoding for tumor antigens to stimulate the
immune system to attack cancer cells. Preclinical/early clinical trials
show significant promise for various types of cancer

Kranz et al. (2016), Bareche et al. (2018), Jabulowsky et al. (2018),
Burris et al. (2019), Sahin et al. (2020), Sarhadi & Armengol (2022),
Shinawi et al. (2022), Sun et al. (2023)

Large-scale screening studies suggest changes in mRNA expression
within tumors could be used in a diagnostic capacity using next-
generation screening and microarray approaches, although further
detailed investigations are required

Gene Therapies Such approaches use mRNA to replace or correct defects in specific
genes, with examples including disorders such as cystic fibrosis,
muscular dystrophy, diabetes, and cardiac conditions

Carlsson et al. (2018), Gan et al. (2019), Patel et al. (2019), Anttila
et al. (2020), Saifullah et al. (2022)

Vaccines for against and
infectious diseases

mRNA-produced antigens have the capability of inducing an immune
response and contribute towards developing protective immunity
against specific viral diseases. The most famous recent example is
COVID-19, but also includes diseases ranging from the Zika, Influenza,
Cytomegalovirus (CMV), and Rabies viruses

Richner et al. (2017), Stitz et al. (2017), John et al. (2018), Pardi et al.
(2018), Sahin et al. (2020), Le et al. (2022), Gote et al. (2023)
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phase separate. Earlier research found many membrane-less
compartment types, including P-granules in Caenorhabditis
elegans (Brangwynne et al., 2009; Seydoux, 2018) and polar
granules in Drosophila (Malone et al., 1989; Trcek & Lehmann,
2019; Bose et al., 2022), that store mRNAs in non-mammalian
oocytes (Flemr et al., 2010; Cheng et al., 2022). Mammalian oocytes
actively transcribe a large number of mRNAs. During the last stages
of oocyte maturation, transcription arrests until after fertilization
when the embryonic genome is activated. The mRNAs that the
oocyte/embryo can employ to create new proteins during this time
are those that have been stored. Hence, for meiosis to transform
oocytes into embryos following fertilization, proper maternal
mRNA storage is essential. Cheng et al. (2022) collectively
suggested that oocytes of at least mammals, maternal mRNAs,
and RNA-binding proteins are primarily deposited around
mitochondria.

Interactions between membrane-bound and membrane-less
compartments play key roles in cellular architecture and
function, according to recent studies. Oocytes undergo a lengthy
growth phase during which their mitochondria remain largely
inactive. In addition to supplying energy for early embryonic
development and oocyte meiotic maturation, maternal
mitochondria can produce reactive oxygen species (ROS), which
can jeopardize the integrity of the genetic material in the
mitochondria and the nucleus (Sasaki et al., 2019; Rodríguez-
Nuevo et al., 2022). Fewer ROS are produced, which leads to less
DNA oxidative damage (Cheng et al., 2022). This helps to maintain
the genetic material’s stability in oocytes. Only fully developed
oocytes with surrounded nucleoli (SN oocytes) have completely
polarized mitochondria, which provide the necessary energy for
oocyte meiotic maturation and subsequent embryogenesis (Cheng
et al., 2022).

Jansova et al. (2018) used fluorescent oligo (dT) probes to detect
the localization of RNA in the oocyte and two-cell embryos,
indicating that whereas the cytoplasm contained comparable
amounts of polyA RNA, the embryo’s nucleus contained
significantly more than the oocyte’s. To visualize the whole
cellular transcriptome, Rolling Circle Amplification (RCA)
(Larsson et al., 2010; Lee J. H. et al., 2015) was adopted, and
results were similar to RNA FISH; the intensity of fluorescence
in the nucleus and cytoplasmwas equal in the general transcriptome,
while in the 2-celled embryo, the RNA intensity was significantly
lower in the cytoplasm. Oocytes store and transcribe mRNA in its
growth phase until it reaches its full size, which is approximately
3 mm in cattle, where transcription is decreased. The mRNA’s
stability has been proven to depend on the poly(A) tail extension
at the 3′ end, whereby the tail’s length is correlated with its capability
of successful development; the shorter the poly (A) tail, the lower its
competence (Wrenzycki et al., 2007).

Understanding the control of mRNA stability in mammalian
oocytes and zygotes has lately made significant advances. In
reproductive and developmental biology, the precise processes by
which maternal mRNAs are degraded during the maternal-to-
zygotic transition (MZT) have long been a matter of debate. The
zinc finger protein 36-like 2 (ZFP36L2) protein and CNOT6L, a
catalytic component of CCR4-NOT deadenylase, are crucial for
mRNA decay that occurs in conjunction with oocyte meiotic
maturation. All animal species undergo the MZT, the first stage

of early development (Sha et al., 2020), during which maternal gene
transcripts are degraded, and the zygotic genome activated. The
dynamics of such mRNA and the mechanisms that control the
stepwise maternal mRNA clearance during MZT in humans are still
unknown, despite such findings in model animals of lower-level
species.

Genetic and high-throughput sequencing studies on model
systems, including Drosophila, zebrafish, and Xenopus, have
shown that the elimination of maternal transcripts is
accomplished by two sequential pathways. The first is entirely
mediated by maternal factors accumulated in the mature oocytes
and is referred to as maternal (M)-decay; the second depends on de
novo zygotic transcription products after fertilization and is referred
to as zygotic (Z)-decay (Sha et al., 2020). Maternal (M)-decay,
entirely mediated by maternal factors accumulated in the mature
oocytes, is the first pathway, while zygotic (Z)-decay, which depends
on de novo zygotic transcription products after fertilization, is the
second.

The oocyte-specific adaptor protein of CCR4-NOT, B Cell
translocation gene-4 (BTG4), was discovered to be an MZT-
licensing factor in mice that mediated mRNA clearance before
ZGA9-11 (Morgan et al., 2017; Horvat et al., 2018). Terminal
uridine transferase-4/(Tut4/Tut7) and potentially additional early
zygotic genes encoding unidentified mRNA destabilizers are
transcriptionally activated by the maternal transcriptional
coactivator YAP1 and its co-transcription factor TEAD4 (Yagi
et al., 2007; Yu et al., 2016; Morgan et al., 2017; Chang et al.,
2018). These processes are also important elements of the murine
Z-decay system (Sha et al., 2020).

Thus, the RNA landscape in oocytes and embryos is extremely
dynamic, and understanding such mechanisms would further allow
the development of specific targets using such strategies to be used
either therapeutically or diagnostically in the context of specific
fertility applications within the clinic.

mRNA technology for oocyte activation

PLCζ/oocyte activation therapeutics
At fertilization, the pivotal signal for oocyte activation in every

animal species studied to date is a rise in intracellular calcium
concentration (Ca2+). In mammalian oocytes, the initial Ca2+ rise is
followed by repetitive Ca2+ transients or ‘oscillations’, triggered by a
soluble factor introduced into the ooplasm at gamete fusion by the
fertilizing sperm. These oscillations are also observed following
intracytoplasmic sperm injection (ICSI; direct injection of a
single sperm into the ooplasm) in human and mouse oocytes
(Kashir et al., 2010; Kashir et al., 2012a; Nomikos et al., 2017;
Kashir et al., 2018). The sperm-specific phospholipase C (PLC),
PLCzeta (PLCζ) exhibits the expected properties of the oocyte
activating factor (Cox et al., 2002; Saunders et al., 2002), and is
considered the strongest candidate for the sperm factor, although
several other candidates have also been proposed but without much
further evidence or independent support (Parrington et al., 1996;
Sette et al., 1997; Sette et al., 1998; Sette et al., 2002; Wu et al., 2007;
Kashir et al., 2013b; Aarabi et al., 2014; Nomikos et al., 2015a; Kashir
et al., 2015). Interestingly, injection of recombinant mouse and
human PLCζ RNA into mouse oocytes not only evoked Ca2+
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oscillations similar to those induced by sperm, but also promoted
subsequent embryo development until the blastocyst stage (Cox
et al., 2002; Saunders et al., 2002; Rogers et al., 2004), with a similar
response elicited following by microinjection of recombinant mouse
PLCζ protein into mouse oocytes (Kouchi et al., 2004; Yoda et al.,
2004).

The clinical application of ICSI has been of major importance in
human-assisted reproductive medicine in the treatment of male
infertility. However, in a small percentage (2%–3%) of such patients,
oocytes fail to activate following ICSI and this appears to be due to a
deficiency in oocyte activation, specifically due to sperm defects in
PLCζ (either reduced/absent levels or abnormal localisation), in even
sperm with normal morphology (Yoon et al., 2008; Heytens et al.,
2009; Kashir et al., 2014; Saleh et al., 2020). One circumstance where
fertilization following ICSI appears to be severely diminished is in
globozoospermia, a rare disorder affecting ~0.1% of infertile men
and characterized by round-headed, acrosome-less sperm cells (Liu
et al., 1995; Heindryckx et al., 2005; Dam et al., 2006; Fesahat et al.,
2019). Such infertile, males also tend to exhibit mutations in the
PLCζ gene (Heytens et al., 2009; Kashir et al., 2011b), with numerous
such mutations now identified multiple independent studies and
correlated with oocyte activation failure in humans (Abdulsamad
et al., 2023; Jones et al., 2022; Kashir, 2020). Indeed, PLCζ also seems
to be an important indicator of sperm health, correlating with all
examined sperm parameters used within the clinic (Kashir et al.,
2010; Kashir et al., 2011a; Kashir et al., 2011b; Kashir et al., 2012b;
Kashir et al., 2012c; Kashir et al., 2012d; Kashir et al., 2012e;
Ramadan et al., 2012; Yelumalai et al., 2012; Kashir et al., 2013a;
Nomikos et al., 2013a; Kashir et al., 2013b; Kashir et al., 2014;
Yelumalai et al., 2015; Kashir et al., 2016; Kashir, 2020; Kashir et al.,
2020; Kashir et al., 2022b; Kashir et al., 2023).

Most interestingly, co-injection of such spermwith PLCζmRNA
in mouse oocytes was able to ‘rescue’ the induction of Ca2+

oscillations, enabling oocyte activation and fertilisation to
complete (Yoon et al., 2008; Heytens et al., 2009), the idea of
course being that the oocytes active transcriptional machinery
converts the RNA to protein, leading to activity. Conversely,
injecting mutant, inactive, PLCζ RNA in mouse oocytes failed to
elicit suitable Ca2+ release, resulting in failed activation in mouse
oocytes (reviewed by Kashir, 2020). Collectively, such studies
suggest that recombinant PLCζ injection represents perhaps an
immensely important therapeutic avenue to rescue cases of ICSI
failure (Figure 1). Indeed, this has predominantly been pursued in
the form of protein injection (Swann et al., 2012; Nomikos et al.,
2013b; Nomikos et al., 2014; Nomikos et al., 2015b; Sanusi et al.,
2015), driven predominantly by problems associated with RNA
injection into oocytes (discussed later herein). However, this is
not to say that injection of such protein is not challenging.
Indeed, numerous issues also persist in such applications
(reviewed further by Kashir, 2020) leaving some room for
improved RNA technology-driven injection of PLCζ.

Another approach could be to target aspects of oocyte activation
involved downstream of the action of PLCζ-induced Ca2+

release–specifically factors involved in maintaining cell cycle
arrest. A major function of oocyte activation (via Ca2+ release) is
to alleviate arrest through the proteolysis of cyclin B1 by ubiquitin or
proteasome activation (Miyazaki and Ito, 2006; Kashir et al., 2022b).
Ca2+–calmodulin interactions then further repetitively activates

calmodulin-dependent kinase II (CaMKII) coincident with each
Ca2+ peak during fertilization (at least in mouse oocytes),
polyubiquitinating cyclin B1 by the anaphase promoting
complex/cyclosome (APC/C), a E3 ubiquitin ligase (Swann and
Lai, 2016). This entire pathway is inhibited by cytostatic factor
(CSF) (Hyslop et al., 2004; Jones, 2004; Jones, 2005; Miyazaki and
Ito, 2006), which is inhibited by CaMKII (Hyslop et al., 2004).
Finally, Ca2+ oscillations also contribute to pronuclear formation by
reducing mitogen-associated protein kinase activity (Ducibella et al.,
2002; Miyazaki and Ito, 2006).

Ca2+ also activates protein kinase C (PKC) to phosphorylate
myristoylated alanine-rich C kinase substrate (MARCKS), causing
its disassociation from F-actin and leading to actin breakdown in the
oocyte cortex, facilitating cortical granule exocytosis. Application of
protein synthesis or kinase inhibitors to block the synthesis of cyclin
B or CDK1 activity respectively (Heindryckx et al., 2010; Kashir &
Swann, 2018), and targeting Emi2 activity (inhibiting cyclin B
activity and MPF activity) (Suzuki et al., 2010; Lee K. et al.,
2015) are methods that show promise in a supplementary role to
Ca2+ (Ducibella and Fissore, 2008; Heindryckx et al., 2010; Kashir
and Swann, 2018). To this degree, perhaps it would be worthwhile to
consider RNA-mediated therapeutic targeting of such factors/
processes as an additional/alternative measure to PLCζ activity.

Ca2+ imaging diagnostics
Ca2+ imaging is important in oocytes to confirm Ca2+ oscillations

and oocyte activation. Multiple tools have been used in the past to
image changes in intracellular Ca2+, including the photoprotein
aequorin in medaka fish, Ca2+ sensitive fluorescent dyes such as
Fura-2 in sea urchin and hamsters, and calcium green-1-dextran in
Xenopus (Derrick et al., 2016). The mouse oocyte calcium analysis
(MOCA) test quantitatively measures free cytosolic Ca2+ spikes in
the oocyte using fluorescent probes, and analyzed based on the
frequency of Ca2+spikes and classified into 4 categories, similar to the
mouse oocyte activation test (MOAT), which is used for more severe
abnormalities in Ca2+ release (Heindryckx et al., 2005; Vanden
Meerschaut et al., 2013; Ferrer-Buitrago et al., 2018; Cardona
Barberán et al., 2020). On the level of neuronal cells, other kinds
of dyes have been used, including Oregon Green BAPTA (OGB)-
1 or fluo-4 (Grienberger and Konnerth, 2012; Oh et al., 2019).

However, such methods hold major ethical concerns, with
sensitivities of oocytes to Ca2+ stimuli perhaps masking specific
outcomes Cardona Barberán et al., 2020 Kashir, 2020). If such
concerns were to be alleviated, however, there are also other
concerns pertaining to Ca2+ imaging using fluorescents
dyes–namely, that the constant imaging and light exposure exert
lethality upon the developing embryo and are thus not used in
clinical human IVF and ICSI (Swann et al., 2012). Furthermore, the
delivery method of some dyes involves cell permeabilization by a
whole-cell patch clamp or with an acute bulk loading protocol that
may damage the cell (Oh et al., 2019).

A proposed alternative are genetically encoded calcium
indicators (GECIs), which bind to Ca2+ ions, based on the Ca2+-
binding with calmodulin/calmodulin-binding proteins, emitting
fluorescence based upon fluorescence resonance energy transfer
(FRET), which use a combined form of two fluorescent proteins.
Attachment of Ca2+ reduces the distance between two proteins
to <10 nm, facilitating energy transfer between donor and
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acceptor, and thus fluorescence emission (Jares-Erijman & Jovin,
2003; Oh et al., 2019). Single-fluorophore based GECI methods are
mediated through conformational changes mostly through
calmodulin (CaM) and induced chromophore deprotonation
leading to elevated fluorescence emission (Nakamura et al., 1999;
Akerboom et al., 2009; Oh et al., 2019).

Such methods were have been further modified to examine Ca2+

release specifically from acidic organelles, as is the case in oocytes
(via the endoplasmic reticulum; ER)—termed genetically encoded
Ca2+ indicators for optical imaging (GECOs) (Suzuki et al., 2016),
which would potentially minimise light-induced damage due to
exposure to shorter wavelengths of light, and minimization of
reactive oxygen species (ROS) generation (which are generally
harmful for cells in large quantities) (Nasr-Esfahani et al., 1990;
Squirrell et al., 1999). Satouh et al. (2017) utilized such GECOs, via
injection of RNA encoding for various GECOs based upon CaM, to

successfully image Ca2+ release dynamics without interfering with
the efficacy of embryogenesis or birth rates of pups in comparison
with controls, whilst also being able to visualize specific Ca2+-
dependent events such as cortical granule exocytosis. Perhaps
such methods would be preferable to using Ca2+ dyes, but would
of course be subject to limitations associated with RNA use as
discussed later. Another aspect to consider is that some GECOs may
interfere with Ca2+ signalling pathways and it may alter Ca2+

oscillations in the oocyte. However, Satouh et al. (2017) and
others using similar applications (Cappa et al., 2018; Morita
et al., 2021) did not seem to experience such drawbacks.

Embryogenic targets
During mammalian oocyte maturation, the female genome is

transcriptionally and translationally active, generating a large
amount of maternal proteins (De Leon et al., 1983) which are

FIGURE 1
Co-injection of mouse PLCζ mRNA alongside infertile humans sperm in mouse oocytes can rescue Ca2+ oscillatory ability. (A) Injection of fertile
sperm into mouse oocytes exhibited normal Ca2+ release patterns and oocyte activation and pronuclear (PN) formation (broken arrows). (B) Injection of
sperm from an infertile patient (unable to result in fertilisation) was unable to initiate Ca2+ release and failed to induce oocyte activation (arrowhead
denotes MII chromatin). (C) However, co-injection of sperm from the same patient alongside mouse PLCζ mRNA initiated Ca2+ oscillations
comparable to fertile controls, and enabled resumption of meiosis and PN formation. 1st PB: first polar body; 2 PB: second polar body. Asterisk in inset
points to the persistence of the human sperm tail in mouse eggs. Scale bar: 10 μm. Figure adapted from Yoon et al. (2008) with permission.
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required due to the arrest of transcription prior to ovulation until the
2-cell stage. This MZT process heavily requires large stores of such
maternal components to initiate development and activate the
embryonic genome (Tadros and Lipshitz, 2009; Li et al., 2013;
Zhang et al., 2022). Microarray and proteomic analyses indicate
that maternal effect genes affect multiple processes ranging from
pronuclear formation, embryogenic cell divisions and gene
transcription (Tong et al., 2000; Payer et al., 2003; Tang et al.,
2007; Li et al., 2008; Philipps et al., 2008; Kashir et al., 2012b; Li et al.,
2013).

The initiation of embryonic genome transcription, also known
as zygotic genome activation (ZGA) varies among species, ranging
from the 1-cell mouse zygote, the 4-8 cell stage in humans and pigs,
to the 8–16 cell stage in cows and sheep (Davis, 1985; Braude et al.,
1988; Crosby et al., 1988; Frei et al., 1989; Latham et al., 1991; Ram
and Schultz, 1993; Bouniol et al., 1995; Li et al., 2013). Large-scale
global gene expression profiles seem significantly dynamic, occuring
in ‘waves’ during the MZT and preimplantation development in
various mammals, during which maternal transcripts are degraded
and zygotic genes are activated (Hamatani et al., 2004; Wang et al.,
2004; Zeng et al., 2004; Sirard et al., 2005; Whitworth et al., 2005;
Zeng and Schultz, 2005; Misirlioglu et al., 2006; Vallée et al., 2008; Li
et al., 2013) (Figure 2). For successful embryogenesis, maternal
micro RNAs (miRNAs) require degradation concurrent to de
novo miRNA synthesis at the 2-cell stage (Giraldez et al., 2006;
Tang et al., 2007; Bushati et al., 2008; Lund et al., 2009; Ma et al.,
2010; Suh et al., 2010), which may be regulated by various short
interfering RNA (siRNA) pathways (Tam et al., 2008; Watanabe
et al., 2008; Ma et al., 2010).

During the MZT, maternal mRNAs are translated concurrent to
specific developmental events that occur before ZGA, dependent
upon cis-regulatory elements within transcripts. Such transcripts
seem associated with cellular homeostasis and protein biosynthesis
(Potireddy et al., 2006; Li et al., 2013). ZGA is also crucial for

embryogenesis regulated by multiple regulatory mechanisms
involving maternal effect genes, chromatin remodelling and DNA
replication (Schultz, 1993; Minami et al., 2007; Li et al., 2013). To
this degree, the control of mRNA degradation/translation status is
major regulatory step, maintained both spatially and temporally,
with specific regulatory factors exerting a critical role during early
embryogenesis. Thus, such factors may also serve as important
potential targets for RNA-based therapies (knockdown/expression
as appropriate) (Teixeira and Lehmann, 2019; Alhajeri et al., 2022;
Zhang et al., 2022). Further to maternal factors, Yuan et al. (2023)
reported that the paternal genome also exerts a significant influence
during maternal RNA degradation (MRD) and ZGA in human early
embryos, and mused whether the infertility of some patients may be
attributable to defects of paternal contributors of human ZGA.

Some factors that could potentially represent targets for mRNA-
based interventions include October 4 (also known as POU5F1), a
transcription factor in human embryos, and expressed as maternal
transcript and protein in mouse oocytes, linked to cellular
pluripotency (Tan et al., 2013; Wu and Schöler, 2014; Cui et al.,
2019). Zar1/Zar2 play a critical rule in oocyte meiotic maturation, as
well as a major role in inducing 2-cell stage arrest, bind mRNAs, and
regulate the stability of the maternal transcriptome and MZT, and
trigger mRNA clearance during MZT by interacting with other
RNA-binding proteins (Rong et al., 2019). Mater is another essential
protein expressed exclusively in oocyte cytoplasms but exert
significant effect throughout embryogenesis, remaining present
throughout the late blastocyst stages (Tong et al., 2000). Finally,
another major player, Nanog, is highly expressed and localized to
epiblast, deficiencies in which underlie a failure in appropriate
implantation. Importantly, Nanog interacts with numerous other
factors (such as CDX2, a Mediator Complex Protein–MED, and
Oct4) to regulate status of various RNA transcripts and overall
embryonic health (Wu and Schöler, 2014; Cui et al., 2019) (more
factors exhaustively reviewed by (Jiang et al., 2023).

FIGURE 2
Schematic representation of the maternal to zygotic (MZT) and zygotic genome activation (ZGA) in relation to RNA status in mouse embryos. The
MZT initiates following sperm/oocyte fusion at fertilization, which undergoes the various stages of embryogenesis. Oocytes accumulate a large pool of
maternal RNA throughout ovulation that are essential for these processes. Post-fertilization, maternal RNAs are gradually degraded, while transcription of
embryonic transcripts are initiated at the late zygote stage (minor ZGA) and robustly activated at 2- and 4-cell stages (major ZGA). Figure adapted
from Li et al. (2013) with permission.

Frontiers in Cell and Developmental Biology frontiersin.org06

Bafleh et al. 10.3389/fcell.2023.1198848

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1198848


All such factors underlying these essential events could represent
therapeutic targets for embryos, targeting as appropriate to regulates
key events during embryogenesis to perhaps enhance chances of
successful pregnancy within the clinic. Another more recent
development, however, also would perhaps allow for effective
diagnostic analysis of such factors, both in terms of
quantification and localisation, within embryos. Jansova et al.
(2021) developed a technique further to previous methods
(Tanenbaum et al., 2014), using a combination of RNA-FISH
and the puromycilation proximity ligation assay, to examine
localized translation of non-coding and mRNAs in mouse
oocytes and embryos, establishing simultaneous visualization of
mRNA and in situ translation at the subcellular level, allowing
quantitative spatio-temporal analysis. Using such methods, analyses
of such RNA also represent significant diagnostic targets.

Issues associated with RNA-therapies/
diagnostics in oocytes and embryos

mRNA therapeutics have given researchers great hope in
combating widespread incurable diseases. However, while such
technology is associated with certain advantages, such new

mRNA technology also exhibit significant drawbacks such as
mRNA efficiency, safety, stability, immunogenicity, and
enhancement of delivery systems (Table 2; (Almalki et al., 2021;
Liu et al., 2021; Pardi et al., 2018; Polack et al., 2020; Sahin et al.,
2020; Weng et al., 2020; Zhang et al., 2019). It must be considered,
however, that numerous issues pertaining to RNA delivery in the
body may not necessarily apply to direct delivery in a much smaller
oocyte cell–such as thermodynamic stability. Another example is
that while injection of large volumes of RNA solution into the body
will result in several hundred thousand–fold dilutions, this issue will
not be as profound for oocyte delivery (Guo et al., 2012).

mRNA is a very large unstable molecule, prone to degradation
by nucleases (Weng et al., 2020). Indeed, the half-life of mRNA
transcribed in vitro is a crucial factor hindering application of
mRNA-based therapeutics, while natural RNA is extremely
sensitive to RNase degradation in the body or within serum (Guo
et al., 2012). Rapid progress in recent years have developed chemical
base modifications; phosphate linkage modifications; alteration of
the 2′carbon (Watts et al., 2008; Singh et al., 2010); use of
polycarbamate nucleic acids (Madhuri and Kumar, 2010), locked/
bridged nucleic acids (Mathé and Périgaud, 2008); and 5′- and 3′-
end capping (Jemielity et al., 2003; Patra and Richert, 2009; Li and
Kiledjian, 2010; Ziemniak et al., 2013; Weng et al., 2020), all serving

TABLE 2 Strengths and weaknesses of mRNA platforms in comparison to current methods.

Strengths Weaknesses

Specific targeting of factors/disease Potential for adverse immune response and off-target effects

Rapid development and reconfiguration Instability and short half-life

No viral or animal requirements Limited delivery to specific tissues and cells

Sufficient ability to trigger an immune response Requires specialised transportation and storage

Potential for versatility May require multiple/repeated dosage to maintain effect

Vast potential for personalised medicine Limited comparative clinical deployment thus far

Somewhat safer compared to traditional vaccines

FIGURE 3
Representative images indicating successful association of loaded mesoporous silica nanoparticles (MSNPs) with sperm. MSNPs were loaded with
(A) Lamin A/C siRNA, and (B) mCherry fluorescent protein. Scalebar = 5 μm. Figure adapted from (Barkalina et al., 2014) with permission.
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to increase RNase resistance in vitro and in vivo. However, such
modifications may further affect folding and functional properties of
the RNA (some more than others) (Hong et al., 2010; Liu et al., 2011;
Guo et al., 2012; Weng et al., 2020).

Other chemical modifications include modifying the coding
region or the poly(A) tail - plays an important role in regulating
the stability and efficiency of the translation of mRNA in union with
the 5′cap, the entry site of the internal ribosome, and other factors
(Gallie, 1991). Modification of the poly(A) tail could be used to
optimize efficiency of mRNA use (Sahin et al., 2014), whereby
replacing rare codons with synonymous but frequent codons can
improve the translational yield (Gustafsson et al., 2004) via reuse of
the same tRNA accelerated translation which occurs due to amino-
acylation of tRNAs in the locality of the ribosomes (Cannarozzi
et al., 2010). However, a limitation of this method is that each RNA
preparation contains a mixture of RNA species that differ in the
length of the poly(A) tail (Sahin et al., 2014).

In addition to genetic diseases and cancer, uncontrolled mRNA
expression can also result from exposure to environmental toxins or
drugs that disrupt normal gene expression patterns. For instance,
exposure to heavy metals such as lead can interfere with mRNA
processing and transport, leading to an altered mRNA expression
pattern. Similarly, certain drugs can affect mRNA synthesis,
processing, and stability, leading to unintended consequences for
protein production. Another potential drawback suggests that
external mRNA introduction could elicit an immunogenic

response via Toll-like receptors (Weng et al., 2020). However,
such potential issues would perhaps not apply to direct oocyte
injection of RNA transcripts.

Most problematic, however, is that data increasingly suggest that
mouse zygotes possess a retrotransposon-encoded reverse
transcriptase activity, triggered a few hours after fertilization and
lasting up to at least the two-cell stage, with products absent in
zygotes treated with reverse transcriptase inhibitors (Pittoggi et al.,
2003; Sciamanna et al., 2011). This ‘reverse transcription wave’ could
generate cDNA products, capable of retention and possibly
integration, in zygotic pronuclei and embryonic nuclei. Indeed, it
would seem that such activity may even be an essential process
driving murine preimplantation development (Sciamanna et al.,
2011; Kohlrausch et al., 2022). Indeed, telomere reverse
transcriptase (Tert) is highly expressed in oocytes, although this
decreased with reproductive age (Blackburn, 2001; Yamada-
Fukunaga et al., 2013). Furthermore, expression of long
interspersed elements 1 (LINE-1 or L1) - the most common
autonomous retrotransposons in humans–is required by mouse
embryos alongside activity of endogenous reverse transcriptase
for embryogenic development to occur (Beraldi et al., 2006;
Kohlrausch et al., 2022).

Future directions

Rather astoundingly, Ostermeier et al. (2004) revealed that
sperm-based mRNAs are transferred to the oocyte. The mRNAs
that gain access are degraded, but they play a role in the zygote: for
example, clusterin has several roles including, but not limited to,
enhancing fertility rate, transport of lipids, and controlling
apoptosis. The functions listed, amongst others, are crucial in the
early zygote and embryonic development, but not in the oocyte. Yet,
as part of the complex paternal contribution, spermatozoa mRNA
also supplies vital genomic organelle (the centriole), and male-
specific proteomic components (Krawetz, 2005).

Considering that sperm is already contributing an RNA-load to
the oocyte/embryo, it may be also worth considering using the
fertilising sperm as a delivery vehicle to delivery therapeutic/
diagnostic RNA. Indeed, Barkalina et al. (2014) showed that
spherical mesoporous silica nanoparticles (MSNPs) with
hexagonal pore symmetry, loaded common types of cargo
(nucleic acids/protein), could form strong associations with
porcine sperm following in vitro incubation without exerting
negative effect upon sperm health (Figure 3), which was
preserved following introduction of a cell-penetrating peptide
(C105Y) (Barkalina et al., 2015). This was also further applied to
mammalian cell (HEK2983T)-derived exosomes, which interacted
with boar sperm without affecting parameters of sperm function
(Vilanova-Perez et al., 2020) indicating that RNA delivery using
such methods could potentially present a less invasive method of
introducing RNA to oocytes without injection.

Indeed, numerous other methods also exist to compartmentalize
RNA with various encapsulations, including liposome complexes/
nanoparticles (Pollard et al., 2013; Pardi et al., 2015; Pardi et al.,
2019; Liu et al., 2021; Liu et al., 2021), lipid and other materials-
based nanoparticles (Wang et al., 2020; Bahmani et al., 2021; Swetha
et al., 2023), and various polymer-based strategies (Zhao et al., 2016;

FIGURE 4
Schematic overview of potential pathways of RNA use within
oocytes/embryos. Following in vitro transcription, RNA transcripts
(mRNA/RNAi, etc.) could be injected into oocytes and embryos.
Alternatively, RNA transcripts could either be attached with
nanoparticles, or encapsulated in nanovesicles/exosomes and
attached/associated with sperm, which could be delivered to the
oocyte along with RNA cargo. RNAi could downregulate specific
pathways to regulate embryogenesis, targeting specific genes/
transcripts. Concurrently, mRNA would be translated to protein,
serving therapeutic or diagnostic purposes.
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Yang et al., 2023). Another approach worth investigating further is
the use of hydrogels, which can be easily modified engineered to
deliver RNA in a specific and controlled spatiotemporal manner
(Zhong et al., 2023). Such approaches involve a relatively easy
mechanism of loading for naked/single stranded RNA (Zhong
et al., 2023), and may perhaps minimise potential reverse
transcriptase activity. However, the efficacy of such a system
needs further evaluation in the context of gametes/embryos.

Conclusion

The use of mRNA therapeutics in the context of specific diseases
has matured rapidly in recent years, accelerated further by the
devastating COVID pandemic, maturing into a range of improved
modifications and delivery systems that have proven to be extremely
effective in generating effective responses against specific viral
infections. Such strategies present significant promise for other
non-viral infectious diseases, as well as numerous types of cancers.

Herein, we discuss another potential area wherein mRNA
therapeutics could represent a significantly powerful tool to
perhaps enhance quality and success of fertility treatments
in vitro–specifically within the context of delivery and expression
within oocytes and embryos (Figure 4). Indeed, RNA has been
traditionally a powerful tool in an extensive repertoire of methods
used to study reproductive biology. However, such applications have
been traditionally bereft with limitations and safety considerations,
which have prevented their application in a clinical format both as a
therapeutic and potential diagnostic. As we discuss, however, given
the recent advances and improvements in mRNA delivery, stability,
and efficiency, perhaps it is time to reconsider.
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