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Many important processes in biology, such as signaling and gene regulation, can
be described using logic models. These logic models are typically built to
behaviorally emulate experimentally observed phenotypes, which are assumed
to be steady states of a biological system. Most models are built by hand and
therefore researchers are only able to consider one or perhaps a few potential
mechanisms. We present a method to automatically synthesize Boolean logic
models with a specified set of steady states. Our method, called MC-Boomer, is
based on Monte Carlo Tree Search an efficient, parallel search method using
reinforcement learning. Our approach enables users to constrain the model
search space using prior knowledge or biochemical interaction databases, thus
leading to generation of biologically plausible mechanistic hypotheses. Our
approach can generate very large numbers of data-consistent models. To help
develop mechanistic insight from these models, we developed analytical tools for
multi-model inference and model selection. These tools reveal the key sets of
interactions that govern the behavior of the models. We demonstrate that MC-
Boomer works well at reconstructing randomly generated models. Then, using
single time point measurements and reasonable biological constraints, our
method generates hundreds of thousands of candidate models that match
experimentally validated in-vivo behaviors of the Drosophila segment polarity
network. Finally we outline how our multi-model analysis procedures elucidate
potentially novel biological mechanisms and provide opportunities for model-
driven experimental validation.
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1 Introduction

Technological advances in high throughput sequencing have significantly increased the
amount of data available to biologists. However, the systems of molecular interactions that
generate many cellular phenotypes remain poorly understood. This lack of understanding is
a particularly pressing problem for diseases such as cancer, in which small genetic
perturbations can have drastic clinical consequences. In order to understand and
potentially intervene in the mechanisms by which cellular systems become dysregulated,
one must first create a hypothesis of the system’s interactions.
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Given the complexity and non-linearity of many biological
systems, computational models are a key tool for hypothesis
generation and testing, allowing in silico perturbation and
experimentation. Much previous work has shown the value of
computational models of cellular systems for both understanding
mechanisms and predicting cellular response to perturbation (Sáez-
Rodríguez et al., 2007; Schlatter et al., 2009; Béal et al., 2019).

However, manually creating these computational models can be
time consuming and difficult for several reasons. First, selecting a set
of interactions that lead to the desired behavior is challenging due to
the vast number of possible interactions. Further, introducing a new
interaction can create feedback loops that change the model’s
behavior in unintuitive ways. Finally, data is often limited, only
covering a limited set of conditions. Thus, many possible model
configurations may have behavior that matches the (limited) data
equally well. In order to have a reasonable chance of finding a model
that captures an accurate representation of the biological system,
including in conditions outside the given data, onemust create many
models.

Thus, automated model synthesis is desirable as it alleviates the
difficulty of manually constructing a wide variety of models that are
consistent with data. However, an efficient search algorithm is
required to synthesize data-consistent models from the vast space
of possible Boolean models. In this work, we focus on automatic
synthesis of Boolean models (Kauffman, 1969).

Approaches to inferring Boolean models with data-consistent
behavior can be divided into two categories: constraint solving and
optimization. Constraint solving basedmethods pose the problem as
a series of mathematical constraints, e.g., that the update functions
must be consistent with steady states described in the data. These
constraints are typically encoded as Boolean logic equations or in a
more abstract formalism such as answer set programming (ASP)
(Chevalier et al., 2020; 2019) or satisfiability modulo theories (SMT)
problems (Fisher et al., 2015; Yordanov et al., 2016). Specialized
solvers then find a set of models which satisfy all the constraints
specified by the data and the modeling assumptions.

Optimization methods use general purpose discrete
optimization algorithms to generate Boolean models, which are
then scored according to a user-defined objective function
(incorporating, e.g., similarity to data or model complexity). The
optimization algorithms then generate new models which are
variations of the best scoring models (Terfve et al., 2012; Lim
et al., 2016).

Inspired by recent work in reinforcement learning for games,
which also have combinatorially large search spaces, we
investigate Monte Carlo Tree Search (MCTS) for Boolean
model synthesis. Our method uses MCTS to iteratively build
Boolean models by adding interactions to the model’s update
rules, similar to the way this algorithm is used to select moves in
the games of chess or Go (Gelly et al., 2006). We show that MCTS
works well for a wide variety of input data and model structures
by testing the algorithm’s ability to recover randomly generated
Boolean models. Further, we show that it works for a more
biologically realistic scenario: generating multi-cellular models
of the Drosophila segment polarity network. Our method
generated hundreds of thousands of models of the segment
polarity network that are all consistent with experimental
observations.

Having created a large collection of data-consistent models, one
must derive some insight into the key interactions or mechanisms
which drive their behavior. This is itself a challenging pattern
recognition problem, which we address by developing data driven
methods to extract mechanisms from models. Specifically, we
present methods for clustering models based on the structure of
their interactions. Using the structural clustering, our methods
reveal the key interactions that control model behavior. We use
this analysis to develop a novel hypothesis for the mechanism of
regulation of the wg gene by isoforms of CI in Drosophila.

We call this pipeline of automated model generation and
mechanism exploration MC-Boomer, or Monte Carlo Boolean
Modeler.

Our method differs from previous approaches in several key
ways. First, we use a heuristic optimization method, in contrast to
linear programming or satisfiability solver based approaches. This
allows us to trivially encode more complex model dynamics (e.g.,
multi-cellularity) and constraints on the form of update rules.
Further, our optimization approach requires simulation of all
models, giving us a view into the state spaces of our models.
This allows us to characterize models according their behavior
between initial conditions and steady states, yielding greater
insight into populations of models that all have similar steady
states. This comes at the cost of greater required computational
resources compared to methods based on specialized constraint
solvers. However, our method is trivially parallelizable, which we
exploit to find large numbers of data-consistent models in a
reasonable time frame. Finally, our optimization based approach
immediately generates models that are partial matches to the
experimental data. In contrast, constraint solvers may neglect
useful models that do not perfectly satisfy constraints, even when
those constraints are mis-specified or based on noisy data. In the
worst case, constraint solvers may yield zero models after a lengthy
search, while our approach yields a spectrum of models of varying
complexity and goodness of fit to the data.

More generally, the computational problem that MC-Boomer
solves can be framed as follows: Boolean models are comprised of
mathematical, logical equations that are instantiated and simulated
as computer programs. Our approach constructs the update
equations of a Boolean model, simulates its behavior, and
compares this behavior to a reference dataset. Following this
definition, Boolean model synthesis can also be considered a
particular form of the more general problems of program
synthesis or symbolic regression. These fields are concerned with
generating programmatic or mathematical expressions whose
behavior is consistent with a given data set. More broadly, this
fits into the category of non-linear discrete optimization problems.
Consequently, we note MCTS has been shown to perform well for
program synthesis, comparable to established search algorithms
such as genetic programming (Lim and Yoo, 2016). Further,
previous empirical comparisons of MCTS and genetic algorithms
in two discrete optimization problems show that while MCTS is not
strictly better performing, it does produce good results more quickly
(Höfer, 2020) and produces more diverse solutions (Bosc et al.,
2018) than genetic algorithms. These two features of MCTS are
critical in allowing MC-Boomer to generate a large number of
diverse Boolean models of biological systems. This is a key
advancement of MC-Boomer compared to conceptually similar
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optimization based approaches to Boolean model synthesis such as
BTR (Lim et al., 2016) and PRUNET (Rodriguez et al., 2015). These
previous approaches to Boolean model synthesis focus on finding a
single model with a good fit to the data. In contrast, the efficiency of
MCTS allows MC-Boomer to find large numbers of models that fit
the data well. Thus, we are able to make inferences about possible
mechanisms of biological systems that are based on families of
thousands of potential models. Another previous approach (Saez-
Rodriguez et al., 2009) considers the relative probabilities of
individual interactions, based on the whole population of data-
consistent models. However, we investigate model structures with
more sophisticated and fine-grained analyses, such as structure-
based clustering and clustering interpretability methods.

2 Boolean models

Here we provide a brief introduction to Boolean models.
Boolean models are two-state, discrete dynamical systems, with
the state update equations defined by Boolean logic. We provide
a simple example below, which has three species and their
corresponding update rules.

At+1 � Bt and Ct

Bt+1 � Ct

Ct+1 � At or not Bt
(1)

Each node has a state, which can be false or true (equivalently zero
or one). The next state of the system, at time t + 1, is determined by the
value of the update equations applied to the current state (time t) of the
species. Updating every state at every time step is called synchronous
updating. Repeatedly applying synchronous updates gives a simulation
trajectory, which is guaranteed to converge to an attractor state or a
cyclic attractor (Albert et al., 2008). An attractor is a fixed point: a state
which does not change after the update equations are applied. A cyclic
attractor is a cycle of states, which periodically repeats as the update
equations are applied. Applying synchronous updating to the example
three species model (with an arbitrary initial state) gives the four step
simulation trajectory as shown in Table 1, with the last two steps
representing an attractor with all node states equal to one.

We restrict the form of our Boolean update functions to only
“dominant inhibition”, having the form:

xt+1 =(actt0 or act
t
1 or . . . act

t
n) and not (inh

t
0 or inh

t
1 or . . . inh

t
m)

Here, x is the species in the model that will be updated, actt1 ...n
and inht1 ...m are the states (at time t) of other species in the network
that regulate the target node. Both acti and inhi can be a single
species or composites of two or more species connected by an and
clause, e.g., (a and b). A node is activated at t + 1 only if one or more

of its activators is active and no inhibitors are active at t. In the rest of
the paper, we use green arrows to show activating interactions and
red arrows to show inhibiting interactions in model figures.

The goal of our framework, MC-Boomer, is to automatically
generate these models so that their attractor states are similar to
observed or reference gene expression data.

3 Methods

Here we describe the components of our framework for
automated generation and exploration of mechanistic hypotheses,
which we call MC-Boomer (Monte Carlo Boolean Modeler). As
shown in Figure 1, our framework consists of three steps: gathering
data and prior knowledge (Figure 1, left), using Monte Carlo Tree
Search to generate and test model hypotheses (Figure 1, middle), and
finally analyzing the model collection using data-driven and multi-
model inference approaches (Figure 1, right). The first step involves
collecting data describing the state of a biological system (e.g., RNA
or protein expression), as well as delineating constraints on the
possible interactions between components of the biological system.
In this section, we primarily describe the second step, the
algorithmic components involved in generating models. We
describe the third step, analysis of the models generated by
MCTS, in more detail in the Results (Section 4), as part of our
analysis of the segment polarity network.

We separate our discussion of model generation (Figure 1,
middle) into three sections: simulation, scoring, and search. We
simulate our models with Boolean update rules, introduce a novel
edit distance for scoring, and use Monte Carlo Tree Search (MCTS)
for search. Below we will describe each component in more detail.

3.1 Simulation

A Boolean model is composed of logic rules that determine the
state of each species in the system at the next step. We use
synchronous updating which updates the state of every species of
the model at each step. Synchronous updating is deterministic and is
guaranteed to reach either a single stable attractor state or a sequence
of periodically repeating states, called a cyclic attractor (Albert et al.,
2008). We detect both stable and cyclic attractors by recording the
simulation state history and halting the simulation when the current
state matches a previously simulated state.

Each Boolean model generated by MCTS is simulated once from
each initial state specified by the user. Each simulation proceeds
from its initial state until it converges to an attractor state (si). This
attractor state si is represented by a bit vector containing the Boolean
state (0/1, False/True) of each species in the model. Each initial state
may converge to a unique attractor or several may converge to the
same attractor. Thus, each attractor state observed in the simulations
has an occurrence count (cMi ), indicating the number of initial
states which converge to this attractor. Similarly, the states observed
in the reference data set must have associated occurrence
counts (cDj ) indicating the number of times they were observed
in the data.

A more comprehensive review of simulating biological systems
with Boolean networks can be found in Albert et al. (2008).

TABLE 1 Example Simulation of Boolean Model. This shows the states of a four
step simulation of the Boolean model shown in Equation 1.

t = 0 t = 1 t = 2 t = 3

A 1 0 1 1

B 0 1 1 1

C 1 1 1 1
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3.2 Scoring

We implemented an edit distance that compares reference data
to model steady states (described in Figure 2). This distance is used
to guide the MCTS search algorithm towards models that generate
steady states that are similar to the data.

Given a model, we simulate it as described above in Section 3.1.
This yields a set of attractor states and their occurrence counts. In
addition, we assume that the user has provided a set of reference
states and observation counts, derived from data or other
observations. Our similarity score calculates the total number of
state changes that are needed to transform the simulated attractor
states to be equivalent to the reference states and occurrence counts.
We describe our algorithm for calculating this similarity score
below.

At each step of the distance calculation, we calculate the cost
of transforming (i.e., editing) each simulated attractor state into
each reference state. An edit consists of changing the value of the
species in an simulated attractor state so that the simulated state
becomes equivalent to a state in the reference. The size of an edit
is the Manhattan distance between the bit vectors representing
the state of the individual species in each attractor, i.e., how many
species have different values in the simulated and reference
states. The total “cost” C of an edit is the size of the edit
multiplied by the difference in the occurrence counts between
the simulated and reference states. This gives the total number of
state bit vector changes required to transform a simulated
attractor state into a reference state. At each step in the
scoring algorithm we apply the edit with minimum cost. We

apply the minimal cost edit by changing the count of the edited
simulation state and increasing the total cost by C. We then
repeat the process until all occurrence counts are equal between
simulation and data. By accumulating edit costs at each step we
obtain a total edit distance between simulated and measured
attractor sets. This is normalized between (0,1) by dividing by the
maximum possible edit distance |si|· Nc, where |si| is the number
species in the model and Nc is the sum of occurrence counts.

Dedit Asim, Aobs( ) � ∑Ne
k�1Ck

|si|Nc

where Ne is the number of edits required, and Ck is the cost of the
edit at step k. A graphical example of the edit distance calculation is
shown in Figure 2.

Note that algorithm described above assumes that the simulated
attractors are each single state attractors, rather than cycles. When
the model reaches a cyclic attractor state, we simply average all the
states in the cycle to obtain a single non-binary fractional state,
which is then used normally in the scoring algorithm. We justify the
choice to average cycles by assuming that the measurements used as
inputs for MC-Boomer are noisy snapshots of cellular states. Thus,
an average is a reasonable representation for multiple measurements
of variable, noisy processes.

3.3 Monte Carlo tree search

The core task of MC-Boomer is generating the update rules
of Boolean models such that the simulated attractor states of the

FIGURE 1
MC-Boomerworkflow. TheMC-Boomerworkflowconsists of three steps. The first is to gather data of the steady state expression levels of the genes
of interest. Additional prior knowledge about known relationships between genes can guide and constrain the second step, model generation. We use
Monte Carlo Tree Search to generate models (Section 3.3; Figure 3). The objective of search is to findmodels that have simulated attractor states that are
similar to data, asmeasured by an edit distance, described in Section 3.2. We test this algorithm’s ability to recover randommodels in Section 3.4. We
further apply the method to a more biologically realistic model: the Drosophila segment polarity network, described in Section 4.1. We analyze the
generated segment polarity models further in Sections 4.2 to extract structural features.
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generated models are similar to the observed, reference data.
MC-Boomer employs Monte Carlo Tree Search (MCTS) to
search the space of Boolean logic update rules. At each
iteration, MCTS probabilistically selects a new term to add to
one update equation of the model. In biological terms, this
corresponds to adding an activating or inhibiting interaction
between two genes in a regulatory network. MC-Boomer
maintains a list of valid interactions between genes (update
equation terms) that MCTS selects from, and this list is
regenerated after each iteration so that MCTS can not add

terms to the update equations that would result in
biologically implausible or invalid models. See Section 3.1 for
details on the mathematical form of the Boolean model update
rules. After adding the new interaction to the model, MC-
Boomer then simulates the model until it reaches a steady
state (see Section 3.1) and compares its similarity to data
(Section 3.2). Thus, the Boolean model update rules are
constructed by adding individual interactions to the model,
with the tree search guided by the simulation and similarity
scoring of each model.

FIGURE 2
Distance calculation for a systemwith five genes. Top row:Model attractors (left) are generated frommodel simulations. Themodel attractors will be
compared to attractors derived from the data (e.g., RNA expression) (middle left). Note that the data has three unique attractor states denotedDiwhile the
simulation only has two, denoted Mi. To calculate the first entry in the distance matrix (right) attractor states M1 and reference states D1 are compared.
Differences are assigned a “1” while matches are assigned a “0.” As shown, the distance between states M1 and D1 is “3” because they differ at three
genes (C,D,E). Bottom boxes: Sequence of edits required to calculate the distance between simulation attractors (M) and data attractors (D). In the first
step (1), we choose an edit by selecting the smallest valid distance from the distancematrix. This edit changes one of theM1 attractors toD2, but these are
already identical, so the cost is zero. In step two (2) we select the next smallest distance (M2 toD1, with distance two) and change two attractors for a total
cost of four. In step three (3) and four (4) we continue the same process. Note that in step threewe removemultiple edits involvingM2 from consideration,
as all of the availableM2 states have been edited already. In step four, the new state exactly equalsD, so we halt the process with a final edit distance of ten.
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Each unique combination of interactions is represented by a
branch of the search tree. We show this graphically in Figure 3,
where each branch of the search tree is annotated with the unique
set of interactions that comprise the corresponding model.
Multiple rule proposals are enumerated during the search
(Figure 3 left, labels M1-M3). MCTS probabilistically chooses
which branches to continue expanding, based on a statistical
upper bound on the similarity score of models from each branch.
The upper bound is called the Upper Confidence bound for Trees
(UCT). The upper bound is approximated by tracking the
number of times a branch has been explored (visit count) and
the average similarity scores of models on each branch of the
search tree. These statistics and an example upper bound are
shown for each node in the search tree in Figure 3.

MCTS uses the upper bound to balance exploration of
different rules versus exploitation of rules that have already
produced high scores (Figure 3). The leftmost branch is
relatively unexplored but models on that branch have high
average similarity to the data. Thus, this branch has a high
upper bound and the MCTS algorithm will preferentially
explore and expand it. In contrast, the middle left branch has
low average similarity scores but a low visit count so the upper
bound is moderate, suggesting that MCTS may return to further
explore this branch. The middle right branch has low similarity,
but has been explored several times, yielding a very low upper
bound. This effectively prunes the branch from the search, as the
low upper bound corresponds to a low selection probability for
further exploration. This pruning is not absolute, as MCTS will
probabilistically explore all branches with a non-zero upper
bound, given enough iterations. Finally, the rightmost branch
has high scores, but has been visited many times, and so the upper
bound is close to the average score.

We implemented several modifications to standard MCTS that
have been shown to improve the algorithm’s performance. Notably

we used RAVE, a simple modification to the MCTS algorithm that
shares value estimates of actions across all branches of the search
tree (Gelly and Silver, 2011). Nested search uses the actions from the
best random rollout to choose the next step, rather than selecting
based on upper confidence bound (Rosin, 2011). Branch retention
keeps the upper confidence bound from previous search iterations
and reuses them for every subsequent search step. These methods
are described in more detail in the Supplementary Material.

3.4 Validation experiments

We performed two experiments to demonstrate MC-Boomer for
inferring Boolean models. In Section 3.4.2 and Section 3.4.3, we
randomly generated Boolean models of various sizes, then tested
MC-Boomer’s ability to recover the structure and behavior of the
random models. Then, in Section 4.1.1, we tested MC-Boomer’s
ability to recover the structure and behavior of the Drosophila
segment polarity network, a complex multicellular model that
accurately recapitulates key aspects of drosophila embryo
morphogenesis (Albert and Othmer, 2003).

3.4.1 Random model generation
We first tested whether MC-Boomer could find models with a

wide variety of behaviors and structures. We tested this by randomly
generating models, simulating them, and then applyingMC-Boomer
to generate models matching their steady states. We randomly
generated Boolean models with dominant inhibition update rules
by sampling uniformly from a list of all possible interactions
between sets of 8 or 16 species. Following this procedure, we
generated 80 random networks.

Before testing MC-Boomer on the randomly generated models,
we ensured that the attractor states of the random models had
realistic, diverse characteristics. The attractors reached by the

FIGURE 3
Monte Carlo Tree Search overview. On the left are the Boolean models corresponding to the branch of the search tree shown on the right, denoted
M1, M2, M3. At each node in the tree, we also show the average score of models on the branch and the number of times the MCTS algorithm has visited
the branch. These statistics are used to calculate the upper bound. In the bottom right, we show a conceptual overview of the functional form of the
upper bound. In short, MCTS will aggressively explore branches with high scores but low number of visits. More exploration (i.e., a higher visit count)
will progressively lower the upper bound until MCTS chooses another branch to explore.
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random models do not collapse to an all active or inactive state, and
instead have roughly one-third active species (as shown in
Supplementary Table S2). We consider the characteristics of
these attractors to be biologically relevant, similar to data that
might be obtained from an experiment. Thus, good performance
on these randomly generated models indicates that MC-Boomer can
generalize to a realistic variety of input distributions.

3.4.2 Steady state behavioral similarity
We applied MC-Boomer to attempt to recover these random

models using only their initial states and attractors as input data.
Figure 4A shows that the models generated by MC-Boomer at the
beginning of the search process poorly matched the behavior of the
ground truth models. This is expected, as the MCTS algorithm is
effectively a random search process during the initial steps.
However, by the end of the search, MC-Boomer reliably found
models that had steady states with high similarity to the ground
truth models. Across all model sizes, MC-Boomer was able to find
several exact behavioral matches, with a majority having > 95%
similarity, as shown in Figure 4B.

3.4.3 Rule set similarity
In addition to the steady state behavior of the models, we are

also concerned with the content of the update rules generated by
MC-Boomer. Many possible rule sets can have the same steady
state behavior. However, many of these rule sets may be
significantly different from each other and, most importantly,
different from the underlying biological system. Under novel
perturbations or conditions, these models may behave in
radically different ways. Thus, we would like MC-Boomer to
find models that match both the steady state behavior and the
“interaction topology” of the underlying system. To validate
MC-Boomer in this regard, we tested its ability to generate
models with interactions that are similar to the reference
models. In our tests, we quantified similarity by converting

the update rules to sets of interactions for both the reference
(randomly generated) model and the model generated by MC-
Boomer. We then find the Jaccard index between the two
interaction sets. This process is illustrated in Figure 5.
Higher Jaccard indexes indicate that the MC-Boomer model
matches the reference topology well.

With no restriction on the interactions selected by the model
search process, MC-Boomer was able to find models with behavior
that exactly matched the steady states of the reference models, but
using rule sets that differed by as much as 80%. This corresponds to
the left-most column of Figure 6, with zero reduction in search
space, indicating that MC-Boomer was generating models using all
possible interactions and no bias towards the true reference
interactions.

We next investigated the effect of utilizing “prior knowledge”
on MC-Boomer’s ability to recover correct rules. As noted above,
model inference is an underconstrained problem with many
possible models having data-consistent behavior, and so ruling
out infeasible interactions can reduce the number of spurious
models. We simulated varying levels of prior knowledge by
randomly removing incorrect interactions from MC-Boomer’s
action list, while retaining all of the correct interactions. We
repeated the search five times, removing 10%, 25%, 50%, 75%,
and then 90% of incorrect interactions from a set of 80 models.
The aggregated Jaccard similarities for each percentage are
shown in Figure 6. For models with both 8 and 16 species,
increasing prior knowledge increased the Jaccard similarity to
the reference data, as expected. Note that most protein-protein
interaction databases are much sparser than our highest tested
level of prior knowledge. For example, BioGRID (version
4.4.2021) has 26 k genes and 806 k interactions, which
corresponds to a 99.9% reduction from all possible
interactions (Oughtred et al., 2021). Thus, our tests simulate a
very difficult scenario, relying on much less prior knowledge than
is available in biochemical interaction databases.

FIGURE 4
(A)Orange histogram depicts distribution of similarities from the first one thousand models sampled during the MCTS search. Blue histogram is the
distribution of similarities from the last thousand models. The blue distribution is significantly shifted towards higher rewards, indicating that MCTS was
systematically sampling goodmodels. (B)Distribution of highest reward obtained by each independent search process. Most searches foundmodels with
>90% similarity.
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4 Results

Here we show the result of applying MC-Boomer to the
segment polarity network (SPN). In Section 4.1.1 and Section
4.1.2, we describe the SPN and show MC-Boomer can generate
models that are structurally similar to it, automatically
discovering interactions that were previously manually
selected by experts. Additionally we describe the large
collection of alternate mechanisms generated by MC-Boomer,
analyzing several in detail.

4.1 Segment polarity network (SPN)

As shown in the previous sections, MC-Boomer is able to
generate models that are behaviorally and structurally similar to
a variety of synthetically generated reference systems. While this was
useful for validation, we also applied MC-Boomer to a more realistic
setting to demonstrate the usefulness of the proposed framework. To
that end, we employed MC-Boomer to build models of the
Drosophila Segment Polarity Network (SPN), which is a gene
circuit that controls the formation of borders and directionality
of body segments during development of the Drosophila embryo. As
a reference, we have chosen a well-studied model by Albert and
Othmer (Albert and Othmer, 2003). Briefly, this model comprises
4 cells, with several distinct components, including genes, proteins,
membranes, protein isoforms, and complexes. A diagram of the SPN
interactions is shown in Figure 7 and a complete listing of the
reference rules are shown in Supplementary Table S3. Albert and
Othmer provided binarized expression levels for wild type
conditions as well as three gene knockouts, shown in
Supplementary Table S4. We applied MC-Boomer with these
expression profiles to automatically generate models of the SPN.

4.1.1 Model generation
First, we will describe how we initialized the model and

performed the search.
We applied several constraints to the search process so that MC-

Boomer would only generate biologically plausible models.
Membrane proteins (WG, PTC, SMO, PH, HH) could interact
with membrane proteins only on adjacent cells. Internal proteins
(EN, SLP, CI, CIR, CIA) could interact with other internal proteins,
membrane proteins in the same cell, and genes in the same cell.
Genes (en, ci, ptc, hh) could only activate their corresponding
protein, and these gene-protein activating interactions were pre-
specified in our search process. We generated all possible
interactions that conform to these constraints, resulting in
334 possible interactions. We did not use any prior knowledge

FIGURE 5
Example calculation of Jaccard similarity. We compare the structural similarity between two Boolean models by computing the Jaccard similarity
between their sets of interactions. Here, shared interactions between the two models are colored orange, while interactions that are unique to each
model are in black. In this example, the two models share three interactions in common, but have three more that are unique to each model. Thus they
have a Jaccard similarity of 3/(3+3)=3/6=0.5.

FIGURE 6
Jaccard similarity between synthetic reference and generated
models with varying levels of prior knowledge. The violin plots show
the distribution of Jaccard similarities achieved by MC-Boomer for
synthetic models. The horizontal axis shows varying proportions
of incorrect interactions randomly removed from the list of actions
that MC-Boomer can choose when generating models. Removal of
incorrect edges simulates the effect of prior knowledge, for example,
using only interactions from a database of validated biochemical
interactions. As expected, higher levels of prior knowledge lead to
higher Jaccard similarities, as MC-Boomer has a higher probability of
choosing correct interactions from a smaller list.
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about the possible interactions beyond the basic biological
knowledge described above, simulating a scenario in which a user
does not bias the search to previously described interactions between
genes. This tests MC-Boomer’s ability to recover the reference model
without assistance from biological prior knowledge, as well as its
ability to generate novel, interesting hypotheses about the possible
structure of the regulatory network.

All interactions added during the search process were repeated
across all 4 cells. Multi-cellular membrane interactions were
symmetric, added in both directions between neighboring cells.

The reference SPN model specified initial and stable states for
the wild type network as well as initial and attractor states for
knockouts of wg, hh, and en (see Supplementary Figure S4 for
details).

We applied MC-Boomer to search for models that matched the
behavior of the reference SPN model across the wild-type and three
knockout conditions. At each search iteration, we simulated the
model across all conditions, calculated the edit distance between
simulated and reference steady states, then averaged all conditions’
similarity scores to get a final score for the iteration. We
implemented knockouts by removing all interactions to and from
the hh, en and wg genes across all cells.

We ran 1,500 searches in batches of 30 in parallel on our
institution’s computing cluster. In each search step, MC-Boomer
simulated 10 k model variations before adding the best
interaction to the model and starting the next step. We

restricted the search to terminate after 30 steps, but not before
completing 8 steps. Every search was run with RAVE, nested
search, and branch retention enabled with the same uniformly
random sampled parameter distributions as in the synthetic data
experiments. The complete search process took 41 h and
simulated 430 million unique models. Eleven of the
1,500 search processes found models with exactly the same
steady states as the reference model for all four conditions.
Collectively, these eleven search processes generated > 202k
models with perfect consistency to the attractor data.

4.1.2 Visualizing the set of data-consistent models
Given the large size of our collection of models with consistent

steady state behavior, we were motivated to develop methods for
visualization and exploration of large numbers of models.

First, we applied dimensionality reduction and clustering
methods to visualize similarities between the models. We
randomly sampled fifty thousand of the 202k data-consistent
models and clustered them with the UMAP algorithm (McInnes
et al., 2018) using the interaction set Jaccard distance between
models, as illustrated in Figure 5. Model sampling was necessary
because UMAP requires computation of a pairwise distance matrix
that would have been infeasible for the full data set. Multiple
different samples all gave similar results, thus giving us
confidence that the sample analyzed here was representative of
the overall model population.

FIGURE 7
Reference Model for Segment Polarity Network. Diagram of the interactions in Albert and Othmer’s model of the segment polarity network (Albert
and Othmer, 2003). Green edges indicate activating interactions. Red are inhibiting. Lower case ovals indicate genes and upper case indicate proteins.
The dotted border indicates the cell membrane, with membrane proteins straddling the border. On the right is the adjacent cell, with several interactions
spanning between cells. Albert and Othmer’s model has four cells with the same interactions inside each cell. Interactions between cells are
symmetric, though only one direction is shown in the diagram to maintain clarity.
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Applying UMAP with the Jaccard distance yielded the result
shown in Figure 8 with eleven well separated clusters, corresponding
to the eleven independent searches that produced data-consistent
models.

4.1.3 Structural similarity between clusters and
reference

We then compared the interactions in each MC-Boomer
generated model with the interactions in the reference model’s
update rules to find the “structural” similarity.

The update rules of the reference model had 26 total
interactions. We manually pre-specified eleven of the interactions
in the reference segment polarity network. That is, all models
generated by MC-Boomer included these interactions as “prior
knowledge.” This included all the interactions in which a gene
activated its corresponding protein, as well as four interactions
that did not fit the dominant inhibition dynamics of the rest of
the network (Supplementary Figure S1). Our tests evaluated MC-
Boomer’s ability to discover models that included the remaining
15 interactions in the reference model.

Within each cluster of MC-Boomer models, we computed the
mean, median, and maximum size of the intersection between the
cluster’s models’ interactions and the reference model’s interactions,
as shown in Table 2.

Comparison across clusters revealed a wide disparity in
accuracy, with cluster 3 having, on average, three rules in
common with the reference SPN model. We note that while the
models in cluster 3 had low structural similarity to the reference SPN
model, all of the models in every cluster have the same steady state
attractors as the reference. Cluster 7 had the highest average
intersection, with several models in the cluster having 11 out of
15 rules in common with reference model. For cluster 7, we found
the most common rules, i.e., those shared by > 90% of the models in
the cluster. Figure 9A shows these common rules and Figures 9B,C
shows “false positive” and “false negative” rules, respectively. False
positive rules were present in MC-Boomer models but not in the
reference and false negative rules were in the reference but not the
MC-Boomer models. In the following sections, we investigate two of
these interactions, one of which was not present in the reference
model.

FIGURE 8
Scatter plot depicting clustering of unique data-consistent segment polarity models after UMAP projection to two dimensions. There are elevenwell
separated clusters, corresponding to the eleven independent search processes that found data-consistent models.
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4.2 Mechanism identification

In the following sections, we investigate the specific
interaction patterns or mechanisms that MC-Boomer
generates. We first focus specifically on individual
interactions that are present across all data-consistent
models, proposing a novel hypothesis for the biological
mechanism encoded by the Boolean logic of the interaction.
Then, we propose data-driven methods to extract a diverse set
of mechanisms from the large collections of models generated
by MC-Boomer.

4.2.1 Investigating common mechanisms
The high-level clustering analysis shows that MC-Boomer

generates models with a wide variety of structures but identical
steady state behavior. However, this analysis is too broad to elucidate
the precise nature of the mechanisms that these models use to
generate this behavior. Accordingly, we more closely investigated
two key interactions that are present in every model generated by
MC-Boomer. Specifically, we consider “EN inhibits ci” and “CIR
inhibits CIA”, which are present in 100% of the data-consistent
models.

First, we look at EN inhibiting CI, which is present in all of our
models and also present in the reference model. This indicates that
this interaction is a crucial link across the very diverse mechanisms

TABLE 2 Structural Intersection with Reference Model. For each cluster of
models shown in Figure 8 we computed the intersection between these
common rules and the reference model. We show the mean, median, and
maximum intersection between each cluster’s models and the reference.
Cluster 7 has the highest intersection across all three statistics, while cluster
3 shares the fewest interactions with the reference. We further investigate the
most common interactions in Cluster 7 in Figure 9.

Cluster Intersection Cluster size

Mean Median Max

0 4.80 5 8 5321

1 6.03 6 9 6566

2 6.32 6 9 1654

3 3.23 3 6 2057

4 6.87 7 9 5673

5 6.49 6 9 4805

6 3.30 3 6 6710

7 8.68 9 11 5493

8 5.22 5 8 2277

9 6.90 7 10 6413

10 8.27 8 11 3031

FIGURE 9
(A)Most common interactions in cluster 7. These interactions that are found in >90% ofmodels in cluster 7. Transparent lines represent interactions
that were pre-specified as prior knowledge, while more opaque interactions were generated by MC-Boomer. (B) Interactions highlighted in red and
green are common in cluster 7 but are not present in the referencemodel. Grey interactions are shared between the referencemodel and cluster 7. Note
the red inhibiting interaction between CIR and CIA, which is investigated in more detail in Section 4.1.2.(B) The reference model is shown here,
highlighting interactions that are in not present in cluster 7. Again, note the red inhibiting interaction between CIR and wg. Section 4.1.2 proposes an
alternative mechanism for inhibition of wg by CIR.
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employed by the eleven clusters of models and the reference model.
Simulating a random sample of one thousand models with this
interaction knocked out resulted in a 28% average absolute
reduction in similarity to the reference steady state data. We
observed that knocking out the EN to ci interaction in the
reference model also reduced similarity to the reference data by
28%. Again, this indicates that the while the models are structurally
diverse, they share a similar reliance on this particular interaction of
EN and ci.

On the contrary, CIR inhibition of CIA is not present in the
reference model. This interaction is shared by more than two
hundred thousand unique models generated by MC-Boomer. The
high frequency of the CIR inhibiting CIA interaction motivated
further investigation into CIR and CIA’s role in regulation of the
wg gene.

To provide necessary background for our discussion of wg
regulation, we briefly describe the key genes in this pathway.
CIA is an activated, nuclear transported form of the CI protein,
while CIR is a proteolytically cleaved form of CI which represses
wg transcription. In the absence of HH, SMO forms a complex
with CIA and Cos2, a kinesin-like protein that binds and
sequesters CIA, preventing its nuclear translocation and
permitting its cleavage into CIR. In the presence of HH,
SMO is activated and Cos2 releases CIA, which is then
transported to the nucleus, where it activates wg (Lum et al.,
2003; Kalderon, 2004; Ranieri et al., 2012). The exact
mechanisms and network dynamics behind CI activation,
cleavage, and nuclear translocation have long remained a
point of debate and uncertainty (Ruel et al., 2003).

In addition to CIR inhibiting CIA, MC-Boomer also
suggests (in 34% of models) an inhibitory interaction
between CIR and SMO. The novel inhibition of CIA and
SMO by CIR can be interpreted in at least two ways, as
shown in Figure 10.

1) These interactions do not represent real signaling mechanisms.
In accordance with the reference model, the bi-directional

inhibitory loop between CIR and SMO may simply reflect
the normal activation states of these proteins. When SMO is
active, CIR cannot be produced because SMO destabilizes
Cos2 and therefore all CI is available as CIA. Conversely,
when SMO is inactive, Cos2 binds CI and conversion to CIR
occurs. Therefore, the inhibition of CIA and SMO by CIR may
not represent genuine biochemical interactions, but may simply
be artifacts of MC-Boomer’s automated model generation
process.

2) These interactions do represent real, redundant signaling
mechanisms. The novel inhibition of CIA and SMO by CIR
may represent redundant signals which prevent the
possibility of competition at the target gene binding site.
This type of redundancy is a feature observed in other
biological signaling networks (Albert et al., 2011) CIR
inhibition of CIA and SMO in the cytosol ensures that
CIR can bind and inhibit wg in the nucleus without
interference from CIA. In this interpretation, CIR is not
just a passive cleavage product, but also an active participant
in a feedback loop that inhibits the activity of CIA.

This second interpretation describes an instance of
signaling redundancy. If CIR inhibits SMO and CIA, this
helps to ensure a full transition between on and off network
states and prevents any potential binding competition at the
target gene.

Overall, these observations show that the proposed method can
both reproduce the known biological features as well as provide
novel insight into the segment polarity network by generating new
mechanistic hypotheses, which require further investigation through
experiments.

4.2.2 Identifying unique mechanisms in model
clusters

We are able to analyze these two interactions in detail because
they are shared across all models and their limited scope eases their
interpretation. However, our clustering analysis showed that there

FIGURE 10
(A) The reference model depicts the modification of CI as a forked pathway, where the resulting product is determined by the activation state of
SMO. In the reference model, active SMO promotes CIA and inhibits CIR. (B) The MC-Boomer model, in contrast, includes two novel interactions where
CIR inhibits CIA and SMO. Figures partially based on Figure 3 from Hooper and Scott (2005)
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are at least eleven groups of models with widely differing
structures. Accordingly, we also investigated the role of
interactions that are specific to individual clusters of models.
We searched for sets of up to 5 interactions that are present in
a high proportion of models in each cluster, while not being
present in models in other clusters. We call these distinguishing
sets. We found between 25 and 21,570 distinguishing sets per
cluster.

Given the large number of distinguishing sets for some
clusters, we needed a measure of which sets are most
important to the function of the models in the cluster. We
quantified this by simulating knock outs of each distinguishing
set in a sample of 100 models from their respective clusters and
calculating the reduction in similarity to the reference data
caused by the knockouts. We refer to distinguishing sets with
the largest reduction in similarity as the maximally disruptive
sets. These maximally disruptive sets identify the unique
mechanisms that the models in each cluster most highly rely
on to generate their behavior.

Comparing the interactions in the maximally disruptive sets
revealed heterogeneity across the clusters. Most of the maximally
disruptive sets shared two or fewer interactions in common. For
example, the maximally disrupting sets for cluster 7 (Figure 11A)
and cluster 8 (Figure 11C) only share a single interaction in
common. Simulated knockouts of cluster 7 and 8’s maximally
disruptive sets reduced similarity to reference data by 31% and
39%, respectively. This indicates that models in these two clusters
depend, to a similar degree, on these distinct sets of interactions
for generating correct behavior. Inspection reveals that while the
two mechanisms are not similar by a direct comparison, they
share functional similarity in primarily modulating the
connectivity and activity of EN. This corresponds with our
previous analysis showing that EN interactions are crucial for
correct model behavior across our whole collection of models.
However, the actual mechanism by which EN activity is directed

is quite distinct. The interactions in cluster 7 (Figure 11A) give
EN a mixed activating/inhibiting role, while cluster 8
(Figure 11B) relies on several inhibitory feedback loops
centered on EN.

Similar to the case of CIR described in Section 4.2.1, many
of the distinguishing sets do not have any effect on the behavior
of the model; one such example is illustrated by Figure 11B.
One perspective is that these interactions are redundant and
only increase the complexity of the model. Accordingly, several
previous approaches (Terfve et al., 2012; Lim et al., 2016)
penalize models with more interactions. Another perspective
is that these redundant connections may confer robustness,
i.e., an ability to recover from aberrant initial conditions or
losses of function, or as with CIR they could help ensure full
response to inhibition or activation.

5 Discussion

Biology is inherently complex, yet our measurements
capture only a limited slice of the true activity within a cell.
Current assay technology can only describe a subset of
biomolecules at low time resolution and with significant
noise. From this blurry view researchers must synthesize a
model that can both describe the phenomena under
investigation and predict the system’s behavior in novel
circumstances. Synthesizing a model can be made easier by
choosing the simplicity of the Boolean logic modeling
formalism to represent the system. Nonetheless, even for a
small number of interacting species, the number of possible
Boolean models is vast. Consequently, a typical researcher,
creating models through trial and error, may only find one or
perhaps a few models whose behavior is consistent with the
observed data. However, as we have shown in Section 4.1.1,
even in a small system with multiple measurements and

FIGURE 11
(A) Shown in red and green is the maximally disruptive set for cluster 7. These are interactions that are common in cluster 7, but are very uncommon
in other clusters. Additionally, knocking out these interactions reduces similarity to the reference steady states more than other sets of common
interactions (shown in grey). (B) Another distinguishing set of interactions, but these areminimally disruptive. Knocking themout only reduces similarity to
the reference data by a negligible amount. (C)Maximally disruptive set for cluster 8. These reduce similarity to reference data to a similar degree as
the most disruptive set in cluster 7, but these interactions utilize a different mechanism.
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reasonable prior assumptions on model structure, there are
hundreds of thousands of models that are all consistent with
the data.

This observation was made possible by using an efficient search
technique, Monte Carlo Tree Search, to build models. We
demonstrate the power of MCTS to synthesize models with the
correct steady-state behavior and the correct interactions in Section
3.4. While previous studies have shown that similar optimization
methods (e.g., tabu search in Aghamiri and Delaplace (2020)) are
effective for finding data-consistent models, they have focused on
finding a single model that is “best” in terms of both complexity and
fit to the data. In contrast, we retain every model that fits the data
well and in Section 4.2.1 and Section 4.2.2 we develop a set of
techniques for making sense of this large collection of models. We
approach this from a data-driven perspective, in the sense that our
MCTS algorithm generates data about the space of valid hypotheses.
By clustering models based on their structural features, we can find
recurrent motifs across the whole collection of models, as well as
distinct motifs that discriminate the structure of groups of models.
Simulated knockouts of these motifs then reveal that some are
critical to the models’ correct behavior.

5.1 Using MC-Boomer to design
experiments

As we describe in Section 4.2.1, analysis of the models generated
by MC-Boomer pointed us towards an alternate hypothesis for the
mechanism by which CIR and CIA regulate expression of the
wingless gene (wg) in the segment polarity network. An
investigator using MC-Boomer to study this pathway may
propose that CIA activation of wg depends on both SMO
(Smoothened) stabilization and, as MC-Boomer suggests, the
absence of CIR. The existence of these novel inhibitory
relationships could be experimentally validated by introducing
CIR into cells in which HH signaling has already activated SMO
and CIA. Reduced concentrations of active CIA or SMO would
indicate that CIR does, in fact, inhibit the activity of CIA and SMO.

5.2 Limitations and future work

Previous work (Fauré et al., 2006) has suggested that the general
asynchronous updating scheme yields more biologically realistic
results for Boolean network simulations. While our current
approach uses synchronous updating, extending MC-Boomer to
work with asynchronous updating would be straightforward.

The current approach is limited in its scalability to models with
large numbers of interacting species by several key bottlenecks. First,
this approach requires simulation of every synthesized model, and
simulation becomes prohibitively expensive for large models. This
could be alleviated through partial or approximate simulations of the
models. While this would yield an approximation of the model’s
similarity to data, the UCT upper bound allows MCTS to tolerate
some noise in the search process. Second, the search space scales
exponentially with the number of species in the model. We show
that restricting the search space through prior knowledge
constraints on model structure is an effective strategy for

improving structural and behavioral accuracy of synthesized
models. The efficiency of the search algorithm could further be
improved by using deep learning to guide MCTS. This is similar to
the approach used by the AlphaZero algorithm (Silver et al., 2018),
that proved to be exceptionally effective at searching the
combinatorially large space of moves in games like chess and Go.
We are currently exploring each of research directions as potential
optimizations of the MC-Boomer algorithm.

6 Conclusion

Our work demonstrates that automated Boolean model inference
can generate many alternative, hypothetical regulatory networks that
each explain a systems’s steady state behavior equally well. We observe
that Monte Carlo Tree Search is effective at this task for both synthetic
and real-world data, as it balances exploration of novel models with
exploitation to generate multiple variations of high performing models.
By using data analysis techniques on the huge collections of models that
result from tree search, we find families of models and the core
regulatory structures underlying their common behavior. Applying
this analysis to a well known model of Drosophila development
revealed previously known regulatory mechanisms as well as
suggesting a novel role for the CI gene in wg regulation. This
demonstrates that Boolean model inference should not be treated as
a search for a single best performing model, but instead as a process of
hypothesis generation and comparison.
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