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Accurate retinal vessel segmentation from fundus images is essential for eye
disease diagnosis. Many deep learning methods have shown great performance in
this task but still struggle with limited annotated data. To alleviate this issue, we
propose an Attention-Guided Cascaded Network (AGC-Net) that learns more
valuable vessel features from a few fundus images. Attention-guided cascaded
network consists of two stages: the coarse stage produces a rough vessel
prediction map from the fundus image, and the fine stage refines the missing
vessel details from this map. In attention-guided cascaded network, we
incorporate an inter-stage attention module (ISAM) to cascade the backbone
of these two stages, which helps the fine stage focus on vessel regions for better
refinement. We also propose Pixel-Importance-Balance Loss (PIB Loss) to train
the model, which avoids gradient domination by non-vascular pixels during
backpropagation. We evaluate our methods on two mainstream fundus image
datasets (i.e., DRIVE and CHASE-DB1) and achieve AUCs of 0.9882 and 0.9914,
respectively. Experimental results show that our method outperforms other state-
of-the-art methods in performance.
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1 Introduction

Retinal vessel analysis is a non-invasive and cost-effective test that ophthalmologists and
other specialists routinely use (Chatziralli et al., 2012; Ji et al., 2023). Physicians can diagnose
and track many diseases (e.g., macular degeneration, hypertension, diabetes) by looking at
morphologic information related to retinal vessels (e.g., curvature, length, and width)
because these diseases cause morphologic changes in the retinal vessels (Olafsdottir
et al., 2011). The segmentation of retinal vessels is an essential foundation for the
quantitative analysis of fundus images. Since manual segmentation is time-consuming,
labor-intensive, and relies on professionals’ subjective judgment, many researchers have
turned to computer-aided intervention to achieve automatic retinal vessel segmentation
(Zhao et al., 2022a; Zhao et al., 2022b).

Automatic retinal vessel segmentation is an important research problem in the field of
computer vision, and its main purpose is to separate vascular and non-vascular regions from
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fundus images. Solving this problem is of great significance for
clinical diagnosis and research in the field of ophthalmology.
Because it can promote the early detection and treatment of eye
diseases, and provide clinicians with a fast, accurate, and reliable
analysis method. However, due to the complexity and variability of
fundus images, finding every vessel without introducing too many
false positives is difficult, especially for thin vessels. When improper
imaging illumination, sensor noise, and other factors are considered,
things become even more complicated because vital vessel
information may be lost as a result. In Figure 1, for example,
there is usually over-illumination near the optic disc, causing
some vessels near the optic disc to lose feature information. Thin
vessels are typically found in darker, lower contrast areas, and their
width is only one or a few pixels when compared to thick vessels, so
they are easily overlooked. To address these challenges, many
methods for automatic retinal vessel segmentation have been
proposed in the past few decades. For example, the blood vessel
tracking method (Yin et al., 2012; Tolias and Panas, 1998; Chutatape
et al., 1998) begins by selecting a starting point in the fundus image
and utilizes a specific tracking strategy to progressively extend along
the blood vessel path, culminating in a comprehensive segmentation
of the blood vessels. The method based on morphology (Sazak et al.,
2019; (Zana and Klein, 2001) performs some morphological
operator processing (such as erosion, dilation, opening and
closing operations, etc.) on the fundus image to realize the
segmentation of blood vessels. In addition, methods based on
traditional machine learning (Ricci and Perfetti, 2007; Staal et al.,
2004; Lupascu et al., 2010) manually extract vascular features (such
as shape, texture, etc.), and send these features to classifiers (such as
support vector machines, decision trees, etc.) for training to achieve
segmentation. Although these traditional retinal vessel segmentation
methods have certain advantages and applicability, there are still
limitations in the processing of fundus image noise,
generalization, etc.

Due to the powerful feature extraction ability of the
convolutional neural network, it has gradually become the
mainstream method for segmentation tasks (Khandouzi et al.,
2022). Fully convolutional network (Long et al., 2015) is a
pioneering work using a convolutional neural network in

image segmentation. It discards the fully connected layers of
the Very deep convolutional networks (Simonyan and Zisserman,
2014), and the entire network uses convolution operations for
feature extraction, followed by upsampling of the feature maps to
restore the original resolution. However, FCN is not sensitive to
the details of objects in the image, resulting in the loss of edge
details of many objects. Subsequently, based on the idea of an
encoder-decoder structure, Ronneberger et al. (2015) proposed
U-Net, which made up for the lack of details of FCN to a certain
extent by using skip connection operation, and gradually became
the mainstreammodel in the field of medical image segmentation.
In recent years, many U-Net based variants (Jin et al., 2019; Guo
et al., 2021a; Alom et al., 2019; Guo et al., 2021b; Wang et al.,
2020b; Wu et al., 2021; Zhang et al., 2019) for the task of retinal
vessel segmentation have emerged, but they suffer from
insufficient vessel information and features due to the limited
number of fundus images with dense annotations in the public
dataset [e.g., DRIVE (Staal et al., 2004), CHASE_DB1 (Owen
et al., 2009)]. In this case, some studies (Wang et al., 2020a; Xia
et al., 2018; Li et al., 2020) have shown that the coarse-to-fine
segmentation architecture is beneficial for extracting more
vascular information from limited fundus images. However,
these works simply transfer vessel feature maps (such as
concatenation or addition) between coarse and fine stages,
which makes the fine stage unable to align vessel regions for
better refinement and leads to suboptimal performance. To
address this problem, we propose an Attention-Guided
Cascaded Network (AGC-Net), which can learn more valuable
vascular information from limited retinal fundus images. AGC-
Net consists of two identical U-shaped backbones for coarse and
fine representation learning. Specifically, the coarse-stage
backbone generates a rough vessel probability map from the
fundus image. In contrast, the fine-stage backbone acts as a
post-processing module to further refine missing vessel details
from this map. This coarse-to-fine representation learning can
allow those misclassified pixels to be corrected, especially those
blood vessel pixels whose predicted probability value is slightly
lower than the segmentation threshold (usually taken as 0.5).
Then, we incorporate an inter-stage attention module (ISAM) to

FIGURE 1
A fundus retinal image from the DRIVE database, containing thin blood vessels with low contrast (A) and over-illuminated optic disc (B).
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cascade the two-stage backbone in AGC-Net. ISAM uses a multi-
scale spatial attention mechanism to promote fine-stage
backbone focus on vessel regions for better refinement.

Furthermore, deep learning-based segmentation models are
typically trained using pixel-wise loss (e.g., Cross Entropy Loss).
It creates a loss by comparing the per-pixel difference between the
vessel probability map generated by the segmentation model and the
Ground Truths labeled by human experts and then uses that loss for
gradient computation and backpropagation. In the pixel-wise loss,
each pixel is treated with equal importance (i.e., the loss weights are
all 1.0) and the loss is calculated separately for each pixel. However,
when the ratio of background pixels and blood vessel pixels in the
retinal image is seriously unbalanced (the ratio is about 8:2), pixel-
wise loss makes the optimization of the segmentation results severely
affected by the background, which leads to inaccurate blood vessel
segmentation. To prevent the gradient from being dominated by
many background pixels during backpropagation, we propose a
Pixel-Importance-Balance Loss (PIB Loss) for training the blood
vessel segmentation model. It scales the loss weights for each pixel
according to the number of vessels around them. Our primary
contributions are as follows:

1. We propose AGC-Net, a deep learning-based segmentation
model for retinal vessel segmentation that aims to improve
segmentation results from limited fundus data by allowing
misclassified pixels to be corrected.

2. We propose ISAM to cascade two backbones in AGC-Net, which
intends to enable the fine-stage backbone to focus more
effectively on vascular regions for better refinement.

3. We propose PIB Loss for training vessel segmentation model,
which can prevent the gradient from being dominated by many
background pixels during backpropagation.

The remainder of this paper is structured as follows. Section 2
reviews the studies related to retinal image vessel segmentation.
Section 3 describes our method. Data and experimental details are
described in Section 4. Section 5 evaluates our approach
quantitatively and qualitatively and presents experimental results.
Finally, in Section 6, we conclude.

2 Related works

In the past decades, many automatic retinal segmentation
algorithms have been proposed, and they can be broadly
classified into three categories.

The first class of algorithms is designed using traditional
computer vision methods for vessel segmentation and is based on
the inherent morphological prior knowledge of retinal vessels. For
example, threshold-based methods (Roychowdhury et al., 2015;
Zardadi et al., 2016), filter-based methods (Mendonca and
Campilho, 2006; Fraz et al., 2012a; Zhang et al., 2015) and vessel
tracking-based methods (Nayebifar and Moghaddam, 2013;
Vázquez et al., 2013). Roychowdhury et al. (2015) designed an
iterative adaptive thresholding method to improve the robustness of
vessel segmentation. Oliveira et al. (2016) enhanced the vessels by
combining three filters: the matched filter, the Gabor Wavelet filter,
and Frangi’s filter. Zhang et al. (2010) detected blood vessels by

thresholding the response of the retinal image to the matched filter
and later adjusted the threshold by the image’s response to the first-
order derivative of Gaussian. Nayebifar and Moghaddam (2013)
used least-cost matching, global graph optimization, and Dijkstra’s
algorithm to track vessels as a way to ensure vessel continuity.
Traditional algorithms based on morphological priors are relatively
simple in principle, but they are unsupervised methods that lack
label constraints with annotations and produce less accurate vessel
segmentation results.

The second class of algorithms is based on traditional machine
learning approaches, identifying blood vessel pixels by feeding
manually designed features to a trained classifier. Staal et al.
(2004) created feature vectors from blood vessel centerlines and
then classified them using a k-nearest neighbor classifier. Simple
feature vectors were created based on the texture, local intensity,
spatial properties, and geometry of blood vessels, and some
researchers (Fraz et al., 2012b; Memari et al., 2017; Lupascu
et al., 2010) tried to use ensemble learning methods (e.g.,
Bagging and Boosting) to classify blood vessel pixels. Ricci et al.
(Staal et al., 2004) used linear detectors and support vector machines
to complete the segmentation representation of blood vessels. The
performance of traditional machine learning-based methods is
heavily influenced by manually designed features. However, these
features are typically defined empirically, resulting in bias and poor
generalization performance.

The third class of algorithms is the deep learning-based
approach, which automatically extracts blood vessel features
rather than manually designed features through powerful
convolutional neural networks. U-Net (Ronneberger et al.,
2015) has become the most widely used model in the medical
field of image segmentation, and several U-Net variants have
made significant progress in retinal vessel segmentation. Alom
et al. (2019) used the idea of recurrent neural networks and
proposed a recurrent convolution in U- Net instead of a normal
convolution to effectively accumulate more vessel features. Jin
et al. (2019) integrated deformable convolution into U-Net. This
convolution operation can adaptively adjust the receptive field
according to the scale and shape of blood vessels to better capture
various retinal blood vessels. SA-UNet (Guo et al., 2021b) and
CAR-UNet (Guo et al., 2021a), proposed by Guo et al.,
respectively introduce attention mechanisms of spatial
dimension and channel dimension in U-Net to improve the
vessel segmentation performance of U-Net. IterNet (Li et al.,
2020) and CTF-Net (Wang et al., 2020a) have shown that vessel
segmentation performance can be improved based on cascades
using multiple U-Nets, and we will implement a similar strategy
in our method.

3 Methodology

This study aims to accurately segment retinal vessels in fundus
images using deep learning methods. Inspired by IterNet (Li et al.,
2020) and CBAM (Woo et al., 2018), we propose our model AGC-
Net by combining their advantages. As shown in Figure 2, the model
is implemented based on a U-shape architecture and consists of
three main ideas: residual convolution block, inter-stage attention
module, and cascaded refinement structure design. In addition, we
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also propose PIB Loss for model training. We detail the proposed
model and loss function below.

3.1 Network architecture

Figure 2 shows our proposed AGC-Net vessel segmentation
model. The model consists of a representation learning cascade of
coarse and fine stages and aims to use the fine stage as a post-
processing module to give pixels misclassified by the coarse stage a
chance to relearn. Specifically, first, the fundus image passes through
the backbone of the coarse stage to generate a rough vessel
prediction probability map as an intermediate output. Then,
ISAM (See Figure 4) uses a multi-scale attention mechanism on
this intermediate output to generate feature maps of enhanced vessel
regions. Finally, feature maps of enhanced vessel regions and fundus
images are concatenated as the input of the fine-stage backbone to
generate the final refined vessel segmentation map.

Both stages are equipped with a U-shaped backbone for their
respective learning tasks. The U-backbone is an encoder and
decoder structure that generates multi-scale vessel feature maps
to identify vessels of different lengths. Specifically, the encoder
extracts the vascular features of the fundus image through a
residual convolution block (See Figure 3). Each block includes a
convolutional layer, a batch normalization layer, and a ReLU
activation layer, and we use residual connections to speed up the
convergence of the model. To obtain a larger receptive field,
downsampling is necessary. This operation is implemented by a
convolution with stride 2. At each downsampling stage, the size of
the feature map is halved, and the number of channels is doubled.
Since too much downsampling will lose the spatial information of
vessels, there are only two downsampling stages in the backbone,

each with 32, 64, and 128 channels. In the decoder part, we upsample
the vessel feature map by bilinear interpolation and compensate for
the lost spatial information of the vessel by skip connections to
receive the feature map of the encoder. Finally, through a 1 ×
1 convolution and a Sigmoid layer, we get the final vessel
segmentation.

Since AGC-Net is composed of two backbone network
cascades, it may suffer from the gradient disappearance
problem due to the increase in network depth. In response to
this problem, inspired by DSN (Lee et al., 2015), in addition to
adding the main supervision path to the network’s final output,
we also add an auxiliary supervision path to the intermediate
output of the backbone in the coarse stage. During training, the
loss functions of these two supervised paths are weighted into the
overall loss function, which helps gradient backpropagation back
to shallower layers and speeds up model convergence.
Specifically, we compare the predicted probability maps
outputted from the backbone of the two stages with the
ground truth and compute the loss for backpropagation using
the PIB loss (see Section 5.3), as shown in the following figure:

Loss � Lossmain + γLossauxl

Lossmain � PIB PMf,GT( )
Lossauxl � PIB PMc, GT( )

where Lossmain and Lossauxl are the losses generated by the backbone
of the fine stage and coarse stage, respectively, and the weight λ
represents the trade-off between the two losses, which we set as 1.0 in
the experiments. PIB represents the proposed PIB loss, and PMf,
PMc and GT are respectively the predicted probability map of the
coarse stage, the predicted probability map of the fine stage, and the
ground truths.

FIGURE 2
Network architecture of the proposed AGC-Net.
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3.2 Inter-stage attention module

ISAM is proposed to enhance the vessel region of the
intermediate output, which can facilitate the fine-stage backbone
to focus on vessel regions for better refinement.

As shown in Figure 4, we assume that the ISAM has an input
resolution of Fin ∈ RH×W×C, we first apply average and maximum
pooling operations to Fin along the channel axis to obtain spatial
feature descriptors Favg ∈ RH×W×1 and F max ∈ RH×W×1, as shown in
the following equation:

Favg ∈ RH×W×1 � avgPool Fin( )
F max ∈ RH×W×1 � maxPool Fin( )

Subsequently, to enhance the vessel region of Fin, we concatenate
these two spatial feature descriptors and use 3 × 3 convolution
kernels with different dilation rates to model the neighborhood
relationship of pixels. We add the results of the modeling and then
use the sigmoid operation to generate the attention map
sWeights ∈ RH×W×1, as shown below:

sWeights � σ(BN(φ3,rate�1 Favg; F max[ ]( ) + φ3,rate�2 Favg; F max[ ]( )
+φ3,rate�3 Favg; F max[ ]( )))

Among them, σ represents Sigmoid activation, BN represents
Batch Normalization, and φ3,rate�N represents the 3 ×
3 convolution with a dilation rate of N. It is worth mentioning
that in the above process, the purpose of using convolution
operations with different dilation rates is to integrate multi-
scale context information when calculating the importance of
pixels, to better encode the emphasized or suppressed positions.
Finally, we obtain the ISAM output Fout ∈ RH×W×C based on the
obtained spatial attention map and scaled feature map Fin, as
shown in the following equation:

Fout � sWeights ⊗ Fin

where ⊗ denotes pixel-wise product.

3.3 Pixel-importance-balance loss

There are three types of pixels in fundus images:
background, thick vessels, and thin vessels. Their proportions
in the fundus image vary from high to low. To balance the
contributions of these three types of pixels in loss computation,
we scale their loss weights according to the number of vessel
pixels in their neighborhood. Specifically, for background

FIGURE 3
Residual convolution block.

FIGURE 4
Diagram of the proposed Inter-Stage Attention Module (ISAM).
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pixels, we think that only background pixels near blood vessels
need to be emphasized, as this can force the model to keep the
predicted blood vessel thickness consistent with the thickness
in the ground truth. Therefore, the loss weights of background
pixels should be proportional to the number of blood
vessel pixels in their neighborhood. As for blood vessel
pixels, if they belong to thick blood vessels, they will be
surrounded by more blood vessel pixels in the fundus
image, and fewer if they belong to thin blood vessels.
Therefore, to balance the contributions of these two kinds of
vessel pixels, the loss weights of vessel pixels should be inversely
proportional to the number of vessel pixels in their
neighborhood.

Algorithm 1 shows the calculation process of loss weights
for different types of pixels in PIB loss. Firstly, the background
pixels and vessel pixels of the Ground Truth are represented by
0 and 1. Secondly, the importance loss weight for each pixel is
calculated as follows: with the pixel as the center, the number of
pixels with value 1 (i.e., the number of surrounding vessel
pixels) present in a box separated by 2 pixels is counted as
num. Thirdly, if the pixel belongs to a vessel, it is converted into
a loss weight by an inverse proportional function -num*0.04 + 2
(see Figure 5, red line), which emphasizes thin blood vessels; if
the pixel belongs to the background, it is converted into loss
weights by a direct proportional function num*0.04 + 1 (see
Figure 5, green line), as shown below:

Loss weight Yij( ) � − ∑i+2
p�i−2∑j+2

q�j−2Ypq( )*0.04 + 2 if yij � 1

∑i+2
p�i−2∑j+2

q�j−2Ypq( )*0.04 + 1 if yij � 0

⎧⎪⎪⎨⎪⎪⎩
Finally, the obtained loss weights are combined with the Cross

Entropy, as shown below:

PIB Loss P, Y( ) � −∑weight Yij( ) · log Pij( ) if Yij � 1

−∑weight Yij( ) · log 1 − Pij( ) if Yij � 0

⎧⎨⎩

Algorithm 1. Loss weight calculation process of Our PIB Loss.

4 Experimental configuration

4.1 Dataset and augmentation

We evaluate the proposed method using two publicly available
datasets (DRIVE1 and CHASE_DB12). Specific information about
these two databases is shown in Table 1. It should be noted that the
original size of the two datasets is not suitable for our network, so we
adjusted its size by zero padding around it, but the size was cropped
to the initial size during evaluation. (See Table 1, Crop size). For the
DRIVE dataset, the official data division is adopted, which means
20 training images were used for model training and 20 test images
were used for performance evaluation. The CHASE_DB1 dataset has
no official data division, so we follow the previous work (Alom et al.,
2019; Wang et al., 2020b), using the first 20 images for model
training, and the remaining 8 images for model evaluation.
Furthermore, since the number of training images is limited to
20, some data augmentation methods are required. We use four data
augmentation methods (see Table 1, Augmentation methods) for
both datasets to generate randomly modified samples during the
training process.

4.2 Evaluation metrics

To evaluate our method, we compare the segmentation results to
the corresponding Ground Truths and classify the outcomes of each
pixel comparison into True Positive (TP), False Positive (FP), False
Negative (FN), and True Negative (TN). Themodel’s performance is

FIGURE 5
The relationship between the loss weight of a pixel and the
number of blood vessel pixels around it, where the red function is used
for vessel pixels and the green function is used for background pixels.

1 DRIVE: http://www.isi.uu.nl/Research/Databases/DRIVE/

2 CHASE_DB1: https://blogs.kingston.ac.uk/retinal/chasedb1/
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then evaluated using sensitivity (SE), F1 score (F1), and accuracy
(ACC), which are defined as:

SE � TP

TP + FN

SP � TN

TN + FP

ACC � TP + TN

TP + TN + FP + FN

F1 � 2TP
2TP + FP + FN

The closer the value of these evaluation metrics are to 1, the
better the prediction. Furthermore, receiver operating characteristic
(ROC) curves and the area under the ROC curve (AUC) were used
to evaluate the performance of our model. The ROC curve was
calculated as the variation of the TP and FP rate for different values
of a changing threshold.

4.3 Implementation details

Our method is built on the PyTorch3 framework and all
experiments were run on an NVIDIA RTX3090 with 24 GB of
memory. We did not use any pre-trained models, and the entire
training process was end-to-end without any post-processing. For
the hyperparameter settings, the batch size was set to 2 for both
datasets, and the network was optimized using an Adam (Kingma
and Ba, 2014) optimizer with an initial learning rate of 1e-3. The
total number of learning epochs was set to 200, and a learning rate
decay by the factor 0.1 was performed at epochs 150 and 190. We
used the best epoch of results for testing.

5 Results and discussions

5.1 Segmentation performance on two
databases

Figure 6 shows the training process of AGC-Ne in DRIVE and
CHASE_DB1, where the blue line represents the loss change curve

on the training set, and the orange line represents the loss change
curve on the test set. We can observe that on the two data sets, the
loss of AGC-Net on the training set and the test set can converge
well, and the loss of the test set can be comparable to that of the
training set. This shows that AGC-Net can adapt well to unseen data
and has good generalization ability.

We present in Figure 7 some test images of the two datasets,
their ground truth values, and the predictions generated by AGC-
Net using these images. As can be seen from the figure, AGC-Net
detects most retinal vessels on fundus images, including thin vessels
with low contrast and thick vessels with over-illumination.
Furthermore, the vessel thickness in our model predictions is
consistent with the ground truth. Most of the spatial information
of retinal vessels is preserved, such as vessel connectivity,
bifurcations, and edges.

We also quantitatively evaluate AGC-Net on the two datasets
separately. Table 2 presents the five metric values of our method on
the two datasets. The table shows that on the two data sets, the SE,
SP, ACC, F1, and AUC of AGC-Net can reach 0.8251/0.8499,
0.9844/0.9854, 0.9704/0.9767, 0.8301/0.8213 and 0.9881/
0.9917 respectively. This demonstrates that our proposed AGC-
Net model can generate accurate and meaningful retinal vessel
segmentation, providing doctors valuable auxiliary diagnostic
information in clinical practice.

5.2 Ablation studies

As shown in Figure 2, AGC-Net can be regarded as a
segmentation network composed of Cascade Design (CD),
Auxiliary Supervision (AS), Inter-Stage Attention Module
(ISAM), and Pixel-Importance-Balance Loss (PIBL). In this
section, we conduct ablation studies to verify the effectiveness of
these crucial components in AGC-Net and evaluate the impact of
each component on the vessel segmentation results. We use Res-
UNet (Xiao et al., 2018) with an initial channel number of 32 and
only two downsampling stages as a baseline and gradually add the
above crucial components. All experiments are performed with the
same hyperparameter configuration. Table 3 shows the quantitative
comparison of network configurations that incorporate different
crucial components.

From Index 2 in Table 3, we can see that when we simply add
another backbone to the baseline for cascading, SE, ACC, F1, and
AUC all suffer a decline. This shows that adding the cascade

TABLE 1 The specific information of DRIVE and CHASE_DB1 datasets.

Datasets DRIVE CHASE_DB1

Form A diabetic retinal disease screening study in the Netherlands Comprehensive health study of 200 primary schools in the United Kingdom

Imaging equipment Canon CR5 non-mydriatic 3CCD camera NIDEK NM-200D Handy Fundus Camera

Total number 40 28

Train/Test number 20/20 20/8

Resolution (pixel) 584 × 565 999 × 960

Pad size 592 × 592 1008 × 1008

Augmentation methods 1) Random horizontal and vertical flip. 2) Random rotation. 3) color jittering.

3 https://pytorch.org/
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design will bring optimization problems caused by increased
network depth. That is, the gradient cannot be backpropagated
well. As seen in Index 3, this problem can be solved after we add

auxiliary supervision. Adding auxiliary supervision enables the
cascaded design to further improve the baseline performance,
among which SE, ACC, F1, and AUC are increased by 0.72%,
0.05%, 0.33%, and 0.08% compared with the baseline,
respectively. Then, if we continue to add ISAM, by comparing
index 3 and index 4 in the table, we find that SE, ACC and
F1 continue to grow by 0.44%, 0.01%, and 0.13%, respectively.
And when we don’t add ISAM but use PIB loss to train the
network with index 3, by comparing index 3 and index 5 in the
table, the SE and F1 of the network also improve, increasing by
2.81% and 0.16%, respectively, but SP and ACC have a slight

FIGURE 6
The training process of AGC-Net on two datasets. (A) DRIVE, (B) CHASE_DB1.

FIGURE 7
Example segmentation results on two datasets.

TABLE 2 Performance of the proposed AGC-Net on DRIVE and CHASE_
DB1 datasets.

Datasets SE SP ACC F1 AUC

DRIVE 0.8251 0.9844 0.9704 0.8301 0.9881

CHASE_DB1 0.8499 0.9854 0.9767 0.8213 0.9917
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drop. Finally, when we use both ISAM and PIB loss, SE, F1 and
AUC reach the highest values of 82.51, 83.01, and 98.81 in
Table 3, which are 3.56%, 0.74%, and 0.09% higher than the
baseline, respectively. This is higher than the improvement

obtained by adding ISAM or PIB loss alone, which shows that
the two are compatible with each other and can promote
performance improvement. But the SP reached the lowest
value of 98.44%. The highest SE and the lowest SP reflect that

TABLE 3 Ablation studies with different network configurations.

Index Baseline CD AS ISAM PIBL SE (%) SP (%) ACC (%) F1 (%) AUC (%)

1 √ 78.95 98.75 97.01 82.27 98.72

2 √ √ 78.36 98.78 96.99 82.00 98.66

3 √ √ √ 79.67 98.73 97.06 82.60 98.80

4 √ √ √ √ 80.11 98.70 97.07 82.73 98.80

5 √ √ √ √ 81.79 98.48 97.02 82.76 98.80

6 √ √ √ √ √ 82.51 98.44 97.04 83.01 98.81

Baseline: Res-UNet; CD, Cascade Design; AS, Auxiliary Supervision; ISAM, Inter-Stage Attention Module; and PIBL, Pixel-Importance-Balance Loss. The value in bold is the highest value

under that metric.

FIGURE 8
Example segmentation results for different network configurations on the DRIVE dataset. Baseline: Res-UNet; CD, Cascade Design; AS, Auxiliary
Supervision; ISAM, Inter-Stage Attention Module, and PIBL, Pixel-Importance-Balance Loss.
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our method further enhances the vessel extraction ability but
inevitably introduces some false positives, which is acceptable
(Moccia et al., 2018).

Furthermore, we plot some heatmaps generated using Grad-
CAM (Selvaraju et al., 2017) in Supplementary Figure S1. In the
heatmap, the redder the region’s color, the more the network pays
attention to the feature of the region when predicting blood vessels.
From Supplementary Figure S1, we can observe that the blood vessel
area has been emphasized after adding ISAM to the network. This
demonstrates that ISAM can promote fine-stage backbones in the
network to focus on vascular regions and perform better refinement.

We present example segmentation results of different network
configurations in ablation studies in Figure 8 and further zoom in on
some vessel regions under each image for qualitative comparison. As
can be seen from the figure, the baseline after adding all the
important components works best for the effect of vessel
segmentation. This shows the necessity of every critical component.

5.3 Comparison with the state-of-the-art
methods

In this section, we compare the proposed method with some
popular vessel segmentation methods, including U-Net
(Ronneberger et al., 2015), IterNet (Li et al., 2020), and SA-UNet
(Guo et al., 2021b). To test the results of these vessel segmentation
methods, we used their public codes on the DRIVE and CHASE_
DB1 datasets for training and evaluation. The Receiver Operating
Characteristic (ROC) curves and AUC values of the four models on
the two datasets are shown in Figure 9. The figure shows that
compared with the suboptimal method, the AUC values obtained by
AGC-Net have increased by 0.20% and 0.03% on the two data sets,
respectively. Considering that these popular methods already have
high performance (i.e., AUC values very close to 1.0), this
improvement means that many vessel pixels can now be correctly
classified.

In addition, we also compare some state-of-the-art methods in the
literature, including R2UNet (Alom et al., 2019), DUNet (Jin et al.,

2019), NFN+ (Wu et al., 2020), CAR-UNet (Guo et al., 2021a), RVSeg-
Net (Wang et al., 2020b), SCS-Net (Wu et al., 2021), AG-Net (Zhang
et al., 2019) and FR-UNet (Liu et al., 2022). Only the four methods in
the previous paragraph come from our reproduced results, and the
results of all other methods come from the corresponding papers. The
results on the DRIVE dataset are listed in Table 4. Among all the
compared methods, our method ranks second in ACC, F1 and AUC,
and is very close to the first-ranked method (FR-UNet). Specifically,
among these metrics, for the ACC value, our method achieves 0.9704,
which is only 0.01% lower than FR-UNet. In addition, the AUC value
and F1 value reached 0.9881 and 0.8301, respectively. In all comparison
methods, same as FR-UNet, these two values exceed the values of
0.98 and 0.83. For the other twometrics SE and SP, the results obtained
by AGC-Net are also comparable to other state-of-the-art methods. SE
is usually interpreted as the model’s ability to correctly detect all
vascular regions in retinal images. The SE obtained by our method
can reach 0.8251, which is 1.05% lower than FR-UNet (0.8356).
Nevertheless, this is still much higher than some other methods
based on coarse-to-fine architectures [such as NFN+ (0.7796), CAR-
UNet (0.8135) and IterNet (0.7921)]. The difference between AGC-Net
and other methods based on coarse-to-fine architecture is that we use
ISAM to enhance the container area of the intermediate output, which
enables the backbone of the fine stage to better refine the container,
resulting in higher SE value. SP is often interpreted as the localization
ability of retinal vessel segmentation models. This ability refers to the
ability to unerringly identify non-vascular regions as blood vessels. The
SP of our method can reach 0.9844, which is 0.3% lower than the top-
ranked IterNet (0.9874). We believe this is due to our method detecting
more blood vessels, but inevitably introducing some false positives.
Since the goal of the retinal vessel segmentation task is to detect asmany
vessels as possible, a relatively low SP is acceptable.

Table 5 shows the results of the different methods on the CHASE_
DB1 dataset. It should be noted that the data partitioning methods of
DUNet and NFN + are different from ours. Therefore, for the sake of
fairness, we do not compare the results of these twomethods. Unlike the
case on the DRIVE dataset, on this dataset, our proposed AGC-Net
exceeds FR-UNet and achieves 0.9767, 0.8213, and 0.9917 in ACC,
F1 and AUC, respectively, which are the best results among all

FIGURE 9
ROC curves and AUC value of different models on two Datasets. (A): DRIVE, (B): CHASE_DB1.
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compared methods. Among these metrics, the AUC value best reflects
the comprehensive performance of the model segmentation. In this
experiment, our method reached 0.9917, which is very close to 1.0,
which shows the good robustness of AGC-Net. For the ACC and
F1 values, our method outperforms FR-UNet by 0.19% and 0.62%,
respectively. FR-UNet is a segmentation framework that maintains full-
resolution representation learning to retain more spatial information
lost due to downsampling. However, the fundus images on the
CHASE_DB1 dataset are already of high resolution (999 × 960) and
have sufficient spatial information, which makes the advantage of FR-
UNet on this dataset diminished. In addition, we can observe that some
segmentation methods based on the same coarse-to-fine architecture
also have higher ACC values than FR-UNet (0.9748), such as IterNet
(0.9766) and CAR-UNet (0.9751). This suggests that for some high-

resolution fundus images, a segmentation method based on the coarse-
to-fine architecture may be a better choice. For the SEmetric, AGC-Net
achieves 0.8499, which ranks third among all compared methods and
outperforms othermethods based on coarse-to-fine architecture. This is
because we designed amore reasonable loss function and used ISAM to
promote the fine stage to achieve better refinement.

Through qualitative comparisons on the two datasets, we find
that both AGC-Net can guarantee the improvement of
comprehensive segmentation performance and maintain a high
SE without introducing too many false positives. Therefore,
compared to other methods, we believe that AGC-Net can better
cope with the vessel segmentation task.

Especially when we compare the segmentation results of
different methods in Figure 10, the advantages of AGC-Net are

TABLE 4 Performance comparison of the DRIVE dataset.

Method Year SE SP ACC F1 AUC

U-Net Ronneberger et al. (2015) 2015 0.7776 0.9867 0.9681 0.8108 0.9766

R2UNet Alom et al. (2019) 2018 0.7792 0.9813 0.9556 0.8171 0.9784

DUNet Jin et al. (2019) 2019 0.7963 0.9800 0.9566 0.8237 0.9802

AG-Net Zhang et al. (2019) 2019 0.8100 0.9848 0.9692 — 0.9856

IterNet Li et al. (2020) 2019 0.7921 0.9874 0.9699 0.8244 0.9861

NFN+ Wu et al. (2020) 2020 0.7796 0.9813 0.9582 0.8295 0.9830

RVSeg-Net Wang et al. (2020b) 2020 0.8107 0.9845 0.9681 — 0.9817

SCS-Net Wu et al. (2021) 2021 0.8289 0.9838 0.9697 — 0.9837

SA-UNet Guo et al. (2021b) 2021 0.8264 0.9823 0.9687 0.8224 0.9861

CAR-UNet Guo et al. (2021a) 2022 0.8135 0.9849 0.9699 — 0.9852

FR-UNet Liu et al. (2022) 2022 0.8356 0.9837 0.9705 0.8316 0.9889

AGC-Net (Our) 2023 0.8251 0.9844 0.9704 0.8301 0.9881

The value in bold is the highest value under that metric.

TABLE 5 Performance comparison on the CHASE_DB1 dataset.

Method Year SE SP ACC F1 AUC

U-Net Ronneberger et al. (2015) 2015 0.7961 0.9863 0.9746 0.7974 0.9808

R2UNet Alom et al. (2019) 2018 0.7756 0.9820 0.9634 0.7928 0.9815

AG-Net Zhang et al. (2019) 2019 0.8186 0.9848 0.9743 — 0.9863

IterNet Li et al. (2020) 2019 0.8141 0.9878 0.9766 0.8165 0.9910

RVSeg-Net Wang et al. (2020b) 2020 0.8069 0.9836 0.9726 — 0.9833

SCS-Net Wu et al. (2021) 2021 0.8365 0.9839 0.9744 — 0.9867

SA-UNet Guo et al. (2021b) 2021 0.8651 0.9814 0.9740 0.8076 0.9893

CAR-UNet Guo et al. (2021a) 2022 0.8439 0.9839 0.9751 — 0.9898

FR-UNet Liu et al. (2022) 2023 0.8798 0.9814 0.9748 0.8151 0.9913

AGC-Net (Our) 2023 0.8499 0.9854 0.9767 0.8213 0.9917

The value in bold is the highest value under that metric.
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more prominent. It can be seen from the figure that the blood vessel
segmentation results obtained by other methods lack sufficient
semantic information, and the blood vessels are broken. The
segmentation result of our method is closer to the ground truth,
as it identifies some blood vessels that other methods cannot
identify, including over-illuminated blood vessels and low-
contrast thin blood vessels, and the connectivity of blood vessels
is better. There are three reasons for the superior performance of
AGC-Net on visual effects: First, the fine stage in the AGC-Net
framework gives those misclassified vessel pixels a chance to be
corrected. Second, ISAM improves the degree of attention of the
fine-stage backbone to the vessel region, which achieves a better
refinement effect. Third, the PIB loss scales the loss weights per pixel
so that certain key pixels contribute more to the gradient. The
advantages of AGC-Net in qualitative comparison with other
methods can provide doctors or experts with more useful
vascular information in practical applications. This can facilitate
early detection and treatment of eye diseases.

For the problem of imbalance between foreground pixels and
background pixels in fundus images, PIB Loss is very effective. We
recommend that other researchers use PIB Loss to improve
performance when training blood vessel segmentation models. If
other researchers are designing a segmentation model based on a
coarse-to-fine architecture, we suggest using ISAM to improve the
refinement effect of the fine stage.

5.4 Limitations

Although our method performs very well compared to other
methods, several limitations exist. First, the proposal of PIB

Loss can significantly alleviate the problem of an unbalanced
ratio of foreground pixels and background pixels in fundus
images. However, due to the selection of pixel distance (we fixed
it as a box with a distance of 2 pixels in the method) coupled
with the proportional function, PIB Loss still needs to be flexible
enough. This limit exploring the effect of pixel distances of 3 or
more pixels on experimental results. In future work, we plan to
decouple the pixel distance and proportional function of PIB
Loss and explore the impact of more pixel distances on
experiments. Second, although our method has segmented
more blood vessels than other methods, there are still breaks
or unrecognized phenomena for some extremely small blood
vessels. This is attributed to the amount of training data being
too small (usually only around 20 capacity), which leads to poor
generalization on these extremely small blood vessels. We plan
to explore more effective data augmentation techniques in
future work.

6 Conclusion

Our paper presents a novel method for segmenting retinal vessels,
which are essential for diagnosing and treating eye diseases. The
proposed method designs a coarse-to-fine network with a two-stage
strategy: the first stage generates a rough vessel prediction map, and the
second stage corrects themisclassified pixels in this map. The coarse-to-
fine network uses a novel inter-stage attention module to adjust the
importance of vessel regions in the intermediate output for better
refinement. In addition, we design a novel PIB loss for network
training to address the problem of pixel ratio imbalance in fundus
images. PIB avoids the gradient being dominated by many background

FIGURE 10
Example segmentation results of different models on two datasets. From left to right are image, ground truth, prediction result of AGC-Net,
prediction result of U-Net, prediction result of SA-UNet, and prediction result of IterNet. From top to bottom are the DRIVE dataset and the CHASE_
DB1 dataset.
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pixels by scaling the loss weight of each pixel, which is of great help to
improve the blood vessel segmentation effect.We evaluated ourmethod
on two public datasets and found that it outperformed several state-of-
the-art methods with high performance.
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