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Meiosis involves deep changes in the spatial organisation and interactions of
chromosomes enabling the two primary functions of this process: increasing
genetic diversity and reducing ploidy level. These two functions are ensured by
crucial events such as homologous chromosomal pairing, synapsis,
recombination and segregation. In most sexually reproducing eukaryotes,
homologous chromosome pairing depends on a set of mechanisms, some of
them associated with the repair of DNA double-strand breaks (DSBs) induced at
the onset of prophase I, and others that operate before DSBs formation. In this
article, we will review various strategies utilised by model organisms for DSB-
independent pairing. Specifically, we will focus on mechanisms such as
chromosome clustering, nuclear and chromosome movements, as well as the
involvement of specific proteins, non-coding RNA, and DNA sequences.
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Introduction

Meiosis is a process aimed at producing haploid gametes from diploid germ cells. With
this purpose, a single round of DNA replication is followed by two consecutive chromosome
segregations. Meiosis increases genetic variation via two important mechanisms, namely,
independent assortment of homologous chromosomes and genetic recombination. To this
end, it is required that, in meiosis I, homologous chromosomes come close together in a
process called pairing, synapse via synaptonemal complex (SC) formation (reviewed in Page
and Hawley, 2004), recombine (reviewed in Hunter, 2015) and segregate randomly.
Although these four processes are conceptually distinct, they are all closely related and
take place in a sequential way.

It is widely accepted that the generation of DSBs by the topoisomerase-like transesterase
protein Spo11 and the subsequent action of the DNA repair machinery (reviewed by Keeney,
2008; Baudat et al., 2013) induce the physical recognition among homologous DNA
sequences. Once DSBs have been formed, the ends are resected to generate 3’ single-
strand tails, which are loaded with RecA-like proteins, Rad51 and Dmc1. Proteins and DNA
form a filament (via a nascent D-loop) able to identify and interact with their corresponding
homologous double-strand DNA, that eventually cause the approach and coalignment, at a
distance of approximately 400 nm, of specific regions of homologous chromosomes—the
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PAIRING (reviewed in Zickler, 2006). It has been suggested that
only one of the two generated ends would create this “homology
searching tentacle” of DNA and nucleoproteins (Kim et al., 2010).
The alignment of the entirety of the homologous chromosomes
requires the assembly of SC—the SYNAPSIS (reviewed in Page and
Hawley, 2004). Subsequently, the process of RECOMBINATION
will move forward through different strand isomerisations leading to
crossover and non-crossover products (reviewed in Hunter, 2015;
Gray and Cohen, 2016).

Accordingly, in some species the formation and repair of DSBs
play an essential role in the processes of pairing and synapsis. In
support of this hypothesis, it has been observed in spo11 mutants a
relationship between alterations in the number of DSBs and
anomalies in the formation and functionality of the SC (Baudat
et al., 2000; Romanienko and Camerini-Otero, 2000; Tesse et al.,
2003; Kauppi et al., 2013; Rockmill et al., 2013). Moreover,
exogenous DSBs induction partially restores the meiotic defects
observed in some of these mutants (Thorne and Byers, 1993;
Dernburg et al., 1998; Storlazzi et al., 2003; Tessé et al., 2003).

In contrast, in certain model organisms such as Drosophila or
Caenorhabditis, the involvement of DSBs in the pairing process
seems to be dispensable. Moreover, regardless the participation of
DSBs, several aspects of the pairing mechanism indicate the
existence of alternative pathways that play a role in facilitating
the recognition and alignment of homologous chromosomes. For
instance, it should be noted that each DSB generates approximately
1 kb of ssDNA that needs to identify and localise its homologous
chromatid. A homologous sequence search should be achieved
within a short period of time and then held together. This action
is not that simple if homologous chromosomes are not previously
sharing the same territory. Furthermore, chromosomes contain
repetitive sequences, and thus, potential interactions between
these pseudo-homologous regions must be avoided or eliminated
during the homology search process.

In this article, we review the strategies described in different
model organisms that promote homologous pairing throughout
mechanisms not related to DSBs formation. It is important to
note that the term “pairing” will be used to describe the
approximation, association and recognition of homologous
chromosomes before the onset of synapsis.

Saccharomyces cerevisiae

The initial stages of homologous pairing in budding yeast are
determined by telomere clustering and centromere coupling
(Figure 1). In vegetative (mitotic) cells, telomeres are located in a
few clusters at the periphery of the nucleus. After the induction of
meiosis, telomeres disperse over the nuclear periphery and cluster at
the spindle pole body (SPB) (Trelles-Sticken et al., 1999). Meiocytes
arrested in premeiotic S-phase have only a few peripheral telomere
clusters, suggesting that the resolution of peripheral vegetative
telomere clusters occurs at the end of or shortly after premeiotic
S-phase (Trelles-Sticken et al., 1999; Trelles-Sticken et al. 2000;
Trelles-Sticken et al. 2005). Then, during prophase I, telomeres are
distributed in a rim-like pattern (Trelles-Sticken et al., 1999; Trelles-
Sticken et al., 2000) and move rapidly (Trelles-Sticken et al., 2005) to
create miniclusters that eventually assemble into the large cluster
that characterises the bouquet stage (Trelles-Sticken et al., 2005).
Once the bouquet is formed, telomeres continue to move rapidly,
and the nucleus undergoes oscillating deformations (Trelles-Sticken
et al., 2005; Koszul et al., 2008).

Although the molecular mechanisms regulating telomere
attachment and clustering during meiosis are not well
understood, the presence of the meiotic telomere specific adaptor
protein Ndj1/Tam1 appears to be essential for this process (Chua
and Roeder, 1997; Conrad et al., 1997). Additionally, it has been
observed that telomeres experience an actin-dependent constraint
on their mobility during the bouquet stage of meiosis. Cohesin is
required to exit the actin polymerisation-dependent telomere
clustering and link the SPB to the telomere clustering (Trelles-
Sticken et al., 2005).

As soon as pre-meiotic chromosome replication is finished,
centromeres undergo homologous and non-homologous pairwise
associations, a phenomenon known as “centromere coupling”
(Tsubouchi and Roeder, 2005; Obeso and Dawson, 2010).
Remarkably, the formation of DSBs and the resulting signalling
pathways are not essential for this phenomenon as demonstrated by
observation that coupling occurs in mutants lacking the
Spo11 protein (Tsubouchi and Roeder, 2005; Obeso and Dawson,
2010). Conversely, the absence of the SC component Zip1 resulted
in undetectable centromere coupling, demonstrating the crucial

FIGURE 1
Timing and mechanisms of DSB-independent homologous pairing in Saccharomyces cerevisiae.
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function of this protein in the process (Obeso and Dawson, 2010).
Cohesin, on the other hand, is believed to be also required for
centromere coupling due to its influence on Zip1 localization rather
than its direct participation in the coupling process (Chuong and
Dawson, 2010).

Subsequently, as synapsis between homologous chromosomes
begins, centromeres seem to transition from centromere coupling to
centromere pairing, which involves the specific association of
homologous centromeres (Tsubouchi and Roeder, 2005; Storlazzi
et al., 2010; Lake et al., 2015).

The cause of centromere coupling is still not fully understood,
but some studies have proposed that chromosomes have a partner
selection preference dependent on their length (Lefrançois et al.,
2016) that may contribute to the effectiveness of homologous
pairing in the later stages of meiosis. Besides, it has been
suggested that centromere pairing can serve as an alternative
mechanism to link achiasmate homologous chromosomes
(Dawson et al., 1986). In fact, observations have been made of
achiasmatic chromosomes pairing specifically at their centromeres,
providing evidence for this alternative pairing mechanism (Kemp
et al., 2004; Gladstone et al., 2009; Newnham et al., 2010).

Schizosaccharomyces pombe

Homologous pairing in fission yeast is initiated during the
mitotic replication phase and achieved by a combination of
different mechanisms acting in an orchestrated way: centromeres
and telomeres clustering, nuclear movements, as well as the
accumulation of non-coding RNA and the presence of specific
cohesins (Chikashige et al., 1994; Ding et al., 1998; Ding et al.,
2012; Elkouby et al., 2016; Rubin et al., 2020) (Figure 2). It is worth
emphasizing that pairing and synapsis take place normally in rec12
mutants (spo11 homolog) (Ding et al., 2012). This observation
strongly suggests that both processes are independent of DSBs.

During the mitotic replication phase, the centromeres of S.
pombe are grouped in association with the SPB (Funabiki et al.,
1993; Chikashige et al., 1997). Once meiosis begins, immediately
after karyogamy, centromeres detach from SPB and telomeres slide
through the nuclear envelope and cluster forming a bouquet
structure (Chikashige et al., 1994; reviewed in Hiraoka and
Dernburg, 2009). It has been established that the loss of

telomere-SPB clustering by mutations of telomere binding
proteins, such as Taz1 or Rap1 (two proteins involved in
telomere maintenance) or by mutations of the Kms1 membrane-
bound SPB component, reduces recombination frequencies
(Shimanuki et al., 1997; Cooper et al., 1998; Nimmo et al., 1998;
Chikashige and Hiraoka, 2001; Kanoh and Ishikawa, 2001).

Then, the nucleus elongates and undergoes a movement called
“horsetail”. This movement consists of going forward and backward
of the cell (Chikashige et al., 1994; Ding et al., 1998) and will
eventually allow the achievement of pairing and recombination
(Ding et al., 2004). In dynein-disrupted meiotic cells, there is a
lack of nuclear movements that end up in paring anomalies (Ding
et al., 2004) and low recombination levels (Yamamoto et al., 1999).

In the end, horsetail movements result in stable pairing through
the participation of the sme2 locus. This gene encodes a non-coding
RNA required for homologous recognition (Watanabe and
Yamamoto, 1994), which is retained at the sme2 locus by a set of
specific proteins (sme2 RNA-associated protein; Smp) (Ding et al.,
2016a). It has been proposed that the accumulation of non-coding
RNA acts as a recognition marker of DNA sequence homology
(Ding et al., 2016b). Indeed, other loci containing genes that encode
for long non-coding RNAs have been described as essential for
homologous chromosome recognition in different situations. For
instance: the X-Inactivation centre encoding the long non-coding
RNAs Xist in X-chromosome inactivation in mammalian females
(Siniscalchi et al., 2022).

Horsetail movements are also associated with the establishment of
a SC-like structure between homologous chromosomes formed by the
linear elements (LinEs) proteins (Olson et al., 1978; Hirata and Tanaka,
1982; Bähler et al., 1993; Ding et al., 2012), which are evolutionarily
related to the axial/lateral elements of the SC. Ellermeier et al. (2005)
proposed that the linear element component Rec10 is recruited, which
in turn activates Rec12 to perform DNA breaks (Ellermeier et al.,
2005). Core LinE proteins (Rec10, Rec25, Rec27, and Mug20) are
present only during the horsetail stage except the LinE-binding protein
Hop1, which does not disappear even after meiosis I chromosome
segregation (Ding et al., 2012). Oncemovements are finished, telomere
clustering dissolves, and homologous chromosomes remain paired
(Chikashige et al., 1994; Yamamoto et al., 1999; 2001; Ding et al., 2004).

Finally, Ding et al. (2016a) demonstrated that cohesins also
contribute to homologous pairing since it was significantly impaired
in rec8 and pds5 mutants.

FIGURE 2
Timing and mechanisms of DSB-independent homologous pairing in Schizosaccharomyces pombe.
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Drosophila melanogaster

A distinctive feature of D. melanogaster is that homologous
chromosomes are paired in somatic cells. This feature called
“somatic pairing” (Metz, 1916) is frequently observed in Dipterans
(Metz, 1916; McKee, 2004; Joyce et al., 2016; King et al., 2019). It has
been proposed that somatic pairing initiates at discrete sites (“the
button model”) along the length of each chromosome (Funabiki et al.,
1993; Rowley et al., 2019; Viets et al., 2019). Interestingly, some
topologically associated domains (TADs) seem to conduct
homologous associations, acting as high affinity pairing sites (Viets
et al., 2019). In fact, “buttons” also drive pairing with their
homologous sequences even when placed at different positions in
the genome (Viets et al., 2019).

Concerning meiotic cells, homologous pairing was thought to be
an extension of a supposed pre-existing pairing in premeiotic germ
cells (Stevens, 1908; Metz, 1926; Brown and Stack, 1968). However, it
was observed that, during the first stages of oogenesis, homologous
chromosomes remain unpaired in primordial germ cells [except for
the specific repetitive sequences in the ribosomal DNA (rDNA)]
(Christophorou et al., 2013; Joyce et al., 2013). Pairing is progressively
re-established during the mitotic phase, before the onset of meiosis
and the formation of DSBs (Vazquez et al., 2002; McKee et al., 2012),
through the bundling of centromeres into clusters (Takeo et al., 2011;
Christophorou et al., 2013; Joyce et al., 2013) near the SPB (Zou et al.,
2008) and the aggregation of pairing sites (McKee and Karpen, 1990;
McKee et al., 1992) (Figure 3).

The mechanisms that lead to centromere clustering before the
onset of meiosis are poorly understood. In female D. melanogaster,
two key factors have been proposed: the presence of SC elements in
the centromeric region (Christophorou et al., 2013) and the rotation
of the nucleus (Christophorou et al., 2015). Concerning the role of
SC elements, two proteins C (3)G and Corona (CONA), which are
associated with the transverse filaments and central element of the
SC, respectively (Page and Hawley, 2004; Anderson et al., 2005; Page
et al., 2008) show a direct relationship between their levels of
accumulation in the centromeres of mitotic germ cells and
centromere clustering. Homologous pairing is reduced by 30% in
C (3)G and Cona female mutants that also display defective
clustering (Christophorou et al., 2013). On the other hand,
Christophorou et al., 2015 observed that in female D.
melanogaster, the rotational movement of the nucleus during
mitotic cycles contributes to homologous pairing. In their work,

they demonstrate that microtubules, centrosomes, the motor
proteins dyneins as well as the Sun and Kash domain
transmembrane proteins (which play critical roles in establishing
the connection between the nuclear envelope and the cytoskeleton)
are required for centromere motion, pairing, clustering and
homologous chromosome synapsis.

It is important to mention that the homologous recombination
program promoted by DSBs starts shortly after the initiation of SC
formation along the chromosome arms (Liu et al., 2002; Mehrotra and
McKim, 2006; Lake et al., 2011) and it is not needed for the centromeric
aggregation (Takeo et al., 2011). In Mei-W68 mutants (lacking the
enzyme responsible for catalysing DSB formation) and Mei-P22
mutants (lacking the enzyme that facilitate DSB formation by MEI-
W68), which are characterized by the absence of meiotic recombination,
a normal SC formation is observed (McKim et al., 1998). However, in
the absence of the SC proteins C (3)G and C (2)M, the number of DSBs
in oocytes is significantly reduced (Mehrotra and McKim, 2006),
suggesting that SC proteins are required for DSB formation.

In male D. melanogaster, there is no evidence of a re-
establishment of homologous pairing at the transition from mitosis
to meiosis. Spermatogenesis completely dispenses with synapsis and
recombination; cohesins and lateral elements of the SC are not present
(Meyer, 1964; Meyer, 1969; Rasmussen, 1973), and there is a complete
lack of crossing over (CO) (Morgan, 1914). Connections between
homologous chromosomes, including sex chromosomes, are
performed by a surrogate mechanism based on a protein complex
consisting of at least two proteins: Stromalin in Meiosis (Snm) and
Mod (Mdg4) in Meiosis (MNM) (Thomas et al., 2005; reviewed by
McKee et al., 2012). Moreover, sex chromosome pairing is governed
by the presence of nucleolar genes (reviewed inMcKee, 2009; Tsai and
McKee, 2011; McKee et al., 2012), so it has been suggested that rDNA
would have a similar function to the pairing centres (PCs) described
below in C. elegans (Tsai and Mckee, 2011). In support of this idea, it
has been observed that an insertion or deletion of rDNA affects sex
chromosome pairing and, not only that but, only a few copies of
intergenic spacer regions of rDNA are enough to promote pairing
(McKee and Karpen, 1990; McKee et al., 1992; McKee, 1996).

Caenorhabditis elegans

The pairing process of C. elegans begins at the onset of meiosis
by a process that is independent of both DSBs and recombination

FIGURE 3
Timing and mechanisms of meiotic homologous pairing in Drosophila melanogaster.
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(Dernburg et al., 1998; McKim et al., 1998) (Figure 4). During the
leptotene/zygotene stage, chromatin assumes a half-moon shape
(Hirsh et al., 1976) in which the nucleolus locates at the edges
(Mlynarczyk-Evans and Villeneuve, 2017). Each chromosome of C.
elegans contains a single subtelomeric region characterised by
repeated DNA sequences widely referred to as Pairing Centres
(PC). PCs promote and stabilise pairing and synapsis and are
indispensable for accurate homologous segregation (Albertson
et al., 1997; MacQueen et al., 2005). Some pieces of evidence
indicate that PCs themselves are enough for chromosomes to
recognise each other. For instance, pairing and synapsis take
place transiently or inefficiently between chromosomes lacking
PCs (MacQueen et al., 2005). Moreover, in reciprocal
translocation chromosomes that are partly homologous and
partly heterologous, pairing always begins in the PC region
which is shared by both chromosomes (MacQueen et al., 2005).

Various studies have detailed how PCs promote pairing. First,
the alignment of homologous chromosomes is stabilised in a
synapse-independent manner (MacQueen et al., 2002; 2005).
Indeed, in the absence of synapsis (syp-1 or syp-2 mutants)
transient pairing occurs during the leptotene and zygotene stages
(MacQueen et al., 2002; Colaiácovo et al., 2003). We know that a set
of zinc-finger proteins encoded in a single gene cluster - HIM-8,
ZIM-1, ZIM-2 and ZIM-3—recognise and attach to a specific 12 bp
repeat region present in PCs (Phillips et al., 2009). After binding, the
resulting complexes interact with SUN-1 to form a bridge that
crosses the nuclear envelope in a similar way to how telomeres form
a bouquet structure. This mechanism is considered a variant of the
bouquet (Penkner et al., 2009; Sato et al., 2009) although, in this case,
the PCs are never completely clustered (Wynne et al., 2012).
Afterward, chromosomes move through the nuclear envelope to
ease homologous recognition by causing random interactions of PCs
until they stabilise with the corresponding homologous PC and the
formation of the SC (Baudrimont et al., 2010; Mlynarczyk-Evans
and Villeneuve, 2017). SC central element polymerisation typically
begins in proximity to PCs, although SC formation can still occur
even without the participation of PCs (MacQueen et al., 2005;
Hayashi et al., 2010). Importantly, it has been proposed that
homologous synapsis is not reliant on recombination, as it occurs
normally even in a C. elegans spo-11 null mutant (Dernburg et al.,
1998). Some researchers have proposed that chromosomal dynamics

can prevent weak associations between non-homologous
chromosomes. This mechanism is thought to be particularly
important in cases where there is no stabilisation by PCs
(Baudrimont et al., 2010; Wynne et al., 2012). Finally, various
proteins have been described as being involved in meiotic
prophase chromosome movements, including the meiotic family
of serine/threonine protein kinases Polo-like kinases PLK-1 and
PLK-2 (Lake et al., 2011), the motor protein dynein, the
transmembrane SUN/KASH proteins and the orthologue of
mammalian vinculin, DEB-1 (Rohožková et al., 2019).
Interestingly, missense mutations in sun-1 cause pairing defects
and non-homologous synapsis (Penkner et al., 2007; Labrador et al.,
2013). Moreover, homolog pairing is markedly delayed by dynein
knockdown (Sato et al., 2009).

Mus musculus

Some studies have shown that the association of homologous
chromosomes in mouse germ cells takes place before the onset of
meiosis (Boateng et al., 2013; Solé et al., 2022) or directly at the early
leptotene stage (Ishiguro et al., 2014; Scherthan et al., 2014), in both
cases before the formation of DSBs. Solé et al. (2022) quantified this
process and demonstrated that up to 73.83% of homologous
chromosomes are already in contact at premeiotic stages,
suggesting the ability of homologous chromosomes to find each
other before meiosis.

Boateng et al. (2013) showed that early pairing of homologous
chromosomes in mice depends on the presence of SPO11 but not on
its catalytic activity. The independence of pairing from
SPO11 activity was confirmed later by Ishiguro et al. (2014).
They observed pairing of homologous chromosomes in
spermatocytes from spo11 knockout mice, although less
frequently than in wild-type spermatocytes, particularly in the
early zygotene stage. Ishiguro and others also postulated that
cohesins would guide homologous pairing. This idea was based
on two observations. First, during the first meiotic prophase, the
distribution pattern of cohesins RAD21L and REC8 appeared to be
unique along each chromosome but identical in each homolog
(Ishiguro et al., 2011). Second, homologous chromosome pairing
in mice rad21l−/− mutants was impaired, suggesting a relevant role

FIGURE 4
Timing and mechanisms of DSB-independent homologous pairing in Caenorhabditis elegans.
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for this cohesin in the DSB-independent early pairing. Conversely,
homolog pairing was observed in a significant population of rec8−/−
mice spermatocytes (Ishiguro et al., 2014). Supporting the
participation of cohesins, Ding et al. (2016a), Ding et al. (2016b)
also observed an alteration of the pairing pattern in S. pombe in the
absence of Rec8 and Pds5.

The independent pairing of DSBs in mice also appears to be
regulated by the expression of certain prophase I genes during
spermatogonia proliferation, such as some components of SC and
REC8 proteins (Wang et al., 2009; Elkouby et al., 2016) (Figure 5).
Rubin et al. (2020) proposed that the expression of SC proteins prior
to the onset of meiosis may resemble the expression of transverse
filaments and central elements [C (3)G and Corona (CONA),
respectively] in D. melanogaster. Indeed, Bisig et al. (2012)
described an association of telomeres (although not specifically
homologous telomeres) and, consequently, of centromeres in type
B spermatogonia and pre-leptotene mice spermatocytes.
Interestingly, this association was altered in the absence of
SYCP3 (Bisig et al., 2012).

Early pairing of homologous chromosomes later became
reinforced by the bouquet structure formation and chromosome
dynamics. This structure facilitates the interaction of different
chromosomal interstitial points. In terms of dynamics, a
combination of two movements take place during prophase:
nuclear rotation and an autonomous movement of the
chromosomes (Conrad et al., 2008; Shibuya et al., 2014; Lee
et al., 2015; Spindler et al., 2019). When the bouquet structure
and chromosome dynamics are altered, a reduction in homologous
pairing and synapsis has been observed (Shibuya et al., 2014).
Finally, pairing will be completely stabilised through the repair
mechanisms of DSBs (recombination) and the formation of the
SC (Baudat et al., 2000).

Final remarks

Table 1 summarises the main characteristics of early
homologous pairing in the five model organisms reviewed in this
work. The clustering of telomeres (or distal regions in the case of C.
elegans) and/or centromeres appear to be a common mechanism in
the early steps of the process. This chromosome disposition would

place homologous chromosomes at the same latitude of the nucleus,
orienting their chromosome arms and, therefore, helping the
alignment of homologous regions for a more efficient homology
search. The fact that the clustering occurs at a specific region of the
nuclear envelope and before the initiation of chromosomal
movements, would prevent the formation of “interlocks” between
the chromatin of different chromosomes (images of these knots can
be seen inWang et al., 2009). It should be noted that the clustering of
telomeres in the bouquet structure usually occurs near the
microtubule organising centre (MTOC; known as the SPB in
yeast and fungi, and as the centrosome in C. elegans and other
metazoans). It suggests that the MTOC could have a role in the
bouquet structure formation and in causing oscillatory movements
(Sawin, 2005; Sato et al., 2009) that ultimately help to promote
homologous recognition. Dynamics is another common trait that
plays an important role in early homologous pairing. Movements
such as nuclear rotation, horsetail movement or the displacement of
telomeres through the nuclear envelope have been suggested to have
two objectives. It would first help to find those specific elements that
facilitate pairing (SC structure, other proteins, RNA and/or DNA)
by establishing strong interactions in these regions followed by
propagation of pairing along the chromosome, and second,
movements would eliminate weak interactions between non-
homologous chromosomes. In fact, if there are alterations of
proteins involved in chromosomal movement, the frequency of
synapsis between heterologous chromosomes increases (Penkner
et al., 2009).

Based on the information presented in this review, it becomes
evident that the processes of homologous chromosome pairing
encompass additional mechanisms before the repair of double-
strand breaks (DSBs). Independent DSB repair mechanisms
would drive homologous chromosomes to approach, facilitating
the search for homology after DSBs formation. In this way, early
pairing would prevent the search for homologous sequences in non-
homologous chromosomes and, consequently, the formation of
unwanted interactions. At the same time, these mechanisms
would facilitate the repair of DSBs using the intact homologous
duplex as a template.

Overall, it is crucial to shift our understanding of the
chromosomal pairing process from being solely driven by
recombination to a process promoted by multiple factors that

FIGURE 5
Timing and mechanisms of DSB-independent homologous pairing in Mus musculus.
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TABLE 1 Elements involved in early meiotic pairing in different species (Chr.) chromosome, (SC) synaptonemal complex, (PCs) pairing centers. *In Saccharomyces cerevisiae, there is a centromere coupling mechanism that
involves the proximity of homologous and non-homologous centromeres.

When does
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pairing begin?

Does homologous
pairing begin
before DSBs
formation?

Does homologous
pairing occur in the
absence of DSBs
formation or

recombination?

Do these elements promote homologous pairing?

Centromere
clustering

Telomere
clustering

Chr.
dynamics

SC DNA
sequences

RNA
sequences

Cohesin
meiotic

components

Saccharomyces
cerevisiae

Prophase onset No* Yes Yes Yes Yes Yes No data No data Yes

Schizosaccharomyces
pombe

Prophase onset Yes Yes Yes Yes Yes No
data

No data Yes (non-
coding RNA)

Yes

Drosophila
melanogaster

Mitotic phase Yes Yes Yes No Yes Yes Yes (rDNA,
pairing sites)

No data No data

Caenorhabditis
elegans

Prophase onset Yes Yes No (Holocentric
chromosomes)

No Yes No Yes (PCs) No data No data

Mus musculus Before prophase Yes Yes Yes Yes Yes Yes No data No data Yes
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overlap in time. Amore comprehensive understanding of the factors
involved in homologous pairing and how they interact with one
another is essential to understand the mechanisms that govern
chromosome stability. Future research should aim to identify and
characterise these factors.
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